首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
从植物燃烟中提取的丁烯羟酸内酯(buten01ide)能提高公鸡花种子的萌发率,并促进其萌发后的生长。光可以增强丁烯羟酸内酯的作用。公鸡花对外源GA的响应与对丁烯羟酸内酯的响应类似,二者有协同效应。酶联免疫法测定结果显示,在种子尚未萌发时,经丁烯羟酸内酯处理的种子中内源赤霉素含量低于不做处理的;萌发生长后,其赤霉素含量则高于不做处理的。因此认为,丁烯羟酸内酯可能是通过增加种子对GA的敏感性而起作用的。  相似文献   

2.
火作为一个基础的生态因子, 对森林、草地等陆地生态系统的结构和功能有着重要的影响。种子萌发是种子植物的重要生活史阶段, 也是火后植被更新和恢复的主要途径。植被燃烧产生了烟、热以及与烟相关的一系列火烧信号, 在打破种子休眠, 促进种子萌发方面发挥重要作用。该文将火烧信号分为物理信号和化学信号, 物理信号主要是伴随火烧产生的高温, 化学信号主要包括气态烟以及近年来从烟水中提取的影响种子萌发的关键化学物质karrikins和glyceronitrile。该文围绕火烧的基本信息, 火烧信号对种子萌发的影响, 火烧信号在实践中的应用3个方面进行系统综述, 重点探讨了不同类别的火烧信号及其交互作用对种子萌发的影响。在系统总结火烧信号对种子萌发影响的研究进展的基础上, 提出未来的研究应与烟信号作用机理的探究以及全球变化等方面相结合, 旨在充分发挥火的生态服务功能, 为火的科学管理应用和退化生态系统恢复提供理论支撑。  相似文献   

3.
荒漠植物种子逆境萌发研究进展   总被引:2,自引:0,他引:2  
任珺  余方可  陶玲 《植物研究》2011,31(1):121-128
对水分、温度、光照、沙埋深度、盐分胁迫及以上几种综合因素在逆境条件下对荒漠植物种子萌发的影响进行了综述。降雨次数、雨量大小、分布及土壤湿度是决定荒漠植物种子萌发的重要生态因子;温度是影响荒漠植物种子萌发的关键生态因子之一,变温有利于荒漠植物种子萌发;光照并非大多数荒漠植物种子萌发的必要条件,少部分荒漠植物种子萌发需要光照,有些要在黑暗中萌发,有些则对光照无特殊要求,光照对有些荒漠植物种子萌发有一定的抑制;不同沙埋深度具有不同的土壤湿度,土壤温度和光照等条件,综合调控荒漠植物种子的萌发;盐分胁迫抑制种子的萌发。荒漠植物种子的萌发在以上几种因素的共同协调作用下表现出一定的适应性。随着研究的不断深入和生态环境建设的需求,需要加强荒漠植物生理生态研究的深度和研究的系统性。  相似文献   

4.
种子萌发受多种外界环境因素诱导和调控,且一旦种子萌发启动,胚将不可避免的生长或死亡,是一个不可逆的过程,决定着植物种群的繁衍、进化和农林业生产。大气和土壤中的多种气体对植物种子萌发具有重要影响,与固液物质相比,环境气体扩散速度快、影响范围大,是影响植物种子萌发的重要生态因子。目前,已知影响植物种子萌发的气体物质有环境气体分子、植物燃烟和植物挥发物3大类,其中环境气体分子包括氧气(O2)和二氧化碳(CO2),以及一氧化氮(NO)、一氧化碳(CO)、硫化氢(H2S)、二氧化硫(SO2)、乙烯(C2H4)和氢气(H2)等气体信号分子;植物燃烟包括纤维素衍生的karrikins和木质素衍生的丁香醛及多种植物源燃烟;植物挥发物包括烯类和烷类物质及多种植物组织挥发物。本文综述了环境气体对植物种子萌发影响的作用过程研究进展,分析了这些气体物质对植物种子萌发的影响作用方式,并提出了今后开展研究的建议,以期为气体物质调控种子萌发技术研发,实现种子萌发时...  相似文献   

5.
激光处理植物种子产生的效应概述   总被引:2,自引:0,他引:2  
大量研究表明,激光处理植物种子,会对植物种子性能及其萌发的植物体产生各种各样的影响.光对植物体的生长发育起着重要的作用,各种植物体在自然光的环境中形成了稳定的生理形态,在短时间内种子及其以后萌发的植物体不会有生理形态上的明显变化.激光不是自然光,用激光处理植物种子会对植物种子性能及其萌发的植物体产生各种各样的影响.本文论述了激光处理对种子及其以后萌发的植物体产生的效应影响进展.  相似文献   

6.
光对种子萌发的影响机理研究进展   总被引:4,自引:0,他引:4       下载免费PDF全文
种子萌发是植物成功实现天然更新的关键环节, 需要适宜的温度、水分或光照条件。对于需光性种子, 光照是决定其萌发与否或萌发率高低的主要因素。光对植物种子萌发的影响不仅是一个复杂的生理过程, 也是受到调控的信号传递和基因表达过程。该文系统总结了影响种子萌发的光照属性、光与水/热耦合作用和种子的光属性(光敏色素)与种子萌发的关系, 明确了光调控种子萌发的生态意义; 重点综述了种子内光敏色素调控种子萌发的生理反应模式和光敏色素的光信号转导途径。试图为全面评估光对种子萌发的影响和将来开展更深入的研究提供参考。  相似文献   

7.
魏俊  陆秀君  张晓林  梅梅  黄晓丽 《遗传》2017,39(1):14-21
植物microRNA(miRNA)是一类小分子非编码RNA,对植物的生长发育发挥着重要调控作用。种子发育、休眠与萌发是植物生命进程中的重要阶段。在这一阶段内,种子受各种环境因子及内源激素调控,并且不同植物种子具有不同发育及休眠特性。随着人们对种子发育、休眠及萌发机理的探究,越来越多miRNA被鉴定,它们能够基于植物激素信号传导、抗氧化作用、关键转录因子调控等途径参与种子形态建成、物质代谢及各种胁迫响应。本文主要综述了近年来植物miRNA的形成及调控机理,以及在种子发育、休眠及萌发过程中发挥的调控作用,旨在为今后的研究方向提供参考。  相似文献   

8.
生物土壤结皮广泛分布在干旱、半干旱区,深刻影响着土壤表层特性,进而对植物种子散布、萌发和定居产生极大的影响。到目前为止,生物土壤结皮与植物关系的研究很少见到,并且这些有限的研究所得出的结论存在着争议。研究了不同年龄的两种生物土壤结皮(苔藓结皮和藻类结皮)对油蒿(Artemisia ordosica)和雾冰藜(Bassia dasyphylla)种子萌发的影响,同时也研究了这两种结皮在失去活性前后对油蒿、雾冰藜和小画眉草(Eragrostis poaeoides)种子萌发的影响。苔藓和藻类结皮的出现对油蒿和雾冰藜种子的萌发均有显著的促进作用,而结皮年龄对植物种子的萌发没有显著的差异。对于不同的植物种,结皮类型和活性对种子的萌发具有不同的作用。雾冰藜在两种结皮上的萌发有显著的差异而油蒿和小画眉草在两种结皮上的萌发没有显著差异。活藻类显著地增加了三种植物的种子萌发,活苔藓仅增加了油蒿和雾冰藜种子萌发量而对小画眉草种子的萌发没有作用,研究表明,生物土壤结皮对一些植物种子萌发具有明显的促进作用。  相似文献   

9.
植物种子萌发期耐盐碱性提高技术研究进展   总被引:4,自引:0,他引:4  
种子萌发是种胚从生命活动相对静止恢复到生理活跃状态的生长发育过程,最易受到外部环境影响,其中盐碱胁迫是最严重的生态限制因素之一。中国盐碱地面积大、分布广,总面积约1亿hm^2,占全国土地面积的10%,盐碱逆境下种子萌发受阻已成为我国盐碱地植物天然更新和农林业生产的首要障碍因子。目前,已知植物种子萌发期耐盐碱性提高技术主要有物理方法、化学调控、生物途径和育种技术4个方面,其中物理方法包括种子引发、低温、超声波、微波、电场等物理因素处理;化学调控包括无机、有机外源物质调控;生物途径包括植物促生细菌和真菌共生;育种技术包括耐盐性鉴定筛选和转基因技术。综述了植物种子萌发期耐盐碱性提高技术研究进展,简述了这些技术的特点及不足,并提出了进一步开展工作的建议,旨在为解决我国盐碱地植物种子萌发受阻难题、实现盐碱地低成本规模化的生物修复和盐碱地区农林业生产提供参考。  相似文献   

10.
莎草科4种植物种子休眠与萌发特性的研究   总被引:2,自引:0,他引:2  
以嵩草、黑穗苔草、藨草和苔草4种莎草科植物种子为材料,研究了硫酸、植物生长调节剂及低温层积处理对其休眠与萌发特性的影响,以揭示其休眠机制及其破除方法,为指导生产提供理论依据。结果表明:(1)4种参试植物种子均存在不同程度的生理休眠,其中嵩草为浅度生理休眠,黑穗苔草为中度生理休眠,藨草和苔草为深度生理休眠。(2)浓硫酸浸种可显著提高嵩草、黑穗苔草种子的萌发,随浸种时间增加,种子萌发率先增加后降低,最大值分别达86%、77%,但浓硫酸处理对藨草和苔草的种子萌发无显著促进作用。(3)赤霉素(GA3)、氟啶酮(FL,脱落酸抑制剂)和KNO3单独处理可显著提高嵩草种子萌发,但对其他3种植物种子无显著作用;而硫酸处理后再用赤霉素或氟啶酮处理,则显著促进黑穗苔草种子的萌发率。(4)低温层积对种子萌发的影响因种与层积时间而异,层积2个月可显著提高嵩草种子萌发,层积4个月可显著提高嵩草和藨草种子萌发;层积6个月可显著提高嵩草、黑穗苔草、藨草和苔草4种植物种子萌发,其最终萌发率分别为90%、73%、17%、7%。  相似文献   

11.

Background and Aims

The role of fire as a germination cue for Mediterranean Basin (MB) plants is still unclear. The current idea is that heat stimulates germination mainly in Cistaceae and Fabaceae and that smoke has a limited role as a post-fire germination cue, in comparison with other Mediterranean-type ecosystems (MTEs), suggesting that fire-stimulated germination is less relevant in the MB than in other MTEs. However, recent studies showed that the assembly of Mediterranean plant communities is strongly driven by post-fire germination, suggesting an important role for fire as a germination cue. We hypothesize that both heat and smoke have important effects on the different post-fire recruitment processes of MB species (e.g. level and rate of germination and initial seedling growth).

Methods

To ascertain the role of heat and smoke in the post-fire germination response of MB woody plants, a germination experiment was performed with seven heat and two smoke treatments on 30 MB woody species from seven different families, including species with water-permeable seeds and species with water-impermeable seeds.

Key Results

Heat stimulated the germination (probability and rate) of 21 species and smoke in eight species, out of the 30 species studied. In addition, six species showed enhanced initial seedling growth after the smoke treatments.

Conclusions

The results suggest that both heat and smoke are important germination cues in a wide range of MB woody species and that fire-cued germination in woody plants of the MB may be as important as in other MTEs.  相似文献   

12.
Fire is a key ecological factor affecting plant dynamics. In the last few decades, fire occurrence in the Chaco region has increased noticeably, challenging the adaptive capacity of plants to regenerate after a fire. Broad‐leaved forb species have been much less studied than woody and graminoids, although they are an important component of fire dynamics. Here we analysed the germination response to heat shock of 70 and 110°C, smoke and their combination in 10 broad‐leaved herbaceous species frequently occurring in the Chaco Serrano of Córdoba province, central Argentina, including five annual (Bidens subalternans, Conyza bonariensis, Schkuhria pinnata, Tagetes minuta and Zinnia peruviana) and five perennial species (Borreria eryngioides, Sida rhombifolia, Solidago chilensis, Taraxacum officinale and Verbena litoralis). We also compared the response of annual versus perennial species. Six species had highest germination when treated with heat and smoke combined, whereas two had lowest germination under this treatment, indicating synergistic and antagonistic interaction of these factors respectively. Most of the species tolerated heat shock (i.e. germination was similar to that in control treatment), whereas others had higher germination in response to heat shock, especially under the moderate 70°C treatment. Germination was higher than control (i.e. no heat and no smoke) after smoke treatment in four species. Perennial species showed higher average germination than annuals in both heat treatments and in the control. Annual species had higher average germination for all treatments involving smoke. The high variability observed at the species level, and the limited number of species studied calls for precaution in interpreting and extrapolating results. Nevertheless, our study shows a general positive response of both perennial and annual species to fire cues, suggesting an advantage of these species for colonizing post‐fire environments, and being favoured under scenarios of increasingly frequent low‐to‐medium intensity fires.  相似文献   

13.
The Cerrado (Brazilian savanna) is a biodiversity hotspot with a history of fire that goes back as far as 10 million years. Fire has influenced the evolution of several aspects of the vegetation, including reproduction and life cycles. This study tested how fire by‐products such as heat and smoke affect the germination of six species common to two Cerrado open physiognomies: wet grasslands and the campo sujo (grassland with scattered shrubs and dwarf trees). We subjected seeds collected in northern Brazil to heat shock and smoke treatments, both separately and combined, using different temperatures, exposure times, and smoke concentrations in aqueous solutions. High temperatures and smoke did not break seed dormancy nor stimulate germination of the Cerrado study species. However, seeds were not killed by high temperatures, indicating that they are fire‐tolerant. Our findings differed from those of other fire‐prone ecosystems (mostly of Mediterranean vegetation), where fire stimulates germination. Moreover, we provide important information regarding germination strategies of non‐woody Cerrado plants, showing the importance of considering the tolerance of seeds to high temperatures when evaluating fire‐related traits in fire‐prone ecosystems.  相似文献   

14.
Abstract The germination response of seeds from fire‐prone vegetation to fire‐related cues such as heat shock and smoke has usually been studied by applying the cues singly. The few studies that have applied the cues in combination have shown that interactions between the cues are possible. Here, the response of seeds from a number of species to combined heat shock and smoke is reported. Heat shock (25, 50, 75 and 100°C) and aerosol smoke (0, 5, 10 and 20 min) were applied factorially to nine species that form soil seed banks in the Sydney region of south‐eastern Australia. These species were from Epacridaceae (four species), Myrtaceae (four species) and Cyperaceae (one species) and ranged from fire‐sensitive obligate seeders to fire‐tolerant facultative resprouters. Germination of Dracophyllum secundum R. Br and Sprengelia monticola (A. Cunn. ex DC.) Druce was low and did not respond to the germination cues. The positive response of Gahnia sieberiana Kunth and Kunzea ambigua (Sm.) Druce to heat shock and smoke was independent and additive. The positive response of Kunzea capitata Rchb. to the interaction between heat shock and smoke was synergistic, and the response of Baeckea diosmifolia Rudge and Baeckea imbricata (Gaertn.) Druce was unitive, with germination increase only occurring following combined heat and smoke application. Epacris coriacea A. Cunn. ex DC. and Epacris obtusifolia Sm. had low levels of dormancy and hence it was not possible to find a fire response. Gahnia sieberiana and K. capitata responded differently to the combination of heat shock and smoke than has previously been reported. Germination of species from habitats that are infrequently burnt was not affected by heat shock or smoke. Low‐intensity fire or patches within fire may be important for seedling recruitment as the 50°C heat shock stimulated germination in four of the five species that responded to the heat cue, and germination of Baeckea imbricata declined within the 100°C heat shock treatment. Germination of one species, Baeckea imbricata, was only stimulated by a specific combination of cues, indicating that regeneration niches may be narrow for some species and that the application of a range of heat and smoke doses is required to find such responses. Of the species positively responding to heat shock and smoke, a requirement for both cues was prevalent, therefore the response to these cues in isolation cannot be relied upon to give a true indication of the fire response of a species.  相似文献   

15.
Abstract There is limited understanding of how fire‐related cues such as heat shock and smoke can combine to affect the germination response of seeds from fire‐prone vegetation because combinations of multiple levels of both cues have rarely been investigated. Germination response surfaces were determined for the combination of heat shock and smoke by applying factorial combinations of temperature (up to 100°C) and aerosol smoke (0–20 min) to 16 species that form soil seed banks in the Sydney region of south‐eastern Australia. Duplicate populations of three species were also examined to assess the constancy of a species response surface. Of the 19 populations examined, 16 showed a germination response to both the fire cues, which combined interactively in 14 populations, and independently in two. No population responded only to a single cue; however, seeds of 11 populations responded to heat in the absence of smoke, and nine responded to smoke in the absence of heat. Heat applied in the absence of smoke negatively affected germination in seven populations, either progressively as temperature increased, or above a set temperature. Negative germination responses over part of the temperature range were fully reversed at higher temperatures for unsmoked seeds of four populations (curvilinear heat response). Smoke effects were most frequently positive over all or part of the range of durations used, and when combined with heat frequently fully or partially reversed negative heat effects. Three populations required the obligatory combination of smoke and heat. A novel response to the cues was observed for three species, with smoke reversing negative heat effects at 75°C, being supplanted by a positive heat response of unsmoked seed at 100°C. The response surface for duplicate populations of two of the three species examined was variable. Heat shock and smoke frequently combined to affect germination, in both positive and negative ways. Consequently, to gain an accurate assessment of the response of seeds to fires, an experimental design that samples within the potential response zones of germination cues is essential.  相似文献   

16.
The effects of smoke, heat, darkness and cold stratification on seed germination were examined for 40 species with various life history attributes. These species establish in early successional stages on a volcano and are distributed in cool temperate zones of northern Japan. Smoke decreased seed germination in 11 species and increased it in one species, Leucothoe grayana . Germination of Polygonum longisetum was enhanced by a combination of smoke and cold, and that of Aralia elata by smoke and heat. Heat increased germination for three species and decreased it for one. Cold stratification broke dormancy in seeds of 11 species. Continuous darkness decreased germination of 22 species and did not increase germination for any species, showing that approximately half of the species require light for maximum germination. Although most species are sun plants that establish in early stages of succession and/or in disturbed areas, smoke and heat do not enhance germination of these species after disturbance, even when the disturbance is fire. Germination of slender and/or large seeds tends to be decreased more by smoke, probably because of their larger surface area. Light is more important than smoke and heat for detection of disturbance and for seed germination in this region. However, despite the low fire frequency in the region, germination of a few species was increased by fire-derived stimuli.  相似文献   

17.
Smoke generated by burning of plant materials has widely been recognized as a germination cue for some species from both fire prone and fire-free ecosystems. It is an important factor for the understanding of vegetation dynamics and could have potential use for ecological management and rehabilitation of disturbed areas. Individual species, however, seem to have a specific requirement for the type and dosage of smoke treatments. In the present study, six different concentrations of smoke solution were tested on 13 herbaceous species by soaking the seeds for 24 h. The germination of a forb species, Borreria scabra, was significantly stimulated (p<0.05) by the smoke treatment while that of the annual grass species, Euclasta condylotricha, was significantly inhibited (p<0.05) by 100% smoke solution treatment. Contrary to our expectation that another fire-related cue, heat shock, would break the physical dormancy of the species tested, it was not promotive. For non-dormant seeds of B. scabra and Borreria radiata, high temperatures were lethal while low temperature induced physiological dormancy that was overcome in the former species within 30 days of the germination trial. For some species, responses to smoke did not corroborate with the field-observed response to fire, making ecological interpretation challenging. For responsive species, the smoke treatment could be a simple approach for promoting their re-establishment in areas where it is needed. More investigations are needed to assess the spread of response to smoke.  相似文献   

18.
The butenolide, 3-methyl-2H-furo[2, 3-c]pyran-2-one, is an highly active compound isolated from plant-derived smoke. This compound is known to stimulate seed germination in a wide range of plants akin to smoke or aqueous extracts of smoke. The present study attempted to elucidate the role of the butenolide in overcoming detrimental effects of low and high temperatures on tomato seed germination and seedling growth. The germination percentage followed a parabolic curve for temperatures ranging from 10 to 40°C, with 25°C being the optimum for all treatments. Control seeds showed radicle emergence at two extreme temperatures (10 and 40°C) and seedlings failed to develop further, even upon prolonged incubation. By comparison the butenolide-treated seeds grew into phenotypically normal seedlings at these non-optimum temperatures. The smoke–water-treated seeds had an intermediate response as only a fraction of germinated seed developed into normal seedlings. Seedling vigour indices as well as seedling weight were significantly higher (p ≤ 0.05) for butenolide-treated seeds at all temperatures. Furthermore, seedlings developed in the presence of the butenolide had about a 1:1 correspondence between root and shoot length. Butenolide-treated seeds grew better than the control seeds in the temperature shift experiments. A gradual decline in the vigour index values was recorded with an increased duration of incubation at the extreme temperatures. Results of the present study are very important from an horticultural point of view as they indicate the potential use of the butenolide compound in restoring normal seed germination and seedling establishment in tomato below and above optimum temperatures.  相似文献   

19.
Many plant species are dependent on soil‐stored seeds for their persistence in fire‐prone systems. Seed germination is often stimulated by fire‐related cues including heat and smoke, but the way these cues promote germination may differ between structurally distinct plant communities with historically different fire regimes. In this study, we examined the effects of heat, smoke and their interactions on the germination of soil‐stored seeds from shrubby woodlands and herbaceous forests in south‐east Australia. The effect of these treatments on species richness, diversity and composition, and species richness and density of germinants within life‐forms (grass, forb and shrub) were assessed. Soils from each community were subjected to low heat (40°C), low heat with smoke, smoke, high heat (80°C), high heat with smoke and untreated (control) before being placed in a glasshouse, where the germinants were identified and counted. Greater species richness was stimulated by high heat treatments and smoke in both communities, a trend driven by shrubs and forbs, rather than grasses. Greater species diversity was stimulated by high heat with smoke in both communities. Greater densities of grass germinants were stimulated by all treatments, except low heat, in both communities. For forbs and shrubs, the effect of treatment depended on community. Compared to the control, low heat with smoke (forbs) and both low heat and low heat with smoke (shrubs) increased densities in the woodland but not in the forest. There were unique species compositions, different from the control, in all treatments in the forest but not in the woodland, where composition in low heat was not different from the control. These results indicate the importance of high soil temperatures and smoke in both communities. In the absence of wildfires, recurring prescribed burns that heat the soil to low temperatures are likely to reduce plant richness, diversity, and density resulting in a change in understorey species composition and structure.  相似文献   

20.
How much seed remains in the soil after a fire?   总被引:2,自引:0,他引:2  
Soil seed banks that persist after a fire are important in fire-prone habitats as they minimise the risk of decline or local extinction in plants, should the fire-free interval be less than the primary juvenile periods of the species. In two common woody plant genera (Acacia and Grevillea) in southeastern Australia, we examined the size and location of the residual seed bank after fire across areas of varying seedling densities at three locations in comparison to the distribution of seeds in the soil at an unburnt site. We found viable dormant seeds remaining in the soil after fire (evidence of residual soil seed bank). A significantly lower proportion of seeds remained in the top 5 cm of soil than at 5–10 cm or 10–15 cm soil depths, independent of seedling density or plant genus. This was due to greater germination, and possibly some seed mortality, near the soil surface. Reduced germination below 5 cm was probably due to the reduced efficacy of the fire cues that break seed dormancy, a declining ability of seeds to emerge successfully from such depths, and the lower abundance of seeds in the soil at such depths. The magnitude of the residual seed bank was similar across 0–5, 5–10 and 10–15 cm soil depths in Acacia suaveolens. For two Grevillea species, most residual seeds were at 0–5 and 5–10 cm. The residual soil seed bank in the top 10 cm of soil after fire varied across sites with estimates of 0, 19 and 27% in G. speciosa and 23, 35, and 55% in A. suaveolens. At two sites, both species had similar residual seed bank sizes, while at a third, there were large differences between the species (0–55%). The observed patterns imply that the fire-related cues that break seed dormancy generally declined with soil depth. For Acacia, seed dormancy is broken by heat shock, a fire-cue that declines with soil depth. Some 250 species (approx 15% of the fire-prone flora) in the region are thought to have dormancy broken by heat shock. For Grevillea, where seed dormancy is broken by the interaction of smoke and heat shock, at two sites, we suggest three possibilities: (i) the smoke cue declined with soil depth; (ii) both heat and smoke are obligatory for breaking seed dormancy; or (iii) the cues may be independent and additive and below the zone of soil heating, only a proportion of available seeds had dormancy broken by smoke alone. At a third site (no residual seed bank detected) the smoke cue was predicted not to have declined with soil depth. Up to 900 species (just under half the fire-prone flora) in the study region are thought to have seed dormancy broken by the interaction of heat and smoke during the passage of a fire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号