首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive oxygen species, antioxidants, and the mammalian thioredoxin system.   总被引:31,自引:0,他引:31  
Reactive oxygen species (ROS) are known mediators of intracellular signaling cascades. Excessive production of ROS may, however, lead to oxidative stress, loss of cell function, and ultimately apoptosis or necrosis. A balance between oxidant and antioxidant intracellular systems is hence vital for cell function, regulation, and adaptation to diverse growth conditions. Thioredoxin reductase (TrxR) in conjunction with thioredoxin (Trx) is a ubiquitous oxidoreductase system with antioxidant and redox regulatory roles. In mammals, extracellular forms of Trx also have cytokine-like effects. Mammalian TrxR has a highly reactive active site selenocysteine residue resulting in a profound reductive capacity, reducing several substrates in addition to Trx. Due to the reactivity of TrxR, the enzyme is inhibited by many clinically used electrophilic compounds including nitrosoureas, aurothioglucose, platinum compounds, and retinoic acid derivatives. The properties of TrxR in combination with the functions of Trx position this system at the core of cellular thiol redox control and antioxidant defense. In this review, we focus on the reactions of the Trx system with ROS molecules and different cellular antioxidant enzymes. We summarize the TrxR-catalyzed regeneration of several antioxidant compounds, including ascorbic acid (vitamin C), selenium-containing substances, lipoic acid, and ubiquinone (Q10). We also discuss the general cellular effects of TrxR inhibition. Dinitrohalobenzenes constitute a unique class of immunostimulatory TrxR inhibitors and we consider the immunomodulatory effects of dinitrohalobenzene compounds in view of their reactions with the Trx system.  相似文献   

2.
植物SnRKs家族在胁迫信号通路中的调节作用   总被引:2,自引:0,他引:2  
张金飞  李霞 《植物学报》2017,52(3):346-357
蔗糖非发酵1(SNF1)相关蛋白激酶家族(SnRKs)是植物胁迫响应过程中的一类关键蛋白激酶。在响应生物胁迫时,SnRKs可通过参与活性氧和水杨酸介导的信号转导途径,增强植物对生物侵害的耐受性。在响应非生物胁迫时,SnRKs通过脱落酸(ABA)介导的信号通路,增强植株对干旱、盐碱和高温等的耐受性;且通过独立于ABA的信号通路,SnRKs可调控胞内能量状态,维持离子平衡。该文总结了SnRKs蛋白激酶作为胁迫信号通路中的主要调节因子的最新研究进展,并展望了未来的研究方向。  相似文献   

3.
4.
王棚涛  赵晶  余欢欢 《植物学报》2014,49(4):490-503
大量研究证明活性氧(ROS)在气孔运动中起信号分子的作用。保卫细胞中ROS的产生依赖于特定的酶, 其中NADPH氧化酶组分RBOH已得到深入研究, 并已证实其参与生物与非生物胁迫反应。植物激素包括脱落酸(ABA)、水杨酸(SA)、乙烯、生长素及细胞分裂素等, 它们均通过ROS的介导来调控气孔运动。生物胁迫(如毒性细菌和真菌)也会调控气孔运动。ROS参与这些调控过程。保卫细胞中存在多层次对ROS产生及其作用的调节, 抗氧化活性物质和ROS敏感蛋白(如蛋白激酶和磷酸酶)均可传递ROS信号并调节气孔运动。ROS对离子通道调节的证据也越来越多。保卫细胞由于可通过ROS整合复杂的信号途径, 已成为研究植物ROS信号转导过程的良好模式系统。  相似文献   

5.
大量研究证明活性氧(ROS)在气孔运动中起信号分子的作用。保卫细胞中ROS的产生依赖于特定的酶,其中NADPH氧化酶组分RBOH已得到深入研究,并已证实其参与生物与非生物胁迫反应。植物激素包括脱落酸(ABA)、水杨酸(SA)、乙烯、生长素及细胞分裂素等,它们均通过ROS的介导来调控气孔运动。生物胁迫(如毒性细菌和真菌)也会调控气孔运动。ROS参与这些调控过程。保卫细胞中存在多层次对ROS产生及其作用的调节,抗氧化活性物质和ROS敏感蛋白(如蛋白激酶和磷酸酶)均可传递ROS信号并调节气孔运动。ROS对离子通道调节的证据也越来越多。保卫细胞由于可通过ROS整合复杂的信号途径,已成为研究植物ROS信号转导过程的良好模式系统。  相似文献   

6.
Kinases, representing almost 500 proteins in the human genome, are responsible for catalyzing the phosphorylation reaction of amino acid residues at their targets. As the largest family of kinases, the protein tyrosine kinases (PTKs) have roles in controlling the essential cellular activities, and their deregulation is generally related to pathologic conditions. The recent efforts on identifying their signal transducer or mediator role in cellular signaling revealed the interaction of PTKs with numerous enzymes of different classes, such as Ser/Thr kinases (STKs), glutathione transferases (GSTs), and receptor tyrosine kinases (RTKs). In either regulation or enhancing the signaling, PTKs are determined in close interaction with these enzymes, under specific cellular conditions, such as oxidative stress and inflammation. In this concept, intensive research on thiol metabolizing enzymes recently showed their involvement in the physiologic functions in cellular signaling besides their well known traditional role in antioxidant defense. The shared signaling components between PTK and GST family enzymes will be discussed in depth in this research review to evaluate the results of recent studies important in drug targeting for therapeutic intervention, such as cell viability, migration, differentiation and proliferation.  相似文献   

7.
Generation of reactive oxygen species (ROS) is a normal process in the life of aerobic organisms. Under physiological conditions, these deleterious species are mostly removed by the cellular antioxidant systems, which include antioxidant vitamins, protein and non-protein thiols, and antioxidant enzymes. Since the antioxidant reserve capacity in most tissues is rather marginal, strenuous physical exercise characterized by a remarkable increase in oxygen consumption with concomitant production of ROS presents a challenge to the antioxidant systems.An acute bout of exercise at sufficient intensity has been shown to stimulate activities of antioxidant enzymes. This could be considered as a defensive mechanism of the cell under oxidative stress. However, prolonged heavy exercise may cause a transient reduction of tissue vitamin E content and a change of glutathione redox status in various body tissues. Deficiency of antioxidant nutrients appears to hamper antioxidant systems and augment exercise-induced oxidative stress and tissue damage. Chronic exercise training seems to induce activities of antioxidant enzymes and perhaps stimulate GSH levels in body fluids. Recent research suggest that supplementation of certain antioxidant nutrients are necessary for physically active individuals.  相似文献   

8.
Environmental stresses trigger a wide variety of plant responses, ranging from altered gene expression and cellular metabolism to changes in growth rates and crop yields. A plethora of plant reactions exist to circumvent the potentially harmful effects caused by a wide range of both abiotic and biotic stresses, including light, drought, salinity, high temperatures, and pathogen infections. Among the environmental stresses, drought stress is one of the most adverse factors of plant growth and productivity. Understanding the biochemical and molecular responses to drought is essential for a holistic perception of plant resistance mechanisms to water-limited conditions. Drought stress progressively decreases CO2 assimilation rates due to reduced stomatal conductance. Drought stress also induces reduction in the contents and activities of photosynthetic carbon reduction cycle enzymes, including the key enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase. The critical roles of proline and glycine-betaine, as well as the role of abscisic acid (ABA), under drought stress conditions have been actively researched to understand the tolerance of plants to dehydration. In addition, drought stress-induced generation of active oxygen species is well recognized at the cellular level and is tightly controlled at both the production and consumption levels in vivo, through increased antioxidative systems. Knowledge of sensing and signaling pathways, including ABA-mediated changes in response to drought stress, is essential to improve crop management. This review focuses on the ability and strategies of higher plants to respond and adapt to drought stress.  相似文献   

9.
本文以二年生‘克瑞森’无核葡萄为材料,探明外源水杨酸(SA)对高温胁迫下葡萄体内几种酶活性和抗氧化物质含量的影响及其在抗高温胁迫中的作用。实验结果表明,与对照相比,外源SA可以促进高温胁迫下葡萄叶片内ASA和GSH含量的积累,维持较高的APX、GR、SOD、POD和CAT活性。外源SA可能通过提高高温胁迫下葡萄体内抗氧化水平,削弱了高温胁迫对葡萄植株的氧化胁迫伤害作用。  相似文献   

10.
植物细胞活性氧种类、代谢及其信号转导   总被引:6,自引:0,他引:6  
越来越明显的证据表明,植物体十分活跃的产生着活性氧并将之作为信号分子、进而控制着诸如细胞程序性死亡、非生物胁迫响应、病原体防御和系统信号等生命过程,而不仅是传统意义上的活性氧是有氧代谢的附产物。日益增多的证据显示,由脱落酸、水杨酸、茉莉酸与乙烯以及活性氧所调节的激素信号途径,在生物和非生物胁迫信号的“交谈”中起重要作用。活性氧最初被认为是动物吞噬细胞在宿主防御反应时所释放的附产物,现在的研究清楚的表明,活性氧在动物和植物细胞信号途径中均起作用。活性氧可以诱导细胞程序性死亡或坏死、可以诱导或抑制许多基因的表达,也可以激活上述级联信号。近来生物化学与遗传学研究证实过氧化氢是介导植物生物胁迫与非生物胁迫的信号分子,过氧化氢的合成与作用似乎与一氧化氮有关系。过氧化氢所调节的下游信号包括钙“动员”、蛋白磷酸化和基因表达等。  相似文献   

11.
Signaling functions of phosphatidic acid   总被引:3,自引:0,他引:3  
Phosphatidic acid (PA) has emerged as a new class of lipid mediators involved in diverse cellular functions in plants, animals, and microorganisms. Considerable progress has been made recently on the production, cellular function, and mode of action of PA in the cell. The cellular levels of PA undergo dynamic changes in response to developmental and environmental stimuli. The production of signaling PA is mediated by families of multiple enzymes that regulate the timing, location, amount, and molecular species of PA. A number of PA target proteins have been identified, which include proteins involved in phosphorylation and dephosphorylation of proteins and lipids, as well as in G protein regulation, vesicular trafficking, and metabolism. PA mediates cellular functions through different modes of action, such as membrane tethering, modulation of enzymatic activities, and/or structural effects on cell membranes. The regulatory processes in which PA has been implicated include signaling pathways in cell growth, proliferation, reproduction, and responses to hormones and biotic and abiotic stresses.  相似文献   

12.
Regulation and function of ascorbate peroxidase isoenzymes   总被引:59,自引:0,他引:59  
Even under optimal conditions, many metabolic processes, including the chloroplastic, mitochondrial, and plasma membrane-linked electron transport systems of higher plants, produce active oxygen species (AOS). Furthermore, the imposition of biotic and abiotic stress conditions can give rise to excess concentrations of AOS, resulting in oxidative damage at the cellular level. Therefore, antioxidants and antioxidant enzymes function to interrupt the cascades of uncontrolled oxidation in each organelle. Ascorbate peroxidase (APX) exists as isoenzymes and plays an important role in the metabolism of H(2)O(2) in higher plants. APX is also found in eukaryotic algae. The characterization of APX isoenzymes and the sequence analysis of their clones have led to a number of investigations that have yielded interesting and novel information on these enzymes. Interestingly, APX isoenzymes of chloroplasts in higher plants are encoded by only one gene, and their mRNAs are generated by alternative splicing of the gene's two 3'-terminal exons. Manipulation of the expression of the enzymes involved in the AOS-scavenging systems by gene-transfer technology has provided a powerful tool for increasing the present understanding of the potential of the defence network against oxidative damage caused by environmental stresses. Transgenic plants expressing E. coli catalase to chloroplasts with increased tolerance to oxidative stress indicate that AOS-scavenging enzymes, especially chloroplastic APX isoenzymes are sensitive under oxidative stress conditions. It is clear that a high level of endogenous ascorbate is essential effectively to maintain the antioxidant system that protects plants from oxidative damage due to biotic and abiotic stresses.  相似文献   

13.
14.
Oxalic acid (OA) occurs extensively in nature and plays diverse roles, especially in pathogenic processes involving various plant pathogens. However, proteome changes and modifications of signaling and oxidative network of plants in response to OA are not well understood. In order to investigate the responses of Brassica napus toward OA, a proteome analysis was conducted employing 2‐DE with MS/MS. A total of 37 proteins were identified as responding to OA stress, of which 13 were up‐regulated and 24 were down‐regulated. These proteins were categorized into several functional groups including protein processing, RNA processing, photosynthesis, signal transduction, stress response, and redox homeostasis. Investigation of the effect of OA on phytohormone signaling and oxidative responses revealed that jasmonic acid‐, ethylene‐, and abscisic acid‐mediated signaling pathways appear to increase at later time points, whereas those pathways mediated by salicylic acid appear to be suppressed. Moreover, the activities of the antioxidant enzymes catalase, peroxidase, superoxide dismutase and oxalic acid oxidase, but not NADPH oxidase, were suppressed by OA stress. Our findings are discussed within the context of the proposed role(s) of OA during infection by Sclerotinia sclerotiorum and subsequent disease progression.  相似文献   

15.
Both enzymatically and non-enzymatically generated oxylipins fulfill signalling functions in plant responses to biotic and oxidative stress on the cellular level. We studied the impact of two different exogenously applied cyclopentenone-oxylipins on the proteome of Arabidopsis thaliana leaves: the enzymatically formed 12-oxo-phytodienoic-acid, a member of the jasmonate family of mediators, and A(1)-phytoprostane generated by a free-radical mechanism upon biotic and oxidative stress. Infiltration of leaves with these oxylipins led to induction of classical stress proteins like chaperones as well as enzymes connected to the cellular redox and detoxification systems. A large proportion of the regulated proteins are localized in chloroplasts where these oxylipins are formed. Furthermore, we show that cyclopentenone-oxylipins spontaneously react with several proteins and glutathione in vitro and in vivo. Conjugation to the glutathione sulfhydryl group is a reversible process that is also catalysed by glutathione-S-transferases. In vitro, an oxidative stress inducible glutathione-S-transferase, GST6, localized both in plastids and the cytosol can be covalently modified and partially inactivated by several cyclopentenone-oxylipins.  相似文献   

16.
17.
Salicylic acid (SA) is one component of a complex signalling pathway that is induced by a number of biotic and abiotic stresses. Exposing seedling radicles to aqueous solutions of 0.5 m M salicylic acid for 24 h before chilling at 2.5°C for 1–4 days reduced the chilling-induced increase in electrolyte leakage from maize and rice leaves, and cucumber hypocotyls, but not from their radicles. The SA treatments that induced chilling tolerance in the aerial portion of the seedlings did not induce chilling tolerance in the radicles, even though the SA treatments were applied to the radicles. A comparison of activity among five antioxidant enzymes showed that SA did not alter enzyme activities in the radicles, but that chilling tolerance induced by SA in the aerial portions of maize and cucumber plants was associated with an increase in the activity of glutathione reductase and guaiacol peroxidase.  相似文献   

18.
Breakthroughs in biochemistry have furthered our understanding of the onset and progression of various diseases, and have advanced the development of new therapeutics. Oxidative stress and reactive oxygen species (ROS) are ubiquitous in biological systems. ROS can be formed non-enzymatically by chemical, photochemical and electron transfer reactions, or as the byproducts of endogenous enzymatic reactions, phagocytosis, and inflammation. Imbalances in ROS homeostasis, caused by impairments in antioxidant enzymes or non-enzymatic antioxidant networks, increase oxidative stress, leading to the deleterious oxidation and chemical modification of biomacromolecules such as lipids, DNA, and proteins. While many ROS are intracellular signaling messengers and most products of oxidative metabolisms are beneficial for normal cellular function, the elevation of ROS levels by light, hyperglycemia, peroxisomes, and certain enzymes causes oxidative stress-sensitive signaling, toxicity, oncogenesis, neurodegenerative diseases, and diabetes. Although the underlying mechanisms of these diseases are manifold, oxidative stress caused by ROS is a major contributing factor in their onset. This review summarizes the relationship between ROS and oxidative stress, with special reference to recent advancements in the detection of biomarkers related to oxidative stress. Further, we will introduce biomarkers for the early detection of neurodegenerative diseases and diabetes, with a focus on our recent work.  相似文献   

19.
韩鹰  邓鹏  陈刚  《生态学杂志》2015,26(10):3153-3159
采用Hoagland溶液培养,研究了外源水杨酸(SA)预处理对镉(Cd)胁迫下路易斯安娜鸢尾生物量、含水量、光合作用、根系活力、Cd积累、矿质养分吸收和抗氧化酶活性的影响.结果表明: Cd胁迫下,SA预处理的植株根叶干质量、根系活力和净光合速率提高.与单独Cd处理相比,SA预处理后的胁迫植株Cd含量无明显变化,而叶片N、P、S含量显著提高,K含量显著下降,根部抗氧化酶活性显著提高.表明SA预处理可明显缓解路易斯安娜鸢尾的Cd伤害,其原因不在于减少Cd吸收量而是提高了对Cd的抗性,矿质元素的吸收积累调节和根部抗氧化酶活性的提高是其毒害缓解的重要原因.  相似文献   

20.
The role of abscisic acid in plant-pathogen interactions   总被引:15,自引:0,他引:15  
The effect of the abiotic stress hormone abscisic acid on plant disease resistance is a neglected field of research. With few exceptions, abscisic acid has been considered a negative regulator of disease resistance. This negative effect appears to be due to the interference of abscisic acid with biotic stress signaling that is regulated by salicylic acid, jasmonic acid and ethylene, and to an additional effect of ABA on shared components of stress signaling. However, recent research shows that abscisic acid can also be implicated in increasing the resistance of plants towards pathogens via its positive effect on callose deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号