首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background, Aim and Scope  

By using recycled aluminium or by disposing used aluminium products for recycling, it is normal LCA practice to give a credit for the avoided production of primary or recycled aluminium. Lately, consequential approaches have been suggested to qualify and quantify this credit in terms of market mechanisms. Depending on supply, demand and price elasticity of primary products and scrap products, a mixed share of primary and recycled material may be credited. Aluminium, having high energy consumption for its primary production and low energy consumption for recycling, is very sensitive concerning whether production of primary or recycled aluminium is avoided. This paper includes presentations of aluminium products which are typically made from primary and from recycled aluminium. This is essential concerning which production may be avoided. Examples of market mechanism parameters of aluminium for consequential LCA are given.  相似文献   

2.
Background, aims and scope  The environmental aspects of companies and their products are becoming more significant in delivering competitive advantage. Formway Furniture, a designer and manufacturer of office furniture products, is a New Zealand-based company that is committed to sustainable development. It manufactures two models of the light, intuitive, flexible and environmental (LIFE) office chair: one with an aluminium base and one with a glass-filled nylon (GFN) base. It was decided to undertake a life cycle assessment (LCA) study of these two models in order to: (1) determine environmental hotspots in the life cycle of the two chairs (goal 1); (2) compare the life cycle impacts of the two chairs (goal 2); and (3) compare alternative potential waste-management scenarios (goal 3). The study also included sensitivity analysis with respect to recycled content of aluminium in the product. Materials and methods  The LIFE chair models consist of a mix of metal and plastic components manufactured by selected Formway suppliers according to design criteria. Hence, the research methodology included determining the specific material composition of the two chair models and acquisition of manufacturing data from individual suppliers. These data were compiled and used in conjunction with pre-existing data, specifically from the ecoinvent database purchased in conjunction with the SimaPro7 LCA software, to develop the life cycle inventory of the two chair models. The life cycle stages included in the study extended from raw-material extraction through to waste management. Impact assessment was carried out using CML 2 baseline 2000, the methodology developed by Leiden University’s Institute for Environmental Sciences. Results  This paper presents results for global warming potential (GWP100). The study showed a significant impact contribution from the raw-material extraction/refinement stage for both chair models; aluminium extraction and refining made the greatest contribution to GWP100. The comparison of the two LIFE chair models showed that the model with the aluminium base had a higher GWP100 impact than the model with the GFN base. The waste-management scenario compared the GWP100 result when (1) both chair models were sent to landfill and (2) steel and aluminium components were recycled with the remainder of the chair sent to landfill. The results showed that the recycling scenario contributed to a reduced GWP100 result. Since production and processing of aluminium was found to be significant, a sensitivity analysis was carried out to determine the impact of using aluminium with different recycled contents (0%, 34% and 100%) in both waste-management scenarios; this showed that increased use of recycled aluminium was beneficial. The recycling at end-of-life scenarios was modelled using two different end-of-life allocation approaches, i.e. consequential and attributional, in order to illustrate the variation in results caused by choice of allocation approach. The results using the consequential approach showed that recycling at end-of-life was beneficial, while use of the attributional method led to a similar GWP100 as that seen for the landfill scenario. Discussion  The results show that the main hotspot in the life cycle is the raw-material extraction/refinement stage. This can be attributed to the extraction and processing of aluminium, a material that is energy intensive. The LIFE chair model with the aluminium base has a higher GWP100 as it contains more aluminium. Sensitivity analysis pertaining to the recycled content of aluminium showed that use of aluminium with high recycled content was beneficial; this is because production of recycled aluminium is less energy intensive than production of primary aluminium. The waste-management scenario showed that recycling at end-of-life resulted in a significantly lower GWP100 than landfilling at end-of-life. However, this result is dependent upon the modelling approach used for recycling. Conclusions  With respect to goal 1, the study found that the raw-material extraction/refinement stage of the life cycle was a significant factor for both LIFE chair models. This was largely due to the use of aluminium in the product. For goal 2, it was found that the LIFE chair model with the aluminium base had a higher GWP100 than the GFN model, again due to the material content of the two models. Results for goal 3 illustrated that recycling at end-of-life is beneficial when using a system expansion (consequential) approach to model recycling; if an attributional ‘cut-off’ approach is used to model recycling at end-of-life, there is virtually no difference in the results between landfilling and recycling. Sensitivity analysis pertaining to the recycled content of aluminium showed that use of higher recycled contents leads to a lower GWP100 impact. Recommendation and perspectives  Most of the GWP100 impact was contributed during the raw-material extraction/refinement stage of the life cycle; thus, the overall impact of both LIFE chair models may be reduced through engaging in material choice and supply chain environmental management with respect to environmental requirements. The study identified aluminium components as a major contributor to GWP100 for both LIFE chair models and also highlighted the sensitivity of the results to its recycled content. Thus, it is recommended that the use of aluminium in future product designs be limited unless it is possible to use aluminium with a high recycled content. With respect to waste management, it was found that a substantial reduction in the GWP100 impact would occur if the chairs are recycled rather than landfilled, assuming an expanding market for aluminium. Thus, recycling the two LIFE chair models at end-of-life is highly recommended.  相似文献   

3.
Background, Aims and Scope Telecommunication and information technology, dramatically emerged during the last decade, has generated environmental problems by accelerating mass production, mass consumption, and mass disposal of personal computers (PCs) in Korea. In addition, it has led the Korean new economy. The Korean government has encouraged researchers and industry to study the environmental impact, adequate disposal treatment, and the reasonable recycling rate of an end-of-life personal computer. The main purpose of this research is to investigate the life cycle environmental impact of PCs and to determine the desirable or feasible recycle rate of an end-of-life PC. An LCA on a PC was performed based on different recycling scenario. Target audiences are new product developers, designers, product recovery managers and environmental policy makers who are interested in the environmental impact of PCs and recycling of end-of-life products. Methods A target product is a Pentium IV personal computer made in Korea in 2001, excluding the monitor and peripheral equipment. The procedure of the LCA followed the ISO14040 series. System boundary includes the entire life cycle of the product, including pre-manufacturing (the electrical parts and components manufacturing), manufacturing, transportation, use, and disposal. The LCI and impact assessment database for a PC was constructed using SIMAPRO version 4.0 software and LCI information was compiled by site-specific data and the Korean national database. The LCA was performed on different recycling scenarios: one being that of the current recycling rate of 46%, and the other being the ideal condition of a 100% recycling rate. Results and Discussion Abiotic depletion, global warming, ecotoxicity, human toxicity, acidification, ozone layer depletion, photo-oxidant formation, and eutrophication are adopted as the impact categories. The pre-manufacturing stage was a significant stage for all of the environmental parameters, besides human toxicity potential. PC manufacturing consists of rather simple processes such as assembly and packaging. For improving the environmental performance of PCs, environmental management approaches of design for the environment and green procurement are recommended. The use stage had a significant potential due to the electricity consumption produced by burning fossil fuel. The disposal stage's contribution to environmental impact was largest in human toxicity, and second largest in ozone layer depletion potential. The PC recycling was shown to inhibit all environmental impacts with the exception of the ozone depletion and ecotoxicity potential. The increase of light oil, nitric acid, sulfuric acid, and deoxidating agent consumption during the recycling process contributes to the environmental impact of ozone and ecotoxicity parameters. Current recovery and recycling technologies should be taken into account for enhancing the benefits of recycling. Anyway, the effectiveness of recycling was highlighted by this study. PC recycling reduces the total environmental impact of the product. The PC recycling is recommended to be raised up to at least 63% in order to reduce the environmental burdens of a PC in other life cycle stages. Conclusion and Recommendation This study implies that design for the environment (DfE) in the product design stage and green procurement are recommended for improving the entire environmental performance of electronic equipment such as PCs. The recycling of waste PCs clearly reduces the environmental burden. There are, however, trade-offs among environmental parameters according to the PC recycling rate. Current recycling methods are not effective in reducing ozone depletion and ecotoxicity environmental impact. The product recovery is another key for efficient recycling. Efficient reverse logistics to collect and transport end-of-life PCs should be taken into account to enhance recycling effects. There were several electrical parts not included in this assessment, due to the unavailability of adequate data. Further studies with more detail and reliable inventories for electrical parts and sub-components are recommended. Furthermore, costs of recycling should also be treated in further research.  相似文献   

4.
The aim of this article is to show how, at PSA peugeot-citroën, Life Cycle Assessment (LCA) is used as a tool to evaluate the environmental burdens associated with a product, a process or an activity by identifying and quantifying energy, material used and wastes released to the environment. In this paper, the LCA methodology is applied to a practical case study: the comparison of various end-of-life scenarios (recycling versus incineration with or without energy recovery with landfill as a reference) for a polypropylene (PP) bumper skin. All the LCA steps (goal, inventory, impacts assessment, interpretation) are developed in this study. It is shown that in the particular case of PP, incineration with energy recovery is on an environmental point of view between 30 and 60% recycling. However, due to some uncertainties on data quality, the absolute values of the inputs/outputs for the inventory step may not be sufficient to allow strong decision making and the use of the factorial experiments (Taguchi) is then proposed to select the dominant parameters of the study. Strong environmental conclusions can then be drawn from the study.  相似文献   

5.
Goal, Scope and Background  Gipuzkoa is a department of the Vasque Country (Spain) with a population of about 700,000 people. By the year 2000 approximately 85% of municipal solid waste in this area was managed by landfilling, and only 15% was recycled. Due to environmental law restrictions and landfill capacity being on its limit, a planning process was initiated by the authorities. LCA was used, from an environmental point of view, to assess 7 possible scenarios arising from the draft Plan for the 2016 time horizon. Main Features  In each scenario, 9 waste flows are analysed: rest waste, paper and cardboard, glass containers, light packaging, organic-green waste, as well as industrial/commercial wood, metals and plastics, and wastewater sludge. Waste treatments range from recycling to energy recovery and landfilling. Results  Recycling of the waste flows separated at the source (paper and cardboard, glass, light packaging, organic-green waste, wood packaging, metals and plastics) results in net environmental benefits caused by the substitution of primary materials, except in water consumption. These benefits are common to the 7 different scenarios analysed. However, some inefficiencies are detected, mainly the energy consumption in collection and transport of low density materials, and water consumption in plastic recycling. The remaining flows, mixed waste and wastewater sludge, are the ones causing the major environmental impacts, by means of incineration, landfilling of partially stabilised organic material, as well as thermal drying of sludge. With the characterisation results, none of the seven scenarios can be clearly identified as the most preferable, although, due to the high recycling rates expected by the Plan, net environmental benefits are achieved in 9 out of 10 impact categories in all scenarios when integrated waste management is assessed (the sum of the 9 flows of waste). Finally, there are no relevant differences between scenarios concerning the number of treatment plants considered. Nevertheless, only the effects on transportation impacts were assessed in the LCA, since the plant construction stage was excluded from the system boundaries. Conclusions  The results of the study show the environmental importance of material recycling in waste management, although the recycling schemes assessed can be improved in some aspects. It is also important to highlight the environmental impact of incineration and landfilling of waste, as well as thermal drying of sludge using fossil fuels. One of the main findings of applying LCA to integrated waste management in Gipuzkoa is the fact that the benefits of high recycling rates can compensate for the impacts of mixed waste and wastewater sludge. Recommendations and Outlook  Although none of the scenarios can be clearly identified as the one having the best environmental performance, the authorities in Gipuzkoa now have objective information about the future scenarios, and a multidisciplinary panel could be formed in order to weight the impacts if necessary. In our opinion, LCA was successfully applied in Gipuzkoa as an environmental tool for decision making.  相似文献   

6.

Purpose

Life cycle assessment (LCA) studies allow understanding all relevant processes and environmental impacts involved in the life cycle of products. However, in order to fully assess their sustainability, these studies should be complemented by economic (LCC) and societal analyses. In this context, the present work aims at assessing all costs (internal and external) and the environmental performance associated to the full life cycle of specific engineering products. These products are lighting columns for roadway illumination made with three different materials: a glass fibre reinforced polymer composite, steel and aluminium.

Methods

The LCA/LCC integrated methodology used was based in a ??cradle-to-grave?? assessment which considers the raw materials production, manufacture, on-site installation, use and maintenance, dismantlement and end-of-life (EoL) of the lighting columns. The fossil fuels environmental impact category was selected as the key environmental impact indicator to perform the integrated environmental and cost analysis.

Results

The potential total costs obtained for the full life cycle of the lighting columns demonstrated that the one made in steel performs globally worse than those made in composite or aluminium. Although the three systems present very similar internal costs, the steel column has higher external costs in the use phase that contribute for its higher total cost. This column has very high costs associated to safety features, since it constitutes a significant risk to the life of individuals. The raw material and column production stages are the main contributors for the total internal life cycle costs. The EoL treatment is a revenue source in all systems because it generates energy (in the case of the composite incineration) or materials (in the case of metal recycling). The composite and aluminium lighting columns present similar ??cradle-to-grave?? life cycle total cost. However, until the dismantlement phase, the aluminium column presents the highest environmental impact, whereas in the EoL treatment phase this scenario is reversed. The ??cradle-to-grave?? life cycle potential total cost and the environmental impact (fossil fuels) indicator of the steel lighting column are higher than those of the other columns.

Conclusions

Even though the uncertainties in the LCC are larger if external costs are included, their consideration when modelling the economic performance of engineering products increases the probability of developing a more sustainable solution from a societal perspective.  相似文献   

7.
Global population growth and rising living standards are increasing apparel consumption. Consequently, consumption of resources and generation of textile waste are increasing. According to the Swedish Environmental Protection Agency, textile consumption increased by 40% between the years 2000 and 2009 in Sweden. Given that there is currently no textile recycling plant in Sweden, the aim of this article is to explore the potential environmental benefits of various textile recycling techniques and thereby direct textile waste management strategies toward more sustainable options. Three different recycling techniques for a model waste consisting of 50% cotton and 50% polyester were identified and a life cycle assessment (LCA) was made to assess the environmental performance of them. The recycling processes are: material reuse of textile waste of adequate quality; separation of cellulose from polyester using N‐methylmorpholine‐N‐oxide as a solvent; and chemical recycling of polyester. These are compared to incineration, representing conventional textile waste treatment in Sweden. The results show that incineration has the highest global warming potential and primary energy usage. The material reuse process exhibits the best performance of the studied systems, with savings of 8 tonnes of carbon dioxide equivalents (CO2‐eq) and 164 gigajoules (GJ) of primary energy per tonne of textile waste. Sensitivity analyses showed that results are particularly sensitive to the considered yields of the processes and to the choice of replaced products. An integration of these recycling technologies for optimal usage of their different features for treatment of 1 tonne of textile waste shows that 10 tonnes CO2‐eq and 169 GJ of primary energy could be saved.  相似文献   

8.

Purpose

In a world where the population is expected to peak at around 9 billion people in the next 30 to 40 years, carefully managing our finite natural resources is becoming critical. We must abandon the outdated ‘take, make, consume and dispose’ mentality and move toward a circular economy model for optimal resource efficiency. Products must be designed for reuse and remanufacturing, which would reduce significant costs in terms of energy and natural resources.

Methods

To measure progress in achieving a circular economy, we need a life cycle approach that measures the social, economic and environmental impact of a product throughout its full life cycle—from raw material extraction to end-of-life (EoL) recycling or disposal. Life cycle thinking must become a key requirement for all manufacturing decisions, ensuring that the most appropriate material is chosen for the specific application, considering all aspects of a products’ life. The steel industry has been developing LCI data for 20 years. This is used to assess a product’s environmental performance from steel production to steel recycling at end-of-life. The steel industry has developed a methodology to show the benefits of using recycled steel to make new products. Using recycled materials also carries an embodied burden that should be considered when undertaking a full LCA.

Results and discussion

The recycling methodology is in accordance with ISO 14040/44:2006 and considers the environmental burden of using steel scrap and the benefit of scrap recycling from end-of-life products. It considers the recycling of scrap into new steel as closed material loop recycling, and thus, recycling steel scrap avoids the production of primary steel. The methodology developed shows that for every 1 kg of steel scrap that is recycled at the end of the products life, a saving of 1.5 kg CO2-e emissions, 13.4 MJ primary energy and 1.4 kg iron ore can be achieved. This equates to 73, 64 and 90 %, respectively, when compared to 100 % primary production.

Conclusions

Incorporating this recycling methodology into a full LCA demonstrates how the steel industry is an integral part of the circular economy model which promotes zero waste; a reduction in the amount of materials used and encourages the reuse and recycling of materials.
  相似文献   

9.
赵薇  孙一桢  张文宇  梁赛 《生态学报》2016,36(22):7208-7216
我国生活垃圾产量大但处理能力不足,产生多种环境危害,对其资源化利用能够缓解环境压力并回收资源。为探讨生活垃圾资源化利用策略,综合生命周期评价与生命周期成本分析方法,建立生态效率模型。以天津市为例,分析和比较焚烧发电、卫生填埋-填埋气发电、与堆肥+卫生填埋3种典型生活垃圾资源化利用情景的生态效率。结果表明,堆肥+卫生填埋情景具有潜在最优生态效率;全球变暖对总环境影响贡献最大,而投资成本对经济影响贡献最大。考虑天津市生活垃圾管理现状,建议鼓励发展生活垃圾干湿组分分离及厨余垃圾堆肥的资源化利用策略。  相似文献   

10.

Purpose

This life cycle assessment (LCA) study compares two prevalent end-of-life (EOL) treatment methods for scrap tires: material recycling and energy recovery. The primary intended use of the study results is to inform stakeholders of the relative environmental burdens and trade-offs associated with these two EOL vehicle tire treatment methods. The study supports prioritization of the waste treatment hierarchy for this material stream in the US.

Methods

This LCA compares (1) material recycling through ambient-temperature mechanical processing and (2) energy recovery through co-incineration of both whole and preprocessed scrap tires at a cement kiln. The avoided burden recycling methodology reflects the substitution of virgin synthetic rubber used in asphalt modification with the ground tire rubber from material recycling and the substitution of conventional kiln fuels with the tire-derived fuel (TDF). Both attributional (ALCA) and consequential (CLCA) methodologies are used: the ALCA assesses the environmental profiles of the treatment methods and the CLCA examines the potential effects of shifting more scrap tires to material recycling. The attributional portion of the LCA study was conducted in accordance with ISO standards 14044 series.

Results

The results in both methodological approaches indicate that the material recycling scenario provides greater impact reductions than the energy recovery scenario in terms of the examined environmental impact potentials: energy demand, iron ore consumption, global warming potential, acidification, eutrophication, smog formation, and respiratory effects. The additional impact reductions from material recycling are significant, and the establishment of new infrastructure required for a shift to material recycling incurs relatively insignificant burdens. Sensitivity analyses indicate that this conclusion does not change for (1) a range of TDF heating values, (2) a decrease in the mixed scrap tire rubber-to-steel composition ratio, (3) two alternative electricity grid fuel mixes with higher and lower carbon dioxide emission rankings than that of the baseline scenario, or (4) a comparison of material recycling to energy recovery when TDF is used in pulp and paper mills instead of cement kilns.

Conclusions

These results provide a basis for more informed decision-making when prioritizing scrap tire waste treatment hierarchy.  相似文献   

11.
12.

Purpose

This paper compares 16 waste lubricant oil (WLO) systems (15 management alternatives and a system in use in Portugal) using a life cycle assessment (LCA). The alternatives tested use various mild processing techniques and recovery options: recycling during expanded clay production, recycling and electric energy production, re-refining, energy recovery during cement production, and energy recovery during expanded clay production.

Methods

The proposed 15 alternatives and the actual present day situation were analyzed using LCA software UMBERTO 5.5, applied to eight environmental impact categories. The LCA included an expansion system to accommodate co-products.

Results

The results show that mild processing with low liquid gas fuel consumption and re-refining is the best option to manage WLO with regard to abiotic depletion, eutrophication, global warming, and human toxicity environmental impacts. A further environmental option is to treat the WLO using the same mild processing technique, but then send it to expanded clay recycling to be used as a fuel in expanded clay production, as this is the best option regarding freshwater sedimental ecotoxicity, freshwater aquatic ecotoxicity, and acidification.

Conclusions

It is recommended that there is a shift away from recycling and electric energy production. Although sensitivity analysis shows re-refining and energy recovery in expanded clay production are sensitive to unit location and substituted products emission factors, the LCA analysis as a whole shows that both options are good recovery options; re-refining is the preferable option because it is closer to the New Waste Framework Directive waste hierarchy principle.  相似文献   

13.
Goal, Scope and Background The new European legislation concerning End-of-Life Vehicles (ELVs) will allow, in 2015, the landfilling of only 5% of the average vehicle weight, which means that the automotive industry must make a great effort in order to design their products taking into account their recyclability when they become waste. In the present work, LCA is used to assess an existing automotive component, a plastic door panel, and to compare it with a designed-for-recycling prototype panel, based on compatible polyolefins. Main Features A \\\'cradle to grave\\\' LCA is carried out for the panel currently produced and the prototype. The following scenarios are analyzed for plastic waste: landfilling (current practice in Spain), energy recovery in a MSW incinerator or in a cement kiln, and mechanical recycling. Results and Discussion The production and use phases together contribute more than 95% in most impact indicators. When the current and prototype products are compared, a decrease in the environmental impact appears for the prototype in the production phase and also at end-of-life if recycling is considered with full substitution of virgin polymers. The overall impact reduction ranges from 18% in the toxicity indicators to 80% in landfill use. Energy recovery in cement kilns appears as a good alternative to recycling in some indicators, such as landfill use or resource depletion. A sensitivity analysis is performed on the quality of recycled plastic, and the results suggest that the benefits of recycling are substantially reduced if full substitution is not achieved. Conclusion LCA has been shown to be a very useful tool to validate from an environmental point of view a redesigned automotive component; in addition, it has allowed one to identify not only the benefits from increased recyclability, but also improvements in other life cycle phases which were not previously expected. Recommendation and Perspective From this case study several recommendations to the company have been drawn in order to design environmentally friendly components for car interiors, and ecodesign is expected to be introduced in the company procedures. - Glossary ABS: Acrilonitrile-butadiene-styrene; ASR: Automobile shredder residue; DEHP: Di(ethylhexyl)phtalate; ELV: End-of-life vehicles; EPDM: Ethylene propylene diene monomer; MSW: Municipal solid waste; MSWI: Municipal solid waste incinerator; NEDC: New European driving cycle; PA GF: Polyamide glass fiber reinforced; PE: Polyethylene; PES: Polyester; POM: Polyoxymethylene; PP T16: Polypropylene 16% talc filled; PUR: Polyurethane; PVC: Polyvinyl chloride; TPO: Thermoplastic olefin  相似文献   

14.
Recycling of aluminum can in terms of Life Cycle Inventory (LCI)   总被引:1,自引:0,他引:1  
Background, Aims and Scope  Life Cycle Assessment is a technique for evaluating the environmental performance of a given product by: identifying and quantifying the energy and raw materials used in its manufacturing process, as well as the emissions of pollutants to water, soil, and air inherent in this production, use and disposal, and evaluating the environmental impact associated with the use of energy and materials and the emissions of pollutants, thus identifying opportunities to improve the system in order to optimize the environmental performance of the product. CETEA (Packaging Technology Center) has conducted a Life Cycle Assessment — LCA study of aluminum can with emphasis in life cycle inventory, collecting data for the reference years 2000–2002. The goal of this paper is to present part of this complete study, focusing the influence of aluminium recycling rate on the Life Cycle Inventory (LCI) of aluminum beverage cans in Brazil. Methods  The adopted methodology was based on the recommendations of SETAC — Society of Environmental Toxicology and Chemistry and the ISO 14040 Standard, approved by the Sub-Committee 05 of the Environmental Administration Technical Committee, TC-207, from ISO — INTERNATIONAL ORGANIZATION FOR STANDARDIZATION [1,2]. Data storage and modeling were performed by employing the PIRA Environmental Management System — PEMS [3]. Results  Taking into account the impact categories adopted in this study, it has been shown that recycling helps to improve the aluminium can environmental profile measured as LCI data. Discussion  For the transformed aluminium products, the recycling rate affects the values of the environmental parameters inventoried, but not in the same proportion, since the contribution of other stages of the product system life cycle and the recycling process remain unchanged, including the yield of this process. In general, the recycling balance is always positive due to the importance of the stages that precede the packaging production and the problem of increasing the municipal waste volume. Conclusions  The advantages of the recycling are obviously concentrated on the inventoried parameters related to the primary aluminum production and to the package disposal. The verified benefits of the recycling increase with the recycling rate enhancement. However, the effects on the inventory do not have the same magnitude of the recycling rate. This happens due to the relative contributions of the other life cycle stages, such as the transportation and sheet or can production. In agreement with the presented results, it is possible to conclude that the aluminum can recycling reduces part of the consumption of natural resources and the emissions associated to the stages previous to the production of the packaging. The parameters specifically related to the stage of aluminum production suffer reduction directly proportional to the increase of the recycling rate. In this way, all of the efforts made to increase the recycling rate will have a positive contribution to the LCI of the aluminum can. Recommendations  It is worth pointing out that LCA studies are iterative and dynamic. The data can always be refined, substituted or complemented with updated information in order to improve the representativeness of the analyzed sector. Perspectives  From this study, the aluminum sector in Brazil is able to quantify the benefits of future actions for environmental improvement of the Brazilian aluminum industry, as well as to contribute technically to Environmental Labeling initiatives regarding aluminum products. ESS-Submission Editor: Alain Dubreuil (dubreuil@nrcan.gc.ca)  相似文献   

15.
Background, aim, and scope  Many recent studies on waste management have described in detail the potential impacts of recycling and final treatment of municipal waste. In public debates, the attention has also been focused on the choice of final disposal technologies (e.g. landfilling vs. incineration). However, a comprehensive assessment of the impacts of waste collection and transport was still lacking. In the present study, we use LCA to evaluate the potential impact of the provincial waste management plan of Varese (northern Italy). Particular attention is devoted to the estimation of environmental impacts generated during waste transport. Materials and methods  A detailed Life Cycle Inventory was built for the transportation phase, based on primary data collected by interviewing the agencies involved in waste collection. To model the recycling and final disposal phase we relied on the BUWAL 250 database. Impacts were evaluated with the Eco-Indicator 99 method in its egalitarian formulation. Results  The results of our analysis reveal that the major potential impacts of the plan are associated with waste collection and transport. These impacts are partially compensated by reduced resource consumption through recycling and energy recovery through incineration. Discussion  The outputs of the LCIA were compared with those obtained by using other ecoindicators (Eco-Indicator 99 hierarchist and individualist, CML2, EPS2000). Although not comparable on a quantitative basis, they are qualitatively consistent. Conclusions  Neglecting the effects of collection and transport might result in a severe underestimation of the environmental impacts of a waste management system, especially as refers to depletion of fossil fuels, emission of respiratory inorganics and climate change. To reduce the environmental impact of waste management systems, an accurate optimisation of waste transport is required. Recommendations and perspectives  Effective waste management planning requires the explicit inclusion of waste collection and transport when comparing alternative management policies.  相似文献   

16.
Background, aim, and scope  Life cycle assessment (LCA) applied to alternative waste management strategies is becoming a commonly utilised tool for decision makers. This LCA study analyses together material and energy recovery within integrated municipal solid waste (MSW) management systems, i.e. the recovery of materials separated with the source-separated collection of MSW and the energy recovery from the residual waste. The final aim is to assess the energetic and environmental performance of the entire MSW management system and, in particular, to evaluate the influence of different assumptions about recycling on the LCA results. Materials and methods  The analysis uses the method of LCA and, thus, takes into account that any recycling activity influences the environment not only by consuming resources and releasing emissions and waste streams but also by replacing conventional products from primary production. Different assumptions about the selection efficiencies of the collected materials and about the quantity of virgin material substituted by the reprocessed material were made. Moreover, the analysis considers that the energy recovered from the residual waste displaces the same quantity of energy produced in conventional power plants and boilers fuelled with fossil fuels. Results  The analysis shows, in the expanded model of the material and energy recovering chain, that the environmental gains are higher than the environmental impacts. However, when we reduce the selection efficiencies by 15%, the impact indicators worsen by a percentage included between 10% and 26%. This phenomenon is even more evident when we consider a substitution ratio of 1:<1 for paper and plastic: The worsening is around 15–20% for all the impact indicators except for the global warming for which the worsening is up to 45%. Discussion  Hypotheses about the selection efficiencies of the source-separated collected materials and about the substitution ratio have a great influence on the LCA results. Consequently, policy makers have to be aware of the fact that the impacts of an integrated MSW management system are highly dependent on the assumptions made in the modelling of the material recovery, as well as in the modelling of the energy recovery. Conclusions  LCA allows to evaluate the impacts of integrated systems and how these impacts change when the assumptions made during the modelling of the different single parts of the system are modified. Due to the significant impacts that hypotheses about material recovery have in the results, they should be expressed in a very transparent way in the report of LCA studies, together with the assumptions made about energy recovery. Recommendations and perspectives  The results suggest that the hypotheses about the value of the substitution ratio are very important, and the case of wood should therefore be better analysed and a substitution ratio of 1:<1 should be used, as for paper and plastic. It seems that the assumptions made about which material is replaced by the recycled one are very important too, and in this sense, more research is needed about what the recycled plastic may effectively substitute, in particular the polyolefin mix.  相似文献   

17.

Purpose

Carbon fibers have been widely used in composite materials, such as carbon fiber-reinforced polymer (CFRP). Therefore, a considerable amount of CFRP waste has been generated. Different recycling technologies have been proposed to treat the CFRP waste and recover carbon fibers for reuse in other applications. This study aims to perform a life cycle assessment (LCA) to evaluate the environmental impacts of recycling carbon fibers from CFRP waste by steam thermolysis, which is a recycling process developed in France.

Methods

The LCA is performed by comparing a scenario where the CFRP waste is recycled by steam-thermolysis with other where the CFRP waste is directly disposed in landfill and incineration. The functional unit set for this study is 2 kg of composite. The inventory analysis is established for the different phases of the two scenarios considered in the study, such as the manufacturing phase, the recycling phase, and the end-of-life phase. The input and output flows associated with each elementary process are standardized to the functional unit. The life cycle impact assessment (LCIA) is performed using the SimaPro software and the Ecoinvent 3 database by the implementation of the CML-IA baseline LCIA method and the ILCD 2011 midpoint LCIA method.

Results and discussion

Despite that the addition of recycling phase produces non-negligible environmental impacts, the impact assessment shows that, overall, the scenario with recycling is less impactful on the environment than the scenario without recycling. The recycling of CFRP waste reduces between 25 and 30% of the impacts and requires about 25% less energy. The two LCIA methods used, CML-IA baseline and ILCD 2011 midpoint, lead to similar results, allowing the verification of the robustness and reliability of the LCIA results.

Conclusions

The recycling of composite materials with recovery of carbon fibers brings evident advantages from an environmental point of view. Although this study presents some limitations, the LCA conducted allows the evaluation of potential environmental impacts of steam thermolysis recycling process in comparison with a scenario where the composites are directly sent to final disposal. The proposed approach can be scaled up to be used in other life cycle assessments, such as in industrial scales, and furthermore to compare the steam thermolysis to other recycling processes.
  相似文献   

18.
Background, aim, and scope  As the sustainability improvement becomes an essential business task of industry, a number of companies are adopting IT-based environmental information systems (EIS). Life cycle assessment (LCA), a tool to improve environmental friendliness of a product, can also be systemized as a part of the EIS. This paper presents a case of an environmental information system which is integrated with online LCA tool to produce sets of hybrid life cycle inventory and examine its usefulness in the field application of the environmental management. Main features  Samsung SDI Ltd., the producer of display panels, has launched an EIS called Sustainability Management Initiative System (SMIS). The system comprised modules of functions such as environmental management system (EMS), green procurement (GP), customer relation (e-VOC), eco-design, and LCA. The LCA module adopted the hybrid LCA methodology in the sense that it combines process LCA for the site processes and input–output (IO) LCA for upstream processes to produce cradle-to-gate LCA results. LCA results from the module are compared with results of other LCA studies made by the application of different methodologies. The advantages and application of the LCA system are also discussed in light of the electronics industry. Results and discussion  LCA can play a vital role in sustainability management by finding environmental burden of products in their life cycle. It is especially true in the case of the electronics industry, since the electronic products have some critical public concerns in the use and end-of-life phase. SMIS shows a method for hybrid LCA through online data communication with EMS and GP module. The integration of IT-based hybrid LCA in environmental information system was set to begin in January 2006. The advantage of the comparing and regular monitoring of the LCA value is that it improves the system completeness and increases the reliability of LCA. By comparing the hybrid LCA and process LCA in the cradle-to-gate stage, the gap between both methods of the 42-in. standard definition plasma display panel (PDP) ranges from 1% (acidification impact category) to −282% (abiotic resource depletion impact category), with an average gap of 68.63%. The gaps of the impact categories of acidification (AP), eutrophication (EP), and global warming (GWP) are relatively low (less than 10%). In the result of the comparative analysis, the strength of correlation of three impact categories (AP, EP, GWP) shows that it is reliable to use the hybrid LCA when assessing the environmental impacts of the PDP module. Hybrid LCA has its own risk on data accuracy. However, the risk is affordable when it comes to the comparative LCA among different models of similar product line of a company. In the results of 2 years of monitoring of 42-in. Standard definition PDP, the hybrid LCA score has been decreased by 30%. The system also efficiently shortens man-days for LCA study per product. This fact can facilitate the eco-design of the products and can give quick response to the customer's inquiry on the product's eco-profile. Even though there is the necessity for improvement of process data currently available, the hybrid LCA provides insight into the assessments of the eco-efficiency of the manufacturing process and the environmental impacts of a product. Conclusions and recommendations  As the environmental concerns of the industries increase, the need for environmental data management also increases. LCA shall be a core part of the environmental information system by which the environmental performances of products can be controlled. Hybrid type of LCA is effective in controlling the usual eco-profile of the products in a company. For an industry, in particular electronics, which imports a broad band of raw material and parts, hybrid LCA is more practicable than the classic LCA. Continuous efforts are needed to align input data and keep conformity, which reduces data uncertainty of the system.  相似文献   

19.
Background, aim, and scope  This paper compares the life cycle assessment (LCA) of two packaging alternatives used for baby food produced by Nestlé: plastic pot and glass jar. The study considers the environmental impacts associated with packaging systems used to provide one baby food meal in France, Spain, and Germany in 2007. In addition, alternate logistical scenarios are considered which are independent of the two packaging options. The 200-g packaging size is selected as the basis for this study. Two other packaging sizes are assessed in the sensitivity analysis. Because results are intended to be disclosed to the public, this study underwent a critical review by an external panel of LCA experts. Materials and methods  The LCA is performed in accordance to the international standards ISO 14040 and ISO 14044. The packaging systems include the packaging production, the product assembly, the preservation process, the distribution, and the packaging end-of-life. The production of the content (before preservation process), as well as the use phase are not taken into account as they are considered not to change when changing packaging. The inventory is based on data obtained from the baby food producer and the suppliers, data from the scientific literature, and data from the ecoinvent database. Special care is taken to implement a system expansion approach for end-of-life open and closed loop recycling and energy production (ISO 14044). A comprehensive impact assessment is performed using two life cycle impact assessment methodologies: IMPACT 2002+ and CML 2001. An extensive uncertainty analysis using Monte Carlo as well as an extensive sensitivity study are performed on the inventory and the reference flows, respectively. Results  When looking at the impacts due to preservation process and packaging (considering identical distribution distances), we observe a small but significant environmental benefit of the plastic pot system over the glass jar system. Depending on the country, the impact is reduced by 14% to 27% for primary energy, 28% to 31% for global warming, 31% to 34% for respiratory inorganics, and 28% to 31% for terrestrial acidification/nutrification. The environmental benefit associated with the change in packaging mainly results from (a) production of plastic pot (including its end-of-life; 43% to 51% of total benefit), (b) lighter weight of packaging positively impacting transportation (20% to 35% of total benefit), and (c) new preservation process permitted by the plastic system (23% to 34% of total benefit). The jar or pot (including cap or lid, cluster, stretch film, and label) represents approximately half of the life cycle impacts, the logistics approximately one fourth, and the rest (especially on-site energy, tray, and hood) one fourth. Discussion  The sensitivity analysis shows that assumptions made in the basic scenarios are rather conservative for plastic pots and that the conclusions for the 200-g packaging size also apply to other packaging sizes. The uncertainty analysis performed on the inventory for the German market situation shows that the plastic pot system has less impact than the glass jar system while considering similar distribution distances with a confidence level above 97% for most impact categories. There is opportunity for further improvement independent of the type of packaging used, such as by reducing distribution distances while still optimizing lot size. The validity of the main conclusions presented in this study is confirmed by results of both impact assessment methodologies IMPACT 2002+ and CML 2001. Conclusions  For identical transportation distances, the plastic pot system shows a small but significant reduction in environmental burden compared to the glass jar system. Recommendations and perspectives  As food distribution plays an important role in the overall life cycle burdens and may vary between scenarios, it is important to avoid additional transportation of the packaged food in order to maintain or even improve the advantage of the plastic pot system. The present study focuses on the comparison of packaging systems and directly related consequences. It is recommended that further environmental optimization of the product also includes food manufacturing (before preservation process) and the supply chain of raw materials.  相似文献   

20.
Strategies for Meeting EU End-of-Life Vehicle Reuse/Recovery Targets   总被引:1,自引:0,他引:1  
Disposal of end-of-life vehicles (ELVs) is a relatively new focus of the European policy community. Technical requirements for car design and minimum reuse and recovery rates for end-of-life vehicles are the subject of a recent European Union directive on ELVs. This directive is expected to induce changes in the infrastructure required for ELV processing, and presents a substantial challenge to maintaining such an infrastructure as economically viable.
This paper assesses current and emerging ELV recycling technologies, in order to provide guidelines for the development of future ELV recycling strategies. Emphasis is given to technologies dedicated to automobile shredder residue (ASR) recovery, as an alternative/complement to more labor-intensive dismantling activities. The ultimate goal is to develop a vision of the type of ASR processing technology that could emerge in the future.
The analysis is based on a model developed to simulate ELV processing infrastructures, and shredding data are taken from full-scale experiments. The results obtained show that ASR mechanical separation and recycling technologies may enable more extensive recycling and contribute to achieving European Union recycling targets, and can thus be considered as far more promising than technologies based on energy recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号