首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
The effect of pile mixing on greenhouse gas (GHG) emissions during dairy manure composting was determined using large flux chambers designed to completely cover replicate pilot-scale compost piles. GHG emissions from compost piles that were mixed four times during the 80 day trial were approximately 20% higher than emissions from unmixed (static) piles. For both treatments, carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) accounted for 75-80%, 18-21%, and 2-4% of GHG emissions, respectively. Seventy percent of CO(2) emissions and 95% of CH(4) emissions from all piles occurred within first 23 days. By contrast, 80-95% of N(2)O emissions occurred after this period. Mixed and static piles released 2 and 1.6 kg GHG (CO(2)-Eq.) for each kg of degraded volatile solids (VS), respectively. Our results suggest that to minimize GHG emissions, farmers should store manure in undisturbed piles or delay the first mixing of compost piles for approximately 4 weeks.  相似文献   

2.
A model has been developed to predict pig manure evolution (mass, dry and organic matter, N, P, K, Cu and Zn contents) and related gaseous emissions (methane (CH4), nitrous oxide (N2O) and ammonia (NH3)) from pig excreta up to manure stored before spreading. This model forms part of a more comprehensive model including the prediction of pig excretion. The model simulates contrasted management systems, including different options for housing (slatted floor or deep litter), outside storage of manure and treatment (anaerobic digestion, biological N removal processes, slurry composting (SC) with straw and solid manure composting). Farmer practices and climatic conditions, which have significant effects on gaseous emissions within each option, have also been identified. The quantification of their effects was based on expert judgement from literature and local experiments, relations from mechanistic models or simple emission factors, depending on existing knowledge. The model helps to identify relative advantages and weaknesses for each system. For example, deep-litter with standard management practices is associated with high-greenhouse gas (GHG) production (+125% compared to slatted floor) and SC on straw is associated with high NH3 emission (+15% compared to slatted floor). Another important result from model building and first simulations is that farmer practices and the climate induce an intra-system (for a given infrastructure) variability of NH3 and GHG emissions nearly as high as inter-system variability. For example, in deep-litter housing systems, NH3 and N2O emissions from animal housing may vary between 6% and 53%, and between 1% and 19% of total N excreted, respectively. Thus, the model could be useful to identify and quantify improvement margins on farms, more precisely or more easily than current methodologies.  相似文献   

3.
To evaluate the NH(3), N(2)O, and CH(4) emissions from composting of livestock waste without forced aeration in turned piles, and to investigate the possible relationship between the scale of the compost pile and gas emission rates, we conducted swine manure composting experiments in parallel on small- and large-scale compost piles. Continuous measurements of gas emissions during composting were carried out using a chamber system, and detailed gas emission patterns were obtained. The total amount of each gas emission was computed from the amount of ventilation and gas concentration. NH(3) emission was observed in the early period of composting when the material was at a high temperature. Sharp peaks in CH(4) emission occurred immediately after swine manure was piled up, although a high emissions level continued after the first turning only in the large-scale pile. N(2)O emissions started around the middle stage of the composting period when NH(3) emissions and the temperature of the compost material began to decline. The emission rates of each gas in the small and large piles were 112.8 and 127.4 g NH(3)-N/kg T-N, 37.2 and 46.5 g N(2)O-N/kg T-N, and 1.0 and 1.9 g CH(4)/kg OM, respectively. It was found that changing the piling scale of the compost material was a major factor in gas emission rates.  相似文献   

4.
The aim of this study was to compare the environmental impact of the straw-flow system for fattening pigs with the slatted-floor system by measuring pollutant gas emissions such as ammonia (NH3), nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2), manure nitrogen (N) content and emissions of water vapour (H2O). Three successive batches of 32 pigs were fattened. For each batch, pigs were allotted to two groups raised in separated rooms fitted either with a concrete totally slatted-floor system (0.75 m2 per pig) or with a straw-flow system (0.79 m2 per pig). With this last system, pigs were kept on a sloped floor, straw being provided daily at the top of the pen. Throughout the fattening period, about 34.4 kg of straw were supplied per pig. The straw, mixed with dung, travelled down the slope by pig motion and went out of the pen to a scraped passage. The solid fraction was scraped every day, stored in a heap in the room and removed every month, 1 week before each period of gaseous emission measurement. The liquid fraction was automatically pumped from the scraped passage into a hermetic tank, which was emptied at the end of each fattening period. Rooms were ventilated mechanically in order to maintain a constant ambient temperature. Once a month, the emissions of NH3, N2O, CH4, CO2 and H2O were measured hourly for 6 consecutive days via infrared photoacoustic detection. Mean daily emissions per pig fattened on the slatted floor or on the sloped floor were, respectively, 4.98 and 13.31 g NH3, 0.67 and 0.68 g N2O, 15.2 and 8.88 g CH4, 548 g and 406 g CO2 equivalents, 1.61 and 1.77 kg CO2 and 2.33 and 2.95 kg H2O. Except for N2O emissions, all the differences were statistically significant (P < 0.001). From the slatted-floor system, the amount of slurry removed per fattening period was on average 256 kg per pig. From the straw-flow system, solid manure amounted on average to 209 kg per pig and liquid manure to 53 kg per pig. The total N-content of the manure was 2.23 kg N per pig with the straw-flow system (solid and liquid manure) v. 3.26 kg N per pig for slurry from the slatted-floor system. This reduction of 30% observed with the sloped floor was mainly explained by the higher level of NH3-N emissions.  相似文献   

5.
Cattle slurry solid fraction (SF) with different dry matter (DM) contents was collected from two dairy farms and composted in static and turned piles, with different sizes and cover types, to investigate the effects of pile conditions on the physical and chemical changes in SF during composting and to identify approaches to improve final compost quality. Thermophilic temperatures were attained soon after separation of SF, but the temperature of piles covered with polyethylene did not increase above 60 degrees C. The rate of organic matter (OM) mineralisation increased for turned piles in comparison to static piles, but the maximum amount of mineralisable OM (630-675gkg(-1)) was similar for all pile treatments. The C/N ratio declined from over 36 to a value of 14 towards the end of composting, indicating an advanced degree of OM stabilisation. Mature compost was obtained from raw SF feedstock as indicated by the low compost temperature, low C/N ratio, and low content of NH(4)(+) combined with increased concentrations of NO(3)(-). The efficiency of the composting process was improved and NH(3)-N losses were minimized by increasing DM content of the SF, reducing the frequency of pile turning and managing compost piles without an impermeable cover.  相似文献   

6.
Cattle manure from stock bedded on straw was aerobically composted under ambient conditions, turning with either a tractor-mounted front-end loader or a rear discharge manure spreader. Three composting experiments, each of approximately four months duration, were conducted to investigate the effect of turning regime and seasonal weather conditions on nitrogen and phosphorus losses during aerobic composting of cattle manure. Manure stacks of 12-15 m(3) initial volume were constructed in separate 5 x 5 m concrete compartments. Experiment 1 (January-April 1999) compared manure heaps turned once (T1) or three times (T3) using a front-end loader with an unturned static (S) control manure stack. Experiment 2 (June-September 1999) compared the same treatments as Experiment 1. Experiment 3 (September-December 1999) compared T1 and T3 turning regimes using a front end loader with turning by a rear-discharge spreader (TR1 and TR1T2) for more effective aeration of the manure. Turning took place at 6 weeks for the one turn treatments, and after 2, 6 and 10 weeks for the three turn treatments. Leachate losses were dominated by NH(4)-N during the first three weeks of composting, after which time NH4-N and NO3-N concentrations in leachates were approximately the same, in the range 0-20 mg N l(-1). The concentrations of both NH4-N and NO3-N in leachate were higher after turning. Molybdate-reactive P concentrations in leachate tended not to be significantly influenced by turning regime. Gaseous losses of NH3 and N2O rose quickly during the initial phases of composting, peaking at 152 g N t(-1) d(-1) for the T3 treatment. Mean NH3 emission rate (25-252 g N t(-1) d(-1)) for the first two weeks of Experiment 2 conducted during the period June-September were an order of magnitude greater (1-10 g N t(-1) d(-1)) than Experiment 3, conducted during the colder, wetter autumn period (September-December). Nitrous oxide emission rates ranged between 1-14 g N t(-1) d(-1) and showed little influence of turning regime. Total N and P concentrations in turned (T) and static (S) manure were elevated at the end of all experiments, due to loss of dry matter. Mean total N losses were 30.4% (T1) and 36.8% (T3) and total P losses 28.2% (T1) and 27.4% (T3).  相似文献   

7.
An experimental technique was developed for measuring gaseous emissions including ammonia (NH(3)), nitrous oxide (N(2)O) and methane (CH(4)) from broiler houses. This technique included the monitoring of the air flow rate and the gaseous concentrations. NH(3) was determined using acid trap while N(2)O and CH(4) were determined continuously by infrared gas analyser and sequentially by gas chromatography. Moreover, N(2)O and CH(4) emissions were monitored above the litter using closed flux chambers at the end of the experiment. No emissions of N(2)O and CH(4) were observed neither during the growth of the broiler nor above the litter at the end of the experiment. Ammonia concentration varied between 0.8 and 32 ppm in the building. Total ammonia emissions were estimated to 5.74 g N animal(-1) during this experiment. According to this result, ammonia emissions from broiler houses could be estimated to 5.3 kt of N per year in France.  相似文献   

8.
Composting allows simple management of animal manure but excessive aeration can increase emissions of polluting gases such as ammonia or nitrous oxide. The aim of the present work was to determine the effect of three techniques--turning, compacting and the addition of water--on gaseous emissions. One ton of cattle manure and 3 tons of turkey manure were composted in two and four cells for 46 and 51 days respectively. The manure was either turned, wetted, or compacted. Emissions of carbon dioxide, water vapor, ammonia and nitrous oxide were monitored. The results show that turning did not alter the free air space. Compacting can be used specifically to reduce the water loss. A reduction of free air space by 20-60%, either by compacting or adding water (or both), reduced the ammonia and nitrous oxide emissions by 30-70%.  相似文献   

9.
Nitrogen (N) losses from livestock houses and manure storage facilities contribute greatly to the total loss of N from livestock farms. Volatilisation of ammonia (NH3) is the major process responsible for the loss of N in husbandry systems with slurry (where average dry matter content varies between 3 and 13%). Concerning this volatilisation of NH3, the process parameters of pH and air temperature are crucial. During a period of approximately 10 years, systematic measurements of NH3 losses originating from a large variety of different livestock houses were made. One of the problems with NH3 emissions is the large variation in the measured data due to the season, the production of the animals, the manure treatment, type of livestock house, and the manure storage. Generally speaking, prevention and control of NH3 emission can be done by control of N content in the manure, moisture content, pH, and temperature. In houses for growing pigs, a combination of simple housing measures can be taken to greatly reduce NH3 emissions. In houses for laying hens, the control of the manure drying process determines the emission of NH3. Monteny has built an NH3 production model with separate modules for the emission of the manure storage under the dairy house and the floor in the house. Manure spreading is also a major source of NH3 emission and is dependent on slurry composition, environmental conditions, and farm management. The effects of these factors have been employed in a model. Losses via NO, N2O, and N2 are important in husbandry systems with solid manure and straw. The number of experimental data is, however, very limited. As N2O is an intermediate product of complex biochemical processes of nitrification and denitrification, optimal conditions are the key issues in N2O reduction strategies. We may expect that in the near future the emission of greenhouse gases will get the same attention from policy makers as NH3. Sustainable livestock production has to combine low emissions of gaseous N compounds with acceptable odour emissions, low emissions of greenhouse gases, and acceptable standards of animal welfare. For the entrepreneur, the strategy must be built on the regulations, the special conditions of his farm, and what is reasonably achievable.  相似文献   

10.
Ammonia emissions during vermicomposting of sheep manure   总被引:2,自引:0,他引:2  
The effect of C:N ratio, temperature and water content on ammonia volatilization during two-phase composting of sheep manure was evaluated. The aerobic phase was conducted under field conditions. This was followed by Phase II, vermicomposting, conducted in the laboratory under controlled conditions of water content (70% and 80%) and temperature (15 and 22 °C). The addition of extra straw lead to a 10% reduction in NH3 volatilization compared to sheep manure composted without extra straw. Temperature and water content significantly effected ammonia volatilization at 0 day in Phase II, with a water content of 70% and temperature of 22 °C leading to greater losses of ammonia. Nitrogen loss by ammonia volatilization during vermicomposting ranged from 8% to 15% of the initial N content. The addition of extra straw did not result in significant differences in total carbon content following vermicomposting.  相似文献   

11.
Agriculture is an important source of ammonia (NH3), which contributes to acidification and eutrophication, as well as emissions of the greenhouse gases nitrous oxide (N2O) and methane (CH4). Controlling emissions of one of these pollutants through application of technical measures might have an impact (either beneficial or adverse) on emissions of the others. These side effects are usually ignored in policy making. This study analyses cost-effectiveness of measures to reduce acidification and eutrophication as well as agricultural emissions of N2O and CH4 in Europe, taking into account interrelations between abatement of NH3, N2O, and CH4 in agriculture. The model used is based on the RAINS (Regional Air pollution INformation and Simulation) model for air pollution in Europe, which includes emissions, abatement options, and atmospheric source-receptor relationships for pollutants contributing to acidification and eutrophication. We used an optimisation model that is largely based on the RAINS model but that also includes emissions of N2O and CH4 from agriculture and technical measures to reduce these emissions. For abatement options for agricultural emissions we estimated side effects on other emissions. The model determines abatement strategies to meet restrictions on emission and/or deposition levels at the least cost. Cost-effective strategies to reduce acidification and eutrophication in Europe were analysed. We found that NH3 abatement may cause an increase in N2O emissions. If total agricultural N2O and CH4 emissions in Europe were not allowed to increase, cost-effective allocation of emission reductions over countries in Europe changed considerably.  相似文献   

12.
In the Netherlands, nutrient emissions from intensive animal husbandry have contributed to decreased species diversity in (semi) natural terrestrial and aquatic ecosystems, pollution of groundwater, and possibly global warming due to N2O emissions. This paper presents the results of a modelling study presenting the impacts of both structural measures and improved farming practices on major nitrogen (N) fluxes, including NH3 and N2O emission, uptake, leaching, and runoff, in the Netherlands, using input data for the year 2000. Average annual fluxes (Gg N year(-1)) for the year 2000 were estimated at 132 for NH3 emission (160 Gg NH 3 year(-1)), 28 for N2O emission, 50 for N inflow to groundwater, and 15 for N inflow to surface water at a total N input of 1046. At this input, nitrate (NO3) concentrations in groundwater often exceeded the target of 50 mg NO3 l(-1), specifically in well-drained sandy soils. The ammonia (NH3) emissions exceeded emission targets that were set to protect the biodiversity of nonagricultural land. Improved farming practices were calculated to lead to a significant reduction in NH3 emissions to the atmosphere and N leaching and runoff to groundwater and surface water, but these improvements were not enough to reach all the targets set for those fluxes. Only strong structural measures clearly improved the situation. The NH3 emission target of 30 Gg NH3 year(-1), suggested for the year 2030, could not be attained, however, unless pig and poultry farming is completely banned in the Netherlands and all cattle stay almost permanently in low emission stables.  相似文献   

13.
氢醌和双氰胺对种稻土壤N2O和CH4排放的影响   总被引:14,自引:1,他引:13  
通过盆栽试验,研究了脲酶抑制剂氢醌(HQ)、硝化抑制剂双氰胺(DCD)及二者的组合(HQ+DCD)对种稻土壤N2O和CH4排放的影响.结果表明,在未施麦秸粉时,所有施抑制剂的处理均较单施尿素的能显著减少水稻生长期供试土壤N2O和CH4的排放.特别是HQ+DCD处理,其N2O和CH4排放总量分别约为对照的1/3和1/2.而在施麦秸粉后,该处理的N2O排放总量为对照的1/2,但CH4排放总量却较少差别.不论是N2O还是CH4的排放总量,施麦秸粉的都比未施的高出1倍和更多.因此,单从土壤源温室气体排放的角度看,将未腐熟的有机物料与尿素共施,并不是一种适宜的施肥制度.供试土壤的N2O排放通量,与水稻植株的NO-3N含量和土表水层中的矿质N量分别呈显著的指数正相关和线性正相关;CH4的排放通量则与水稻植株的生长量和土表水层中的矿质N量呈显著的线性负相关.在N2O与CH4的排放间,未施麦秸粉时存在着定量的相互消长关系;施麦秸粉后,虽同样存在所述关系,但难以定量化.  相似文献   

14.
One alternative to mineral fertilization is to use organic fertilizers. Our aim was to compare the impacts of 7-year applications of composted pig manure and ammonium nitrate on the structure and activity of the denitrifying community. Mineralization and organization of N, denitrification rates and N2O/N2 ratio were also investigated. Fourteen months after the last application, the potential denitrifying activity (+319%), N mineralization (+110%) and organization (+112%) were higher under pig compost than under ammonium nitrate fertilization. On the other hand, the N2O/(N2O+N2) ratio was lower (P<0.05, n=5) under organic fertilization. These effects of organic fertilization were in accordance with its higher total carbon content and microbial biomass. Fingerprints and clone library analyses showed that the structure of the denitrifying community was affected by the fertilization regime. Our results reveal that organic or mineral fertilizer applications could affect both structure and activity of the denitrifying community, with a possible influence on in situ N2O fluxes. These effects of the fertilization regime persisted for at least 14 months after the last application.  相似文献   

15.
A total of 200 crossbred pigs (castrated males and females) were used in five replicates to evaluate the influence of rearing conditions for fattening pigs on growth performance, manure production and gaseous emissions. Approximately at 36 kg body weight (BW), littermates were allocated to either a conventional (fully slatted floor, 0.65 m2/pig, considered as control, CON) or an alternative (sawdust bedding, 1.3 m2/pig, with free access to an outdoor area 1.1 m2/pig, OUT) system, until slaughter at approximately 115 kg BW. Pigs had free access to standard growing and finishing diets. Manure was stored as slurry below the slatted floor in the CON system and as litter, for the inside area, or slurry and liquid, for the outside area, in the OUT system. The amount and composition of manure were determined at the end of each replicate. Ammonia emission from the rooms was measured continuously. Dust and odour concentrations were measured in replicates 1 and 2, and CH4, N2O and CO2 emissions were measured in replicate 3. Compared with the CON, the OUT pigs exhibited a faster growth rate (+8%, P < 0.001) due to their greater feed intake (+0.21 kg/day, P < 0.01), resulting in a heavier BW (+7.3 kg, P < 0.001) and a lower lean meat content (-1.6% points, P < 0.001) at slaughter. The total amount of manure produced per pig was similar in both systems (380 kg/pig), but because of the contribution of sawdust, dry matter (DM) content was higher (P < 0.001) and concentrations in N, P, K, Cu and Zn in DM were lower (P < 0.001) in manure from the OUT than from the CON system. In the OUT system, most of the manure DM (70%) was collected indoor, corresponding mostly to the contribution of the sawdust, and most of the manure water (70%) was collected outdoor. Pigs excreted indoor about 60% and 40% of urine and faeces, respectively. Ammonia emission from the room was lower for the OUT system, whereas total NH3 emissions, including the outdoor area, tended to be higher (12.0 and 14.1 g/day N-NH3 per pig for CON and OUT, respectively). Nitrous oxide emission was higher (1.6 and 4.6 g/day N-N2O per pig for CON and OUT, respectively) and methane emission was lower (12.1 and 5.9 g/day per pig for CON and OUT, respectively), for the OUT compared with the CON system.  相似文献   

16.
Emissions of N2O from cover soils of both abandoned (> 30 years) and active landfills greatly exceed the maximum fluxes previously reported for tropical soils, suggesting high microbial activities for N2O production. Low soil matrix potentials (<-0.7 MPa) indicate that nitrification was the most likely mechanism of N2O formation during most of the time of sampling. Soil moisture had a strong influence on N2O emissions. The production of N2O was stimulated by as much as 20 times during laboratory incubations, when moisture was increased from -2.0 MPa to -0.6 MPa. Additional evidence from incubation experiments and delta13C analyses of fatty acids (18:1) diagnostic of methanotrophs suggests that N2O is formed in these soils by nitrification via methanotrophic bacteria. In a NH3(g)-amended landfill soil, the rate of N2O production was significantly increased when incubated with 100 ppmv methane compared with 1.8 ppmv (atmospheric) methane. Preincubation of a landfill soil with 1% CH4 for 2 weeks resulted in higher rates of N2O production when subsequently amended with NH3(g) relative to a control soil preincubated without CH4. At one location, at the soil depth (9-16 cm) of maximum methane consumption and N2O production, we observe elevated concentrations of organic carbon and nitrogen and distinct minima in delta15N (+1.0%) and delta13C (-33.8%) values for organic nitrogen and organic carbon respectively. A delta13C value of -39.3% was measured for 18:1 carbon fatty acids in this soil, diagnostic of type II methanotrophs. The low delta15N value for organic nitrogen is consistent with N2 fixation by type II methanotrophs. These observations all point to a methanotrophic origin for the organic matter at this depth. The results of this study corroborate previous reports of methanotrophic nitrification and N2O formation in aqueous and soil environments and suggest a predominance of type II rather than type I or type X methanotrophs in this landfill soil.  相似文献   

17.
Co-composting solid swine manure with pine sawdust as organic substrate   总被引:3,自引:0,他引:3  
Zhang Y  He Y 《Bioresource technology》2006,97(16):2024-2031
The main objectives of this work were to investigate the evolution of the principal physicochemical properties, i.e., bulk temperature, pH, electrical conductivity (EC), moisture content, total organic matter, total nitrogen and total phosphorus, in co-composting pine sawdust with increasing percentages of fresh solid swine manure, and thus to evaluate the most desirable manure proportion for producing organic substrates in consideration of the quality of the resulted compost. The composting was in four identical 100.5l lab vessels, using 5% each tea leaves and herb residues as conditioners. The swine manure was added in the trials at 20%, 30%, 40%, respectively, and was substituted in the control with 30% lake sludge corrected by 0.5% urea. The initial humidity of each treatment was 60+/-2%. While being aerated actively at approximately 0.3m(3)/min at intervals of 10 min/h, the mixture was composted for 29 days. The results indicated that N and P decomposition primarily occurred in the mesophilic phase, while organic carbon decomposed in the thermophilic phase and 30% swine manure with initial C/N ratio of about 40 was more desirable for composting organic substrates.  相似文献   

18.
In the Netherlands, high traffic density and intensive animal husbandry have led to high emissions of reactive nitrogen (N) into the environment. This leads to a series of environmental impacts, including: (1) nitrate (NO3) contamination of drinking water, (2) eutrophication of freshwater lakes, (3) acidification and biodiversity impacts on terrestrial ecosystems, (4) ozone and particle formation affecting human health, and (5) global climate change induced by emissions of N2O. Measures to control reactive N emissions were, up to now, directed towards those different environmental themes. Here we summarize the results of a study to analyse the agricultural N problem in the Netherlands in an integrated way, which means that all relevant aspects are taken into account simultaneously. A simple N balance model was developed, representing all crucial processes in the N chain, to calculate acceptable N inputs to the farm (so-called N ceiling) and to the soil surface (application in the field) by feed concentrates, organic manure, fertiliser, deposition, and N fixation. The N ceilings were calculated on the basis of critical limits for NO 3 concentrations in groundwater, N concentrations in surface water, and ammonia (NH3) emission targets related to the protection of biodiversity of natural areas. Results show that in most parts of the Netherlands, except the western and the northern part, the N ceilings are limited by NH 3 emissions, which are derived from critical N loads for nature areas, rather than limits for both ground- and surface water. On the national scale, the N ceiling ranges between 372 and 858 kton year(-1) depending on the choice of critical limits. The current N import is 848 kton year(-1). A decrease of nearly 60% is needed to reach the ceilings that are necessary to protect the environment against all adverse impacts of N pollution from agriculture.  相似文献   

19.
Methyl fluoride (CH(3)F) and dimethyl ether (DME) inhibited nitrification in washed-cell suspensions of Nitrosomonas europaea and in a variety of oxygenated soils and sediments. Headspace additions of CH(3)F (10% [vol/vol]) and DME (25% [vol/vol]) fully inhibited NO(2) and N(2)O production from NH(4) in incubations of N. europaea, while lower concentrations of these gases resulted in partial inhibition. Oxidation of hydroxylamine (NH(2)OH) by N. europaea and oxidation of NO(2) by a Nitrobacter sp. were unaffected by CH(3)F or DME. In nitrifying soils, CH(3)F and DME inhibited N(2)O production. In field experiments with surface flux chambers and intact cores, CH(3)F reduced the release of N(2)O from soils to the atmosphere by 20- to 30-fold. Inhibition by CH(3)F also resulted in decreased NO(3) + NO(2) levels and increased NH(4) levels in soils. CH(3)F did not affect patterns of dissimilatory nitrate reduction to ammonia in cell suspensions of a nitrate-respiring bacterium, nor did it affect N(2)O metabolism in denitrifying soils. CH(3)F and DME will be useful in discriminating N(2)O production via nitrification and denitrification when both processes occur and in decoupling these processes by blocking NO(2) and NO(3) production.  相似文献   

20.
A 3-month experiment was conducted at a 300 kg scale to observe decomposition processes in pig slurry solids amended with two different doses of natural Slovak zeolite-clinoptilolite (substrates S1 and S2, 1% and 2% of zeolite by weight, respectively) in comparison with the control (unamended solids). The experimental and control substrates were stored outdoors in sheltered static piles at ambient temperatures ranging from 8.0 to 34.7 degrees C. The solid fraction (SF) of pig slurry was obtained by separation on vibration sieves prior to slurry treatment with activated sludge. The initial water content of the SF was 77.1% and no water was added to the piles during the storage. The temperature in the core of the piles was recorded throughout the experiment. By day 3 and 5 of storage (1% and 2% zeolite, resp.), the temperature in the substrates S1 and S2 exceeded 55 degrees C and remained above this level for 15 days while the highest temperature recorded in the control during the experiment was 29.8 degrees C. Samples from the core of the piles were taken periodically to determine pH, dry matter at 105 degrees C (DM), ash (550 degrees C/4 h), ammonia nitrogen (N-NH(4)(+)), nitrate nitrogen (N-NO(3)(-)), total nitrogen (N(t)), total phosphorus (P(t)); total organic carbon (TOC) was computed. The results showed that pH levels in S1 and S2 remained below that in the control for most of the thermophilic stage. This may be related to water-soluble ammonia and the affinity of zeolites to ammonium ions. A significant decrease in the level of ammonia nitrogen in water extracts from S1 and S2 was observed between days 5 and 35 in comparison with the control. The values of ash also differed and corresponded to the intensity of the decomposition processes in the respective substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号