首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
 设置不同的Al 3+浓度(0、25、50、100、200、400 μmol·L-1)和培养时间 (12、24 h),研究了边缘细胞活性和大豆(Glycine max)根中 过氧化氢酶(CAT)、过氧化物酶POD)、超氧化物歧化酶SOD)随Al 3+浓度及处理时间变化的规律,并通过Hoec hst333 42-PI双重荧光染色、 梯状DNA(即DNA ladder)分析和末端脱氧核糖核酸转移酶介导的dUTP切口末端标记(即TUNEL原位标记)检测,研究了Al 3+对大豆根边缘细胞 程序性死亡诱导的生理生态作用。结果表明,Al 3+胁迫能诱导边缘细胞的死亡,随着Al 3+浓度的升高和处理时间的延长,细胞死亡率增加。通 过Hoechst33342-PI双重荧光染色、DNA ladder分析和TUNEL原位标记,检测到Al 3+胁迫下发生程序性死亡的边缘细胞。其表现为:在 400μmol·L-1 Al 3+诱导大豆根24 h时, 核酸电泳显示细胞DNA发生特异性降解并形成阶梯状电泳条带(DNA ladder),用TUNEL原位标记检测200 和400μmol·L-1 Al 3+处理12 h后的大豆根 边缘细胞,发现DNA的3′-OH端被原位特异标记,二氨基联苯胺(DAB)显色后,细胞核为阳性或强 阳性。同时,高浓度Al 3+ (>100μmol·L-1)处理下,CAT、POD和S OD活性均有不同程度的下降,CAT和SOD的活性也随处理时间的延长而降低 。说明在Al 3+胁迫下边缘细胞的死亡可能是一种程序性死亡形式,高浓度Al 3+胁迫下,通过诱导活性氧在细胞体内的产生和累积而导致细胞凋 亡,此过程是其对逆境胁迫所作出的生理生态防御性应答方式之一。  相似文献   

2.
In the present study, we show that the large conductance calcium-activated potassium channel (BK(Ca) channel) inhibitor paxilline protects neuronal cells against glutamate-induced cell death. In our studies, we used HT22 mouse hippocampal cells as an experimental model and observed that the effect of paxilline was dose-dependent. We also found that other inhibitors of BK(Ca) channels, iberiotoxin and charybdotoxin, were not cytoprotective. Paxillinol, which is a structural analog of paxilline but does not inhibit BK(Ca) channel, also protected HT22 cells against glutamate-induced toxicity. These data suggest that the observed cytoprotection was not related to BK(Ca) channel inhibition by paxilline. In addition, paxilline neither restored glutathione levels nor reduced the amount of reactive oxygen species upon glutamate treatment. Our results suggest that paxilline protects neuronal HT22 cells against glutamate-induced cell death independently of BK(Ca) channel activity and oxidative stress induced by glutamate treatment.  相似文献   

3.
The accumulation of reactive oxygen species (ROS) and concomitant oxidative stress have been considered deleterious consequences of aluminum toxicity. However, several lines of evidence suggest that ROS can function as important signaling molecules in the plant defense system for protection from abiotic stress and the acquisition of tolerance. The role of ROS-scavenging enzymes was assayed in two different coffee cell suspension lines. We treated L2 (Al-sensitive) and LAMt (Al-tolerant) Coffea arabica suspension cells with 100 μM AlCl3 and observed significant differences in catalase activity between the two cell lines. However, we did not observe any differences in superoxide dismutase or glutathione reductase activity in either cell line following Al treatment. ROS production was diminished in the LAMt cell line. Taken together, these results indicate that aluminum treatment may impair the oxidative stress response in L2 cells but not in LAMt cells. We suggest a possible role for Al-induced oxidative bursts in the signaling pathways that lead to Al resistance and protection from Al toxicity.  相似文献   

4.
Lipid peroxide‐derived reactive carbonyl species (RCS), generated downstream of reactive oxygen species (ROS), are critical damage‐inducing species in plant aluminum (Al) toxicity. In mammals, RCS are scavenged primarily by glutathione (reduced form of glutathione, GSH), but in plant Al stress, contribution of GSH to RCS detoxification has not been evaluated. In this study, Arabidopsis plants overexpressing the gene AtGR1 (accession code At3g24170), encoding glutathione reductase (GR), were generated, and their performance under Al stress was examined. These transgenic plants (GR‐OE plants) showed higher GSH levels and GSH/GSSG (oxidized form of GSH) ratio, and an improved Al tolerance as they suffered less inhibition of root growth than wild‐type under Al stress. Exogenous application of 4‐hydroxy‐2‐nonenal, an RCS responsible for Al toxicity in roots, markedly inhibited root growth in wild‐type plants. GR‐OE plants suffered significantly smaller inhibition, indicating that the enhanced GSH level increased the capacity of RCS detoxification. The generation of H2O2 due to Al stress in GR‐OE plants was lower by 26% than in wild‐type. Levels of various RCS, such as malondialdehyde, butyraldehyde, phenylacetaldehyde, (E)‐2‐heptenal and n‐octanal, were suppressed by more than 50%. These results indicate that high levels of GSH and GSH/GSSG ratio by GR overexpression contributed to the suppression of not only ROS, but also RCS. Thus, the maintenance of GSH level by overexpressing GR reinforces dual detoxification functions in plants and is an efficient approach to enhance Al tolerance.  相似文献   

5.
After genotoxic stress poly(ADP-ribose) polymerase-1 (PARP-1) can be hyperactivated, causing (ADP-ribosyl)ation of nuclear proteins (including itself), resulting in NAD(+) and ATP depletion and cell death. Mechanisms of PARP-1-mediated cell death and downstream proteolysis remain enigmatic. beta-lapachone (beta-lap) is the first chemotherapeutic agent to elicit a Ca(2+)-mediated cell death by PARP-1 hyperactivation at clinically relevant doses in cancer cells expressing elevated NAD(P)H:quinone oxidoreductase 1 (NQO1) levels. Beta-lap induces the generation of NQO1-dependent reactive oxygen species (ROS), DNA breaks, and triggers Ca(2+)-dependent gamma-H2AX formation and PARP-1 hyperactivation. Subsequent NAD(+) and ATP losses suppress DNA repair and cause cell death. Reduction of PARP-1 activity or Ca(2+) chelation protects cells. Interestingly, Ca(2+) chelation abrogates hydrogen peroxide (H(2)O(2)), but not N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced PARP-1 hyperactivation and cell death. Thus, Ca(2+) appears to be an important co-factor in PARP-1 hyperactivation after ROS-induced DNA damage, which alters cellular metabolism and DNA repair.  相似文献   

6.
Aluminum-induced cell death in root-tip cells of barley   总被引:1,自引:0,他引:1  
Aluminum-induced cell death was investigated in root-tip cells of barley (Hordeum vulgare). The growth of roots in 0.1-50 mM Al treatments was inhibited after 8 h treatments, and could not be recovered after 24 h recovery culture without Al. Viable detection with fluorescein diacetate-propidium iodide (FDA-PI) staining shows that most of the root-tip cells have lost viability. These results suggest that the irreversible inhibition of root growth after 8 h Al treatments or 24 h recovery culture is mainly caused by cell death. DNA ladders occurred in root tips only after 8 h Al treatments (0.1-1.0 mM), but no apoptotic bodies in root tips were observed. Thus, the cell death caused by Al stress is likely to be Al-induced programmed cell death (PCD). The reactive oxygen species (ROS) in root-tip cells measured by ultraweak luminescence indicated that the oxidation status in root-tip cells basically ceased after exposure to 10-50 mM Al for 24 h, but was very violent in the root-tip cells treated with 0.1-1.0 mM for 24 h. Exposure to 0.1-1.0 mM Al for 3-12 h led to ROS burst. Therefore, our results suggest that 0.1-1.0 mM Al treatments for 8 h induce cell death (Al-induced PCD) possibly via a ROS-activated signal transduction pathway, whereas 10-50 mM Al treatments may cause necrosis in the root-tip cells. These results have an important role for further studies on the mechanism of Al toxicity in plants.  相似文献   

7.
Aluminum (Al) toxicity is a primary limitation to plant growth on acid soils. Root meristems are the first site for toxic Al accumulation, and therefore inhibition of root elongation is the most evident physiological manifestation of Al toxicity. Plants may resist Al toxicity by avoidance (Al exclusion) and/or tolerance mechanisms (detoxification of Al inside the cells). The Al exclusion involves the exudation of organic acid anions from the root apices, whereas tolerance mechanisms comprise internal Al detoxification by organic acid anions and enhanced scavenging of free oxygen radicals. One of the most important advances in understanding the molecular events associated with the Al exclusion mechanism was the identification of the ALMT1 gene (Al-activated malate transporter) in Triticum aestivum root cells, which codes for a plasma membrane anion channel that allows efflux of organic acid anions, such as malate, citrate or oxalate. On the other hand, the scavenging of free radicals is dependent on the expression of genes involved in antioxidant defenses, such as peroxidases (e.g. in Arabidopsis thaliana and Nicotiana tabacum), catalases (e.g. in Capsicum annuum), and the gene WMnSOD1 from T. aestivum. However, other recent findings show that reactive oxygen species (ROS) induced stress may be due to acidic (low pH) conditions rather than to Al stress. In this review, we summarize recent findings regarding molecular and physiological mechanisms of Al toxicity and resistance in higher plants. Advances have been made in understanding some of the underlying strategies that plants use to cope with Al toxicity. Furthermore, we discuss the physiological and molecular responses to Al toxicity, including genes involved in Al resistance that have been identified and characterized in several plant species. The better understanding of these strategies and mechanisms is essential for improving plant performance in acidic, Al-toxic soils.  相似文献   

8.
Aluminum-induced oxidative stress in maize   总被引:27,自引:0,他引:27  
The relation between Al-toxicity and oxidative stress was studied for two inbred lines of maize (Zea mays L.), Cat100-6 (Al-tolerant) and S1587-17 (Al-sensitive). Peroxidase (PX), catalase (CAT) and superoxide dismutase (SOD) activities were determined in root tips of both lines, exposed to different Al(3+) concentrations and times of exposure. No increases were observed in CAT activities in either line, although SOD and PX were found to be 1.7 and 2.0 times greater than initial levels, respectively, in sensitive maize treated with 36 microM of Al(3+) for 48 h. The results indicate that Al(3+) induces the dose- and time dependent formation of reactive oxygen species (ROS) and subsequent protein oxidation in S1587-17, although not in Cat100-6. After exposure to 36 microM of Al(3+) for 48 h, the formation of 20+/-2 nmol of carbonyls per mg of protein was observed in S1587-17. The onset of protein oxidation took place after the drop of the relative root growth observed in the sensitive line, indicating that oxidative stress is not the primary cause of root growth inhibition. The presence of Al(3+) did not induce lipid peroxidation in either lines, contrasting with the observations in other species. These results, in conjunction with the data presented in the literature, indicate that oxidative stress caused by Al may harm several components of the cell, depending on the plant species. Moreover, Al(3+) treatment and oxidative stress in the sensitive maize line induced cell death in root tip cells, an event revealed by the high chromatin fragmentation detected by TUNEL analysis.  相似文献   

9.
The present investigation was undertaken to verify whether mitochondria play a significant role in aluminium (Al) toxicity, using the mitochondria isolated from tobacco cells (Nicotiana tabacum, non-chlorophyllic cell line SL) under Al stress. An inhibition of respiration was observed in terms of state-III, state-IV, succinate-dependent, alternative oxidase (AOX)-pathway capacity and cytochrome (CYT)-pathway capacity, respectively, in the mitochondria isolated from tobacco cells subjected to Al stress for 18 h. In accordance with the respiratory inhibition, the mitochondrial ATP content showed a significant decrease under Al treatment. An enhancement of reactive oxygen species (ROS) production under state-III respiration was observed in the mitochondria isolated from Al-treated cells, which would create an oxidative stress situation. The opening of mitochondrial permeability transition pore (MPTP) was seen more extensively in mitochondria isolated from Al-treated cells than in those isolated from control cells. This was Ca(2+) dependent and well modulated by dithioerythritol (DTE) and Pi, but insensitive to cyclosporine A (CsA). The collapse of inner mitochondrial membrane potential (DeltaPsi(m)) was also observed with a release of cytochrome c from mitochondria. A great decrease in the ATP content was also seen under Al stress. Transmission electron microscopy analysis of Al-treated cells also corroborated our biochemical data with distortion in membrane architecture in mitochondria. TUNEL-positive nuclei in Al-treated cells strongly indicated the occurrence of nuclear fragmentation. From the above study, it was concluded that Al toxicity affects severely the mitochondrial respiratory functions and alters the redox status studied in vitro and also the internal structure, which seems to cause finally cell death in tobacco cells.  相似文献   

10.
The capability of the obligate intracellular parasites like Leishmania donovani to survive within the host cell parasitophorous vacuoles as nonmotile amastigotes determines disease pathogenesis, but the mechanism of elimination of the parasites from these vacuoles are not well understood. By using the anti-leishmanial drug potassium antimony tartrate, we demonstrate that, upon drug exposure, intracellular L. donovani amastigotes undergo apoptotic death characterized by nuclear DNA fragmentation and externalization of phosphatidylserine. Changes upstream of DNA fragmentation included generation of reactive oxygen species like superoxide, nitric oxide, and hydrogen peroxide that were primarily concentrated in the parasitophorous vacuoles. In the presence of antioxidants like N-acetylcysteine or Mn(III) tetrakis(4-benzoic acid)porphyrin chloride, an inhibitor of inducible nitric-oxide synthase, a diminution of reactive oxygen species generation and improvement of amastigote survival were observed, suggesting a close link between drug-induced oxidative stress and amastigote death. Changes downstream to reactive oxygen species increase involved elevation of intracellular Ca2+ concentrations in both the parasite and the host that was preventable by antioxidants. Flufenamic acid, a non-selective cation channel blocker, decreased the elevation of Ca2+ in both the cell types and reduced amastigote death, thus establishing a central role of Ca2+ in intracellular parasite clearance. This influx of Ca2+ was preceded by a fall in the amastigote mitochondrial membrane potential. Therefore, this study projects the importance of flufenamic acid-sensitive non-selective cation channels as important modulators of antimonial efficacy and lends credence to the suggestion that, within the host cell, apoptosis is the preferred mode of death for the parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号