首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The ability of soil microflora to utilize glucose or celloboise was found to depend on previous incubation of the soil with glucose, celloboise or cellulose. Glucose was utilized more rapidly than cellobiose in soil preincubated with glucose or cellobiose. The opposite situation was observed in soil preincubated with cellulose. In the presence of a mixture of both sugars the rate of utilization of one of them was decreased by the second and this decrease could be characterized as competitive inhibition. Glucose accumulated in the medium during utilization of cellobiose alone in soil preincubated with cellulose. This phenomenon was not observed during the utilization of cellobiose in soil preincubated with glucose or cellobiose.  相似文献   

2.
A newly isolated mesophilic anaerobe, Bacteroides cellulosolvens, has the ability to produce cellulase and to degrade cellulose to cellobiose and glucose. It does not utilize glucose, and it lacks β-glucosidase activity. This anaerobe appears to degrade cellulose to cellobiose by cellulase action, and the presence of cells appears necessary for the formation of glucose.  相似文献   

3.
The rumen phycomyceteNeocallimastix frontalis was found to utilize for growth a wide range of plant polysaccharides, including cellulose, starch, and xylan. The ability to utilize polysaccharides was absent after prolonged culture in vitro on glucose, but present after subculture on grass particles. Grass-grown organisms were capable of growing at the expense of cellobiose, maltose, and xylose, capacities absent before exposure to grass particles.N. frontalis cultures digested at least 41% of the dry weight of water-insoluble grass tissue, and up to 75% of the dry weight of filter paper.  相似文献   

4.
Cellulosome synthesis by Clostridium cellulovorans was investigated by growing the cells in media containing different carbon sources. Supernatant from cells grown with cellobiose contained no cellulosomes and only the free forms of cellulosomal major subunits CbpA, P100, and P70 and the minor subunits with enzymatic activity. Supernatant from cells grown on pebble-milled cellulose and Avicel contained cellulosomes capable of degrading crystalline cellulose. Supernatants from cells grown with cellobiose, pebble-milled cellulose, and Avicel contained about the same amount of carboxymethyl cellulase activity. Although the supernatant from the medium containing cellobiose did not initially contain active cellulosomes, the addition of crystalline cellulose to the cell-free supernatant fraction converted the free major forms to cellulosomes with the ability to degrade crystalline cellulose. The binding of P100 and P70 to crystalline cellulose was dependent on their attachment to the endoglucanase-binding domains of CbpA. These data strongly indicate that crystalline cellulose promotes cellulosome assembly.  相似文献   

5.
An adhesion-defective mutant of Ruminococcus albus SY3 was isolated by a subtractive enrichment procedure, which involved repetitive adsorption of cellobiose-grown cells to cellulose. The growth characteristics of the mutant were compared with those of the wild type. Like the wild-type cells, the mutant was capable of growing on soluble substrates, i.e. cellobiose and xylan. However, in contrast to the wild type strain, the mutant was impaired in its capacity to utilize insoluble substrates, e.g. crystalline cellulose, acid-swollen cellulose or alfalfa cell walls. Scanning electron microscopy revealed protuberance-like surface structures on the wild-type strain which were absent on the mutant. The levels of endoglucanase and xylanase enzymatic activities released into the extracellular culture fluid were higher in the wild type compared to the mutant. However, Avicelase activity was not detected in the extracellular culture fluid of either strains when grown on cellobiose.  相似文献   

6.
Cultures of Clostridium thermocellum ATCC-27405, maintained on cellulose and not adapted to grow on glucose utilize cellobiose preferentially over D-glucose, and are only able to initiate growth on D-glucose when the cellobiose has been exhausted from the growth medium. However, D-glucose is the carbon source preferentially utilized when cultures of this microorganism, previously adapted for growth on glucose, are transferred to a medium with equivalent concentrations of both sugars. One reason for the preferential utilization of glucose over that of cellobiose might be the competitive inhibition of cellobiose phosphorylase by intracellular glucose accumulation. When in the glucose-adapted cultures the pressure to grow on glucose as the sole carbon source is again released, both sugars can be simultaneously utilized.  相似文献   

7.
Curdlan is a commercial polysaccharide made by fermentation of Agrobacterium sp. Its anticipated expansion to larger volume markets demands improvement in its production efficiency. Metabolic engineering for strain improvement has so far been limited due to the lack of genetic tools. This research aimed to identify strong promoters and to engineer a strain that converts cellobiose efficiently to curdlan. Three strong promoters were identified and were used to install an energy-efficient cellobiose phosphorolysis mechanism in a curdlan-producing strain. The engineered strains were shown with enhanced ability to utilize cellobiose, resulting in a 2.5-fold increase in titer. The availability of metabolically engineered strain capable of producing β-glucan from cellobiose paves the way for its production from cellulose. The identified native promoters from Agrobacterium open up opportunities for further metabolic engineering for improved production of curdlan and other products. The success shown here marks the first such metabolic engineering effort in this microbe.  相似文献   

8.
A mesophilic anaerobe, a member of the Bacteroidaceae family (NRC2248), isolated from a cellulose-enrichment culture, digested untreated Whatman cellulose powder and HCl-treated cotton battings while producing hydrogen, carbon dioxide, cellobiose, glucose, and acetic acid as the sole volatile acid. This organism also utilized cellobiose as carbon and energy source but did not utilize glucose. It grew well in synthetic medium containing ammonium salts as nitrogen source and having a pH value of 7.0-7.1 and an Eh value of -160mV or lower. The nutrient requirements of this organism were found to be similar to those of other anaerobes except for Na2S which inhibited cellulose degradation in concentrations above 0.75 mM. Best cellulose degradation occurred under an atmosphere of 80% N2-20% CO2. Use of H2 or 80% H2-20% CO2 as headspace gas inhibited growth. Although accumulation of acetic acid in about 15-16 mM concentrations inhibited the further formation of H2, CO2, and acetic acid in the broth, it did not stop the degradation of cellulose. The results indicate that this organism has the ability to grow in media containing up to 20 g/L of cellulose and to produce industrially important and easily separable end products from cellulose.  相似文献   

9.
Summary The enzymatic saccharification of cellulose has traditionally been monitored via total reducing sugar analyses. Yet with cellobiohydrolase being a major component of fungal and actinomycete cellulases, there is a need for a more specific measurement of cellobiose besides other soluble cellulodextrin products without interference from glucose, the major product of cellulose saccharification. One approach is to utilize cellobiose: quinone oxidoreductase (CBOase) from the fungus Phanerochaete chrysosporium to monitor saccharification. We describe here methods for the production of CBQase and a specialized application to monitor the chromatographic separation of cellobiohydrolase.Dedicated to Professor Dr. H. J. Rehm on the occasion of his 60th birthday  相似文献   

10.
Two nitrogen-fixing members of the Enterobacteriaceae have been isolated from paper mill process water and compost. Although they closely resembled Escherichia coli , detailed biochemical characterization of these and 7 other isolates established that they should be assigned to a biotype of Erwinia herbicola . They may be distinguished from E. coli by their lack of amino acid decarboxylase activity, their ability to utilize cellobiose and malonate and to ferment cellobiose and amygdalin. In one of them, the capacity to fix nitrogen, ferment cellobiose and utilize malonate was resistant to the effects of ethidium bromide, acridine orange and sodium dodecyl sulphate, and the ability to utilize cellobiose could not be transferred on to E. coli or Salmonella typhi . It is therefore concluded that these characters are not carried on transferable plasmids. Forty-eight strains of E. coli of varying origin were examined for acetylene reducing activity and all were found to be negative. It is concluded that hitherto no naturally occurring strains of E. coli have been shown to fix nitrogen.  相似文献   

11.
A potentially novel aerobic, thermophilic, and cellulolytic bacterium designated as Brevibacillus sp. strain JXL was isolated from swine waste. Strain JXL can utilize a broad range of carbohydrates including: cellulose, carboxymethylcellulose (CMC), xylan, cellobiose, glucose, and xylose. In two different media supplemented with crystalline cellulose and CMC at 57°C under aeration, strain JXL produced a basal level of cellulases as FPU of 0.02 IU/ml in the crude culture supernatant. When glucose or cellobiose was used besides cellulose, cellulase activities were enhanced ten times during the first 24 h, but with no significant difference between these two simple sugars. After that time, however, culture with glucose demonstrated higher cellulase activities compared with that from cellobiose. Similar trend and effect on cellulase activities were also obtained when glucose or cellobiose served as a single substrate. The optimal doses of cellobiose and glucose for cellulase induction were 0.5 and 1%. These inducing effects were further confirmed by scanning electron microscopy (SEM) images, which indicated the presence of extracellular protuberant structures. These cellulosome-resembling structures were most abundant in culture with glucose, followed by cellobiose and without sugar addition. With respect to cellulase activity assay, crude cellulases had an optimal temperature of 50°C and a broad optimal pH range of 6–8. These cellulases also had high thermotolerance as evidenced by retaining more than 50% activity at 100°C after 1 h. In summary, this is the first study to show that the genus Brevibacillus may have strains that can degrade cellulose.  相似文献   

12.
The ability of cellobiose dehydrogenase purified from Phanerochaete chrysosporium to modify a Douglas fir kraft pulp was assessed. Although the addition of cellobiose dehydrogenase alone had little effect, supplementation with cellobiose and iron resulted in a substantial reduction in the degree of polymerization of the pulp cellulose. When the reaction was monitored over time, a progressive depolymerization of the cellulose was apparent with the concomitant production of cellobiono-1,5-lactone. Analysis of the reaction filtrates indicated that glucose and arabinose were the only neutral sugars generated. These sugars are derived from the degradation of the cellobiose rather than resulting from modifications of the pulp. These results suggest that the action of cellobiose dehydrogenase results in the generation of hydroxyl radicals via Fenton's chemistry which subsequently results in the depolymerization of cellulose. This appears to be the mechanism whereby a substantial reduction in the degree of polymerization of the cellulose can be achieved without a significant release of sugar.  相似文献   

13.
The soil isolate Cellvibrio mixtus UQM2294 degraded a variety of polysaccharides including microcrystalline cellulose. Among 6,000 cosmid clones carrying C. mixtus DNA, constructed in Escherichia coli with pHC79, 50 expressed the ability to degrade one or more of the following substrates: carboxymethyl cellulose, chitin, pectin (polygalacturonic acid), cellobiose, and starch. These degradative genes are encoded in a single 94.1-kilobase segment of the C. mixtus genome; a preliminary order of the genes is starch hydrolysis, esculin hydrolysis, cellobiose utilization, chitin hydrolysis, carboxymethyl cellulose hydrolysis, and polygalacturonic acid hydrolysis. A restriction endonuclease cleavage map was constructed, and the genes for starch, carboxymethyl cellulose, cellobiose, chitin, and pectin hydrolysis were subcloned.  相似文献   

14.
Recent advances in fungal cellobiose oxidoreductases   总被引:2,自引:0,他引:2  
When grown on cellulose, the white-rot fungus Phanerochaete chrysosporium (Sporotrichum pulverulentum), produces two cellobiose oxidoreductases, i.e., cellobiose:quinone oxidoreductase (CBQ) and cellobiose oxidase (CBO). Similar cellobiose-oxidizing enzymes, capable of utilizing a wide variety of electron acceptors, have been detected in many other fungi. However, the role of the cellobiose oxidoreductases in white-rot fungi, or in any fungi for that matter, is still not known. The original role ascribed to CBQ was as a link between cellulose and lignin degradation. CBQ has been shown to reduce quinones and phenoxyradicals released during lignin degradation concomitantly oxidizing cellobiose and other cellodextrins released during cellulose degradation. Thus, one function proposed for the cellobiose oxidoreductases is to prevent repolymerization of phenoxyradicals formed when phenoloxidases (peroxidases and laccases) attack lignin and lignin degradation products. However, evidence obtained so far indicates that the presence of CBO/CBQ with lignin peroxidases and laccases actually reduces the rate of oxidation of lignin degradation products. CBQ has a molecular mass of about 60 kD and contains an FAD cofactor. CBO contains both heme and FAD, and has a mass of about 90 kD. It has recently been demonstrated that CBO can be proteolytically cleaved into FAD and heme domains. The FAD domain of CBO seems to have all the properties of CBQ, suggesting that CBQ is a cleavage product of CBO. Whether CBO is a precursor of CBQ is not yet known. CBO and CBQ can be distinguished not only by the differences in their spectral properties, but also by the ability of CBO, but not CBQ, to reduce cytochrome c. Both CBO and CBQ have a cellulose-binding domain (CBD), as do a large number of endoglucanases and cellobiohydrolases. The induction-repression patterns regulating cellobiose oxidoreductase genes are not known in any detail. Most reports point to induction during cellulose degradation, but repression has not been studied. Induction has also been suggested to occur by addition of lignosulfonate to the medium.  相似文献   

15.
To obtain strains that are able to efficiently produce ethanol from different carbohydrates, mainly cellulose hydrolysates, several species of the genus Candida and a Zygosaccharomyces fermentati strain were examined for their ability to utilize cellobiose and produce ethanol, as well as for their thermotolerance and the possibility of genetic manipulation. Candida obtusa and Zygosaccharomyces fermentati tolerated the maximal temperature for growth, possessed the highest cellobiase activity, and offered the possibility of genetic manipulation, although neither of them proved to be a good producer of ethanol. Intergeneric hybrids of Saccharomyces cerevisiae and Z. fermentati were obtained after protoplast fusion. They were selected as prototrophic strains, after isolation of auxotrophic mutants from Z. fermentati and fusion with an S. cerevisiae strain which was also auxotrophic. The hybrids, which appeared at a frequency of 2 X 10(-7), presented characteristics of both parents, such as resistance to certain drugs and the ability to grow with either cellobiose or lactic acid as the sole carbon source; they were very stable, even under nonselective conditions. These hybrids may have important industrial applications as good fermenting strains.  相似文献   

16.
An experimental study of cellobiose inhibition in cellulose hydrolysis by synergism of cellobiohydrolyse I and endoglucanase I is presented. Cellobiose is the structural unit of cellulose molecules and also the main product in enzymatic hydrolysis of cellulose. It has been identified that cellobiose can strongly inhibit hydrolysis reaction of cellulase, whereas it has no effect on the adsorption of cellulase on cellulose surface. The experimental data of FT-IR spectra, fluorescence spectrum and circular dichroism suggested that cellobiose can be combined with tryptophan residue located near the active site of cellobiohydrolase and then form steric hindrance, which prevents cellulose molecule chains from diffusing into active site of cellulase. In addition, the molecular conformation of cellobiohydrolase changes after cellobiose binding, which also causes most of the non-productive adsorption. Under these conditions, microfibrils cannot be separated from cellulose chains, thus further hydrolysis of cellulose can hardly proceed.  相似文献   

17.
An experimental study of cellobiose inhibition in cellulose hydrolysis by synergism of cellobiohydrolyse I and endoglucanase I is presented. Cellobiose is the structural unit of cellulose molecules and also the main product in enzymatic hydrolysis of cellulose. It has been identified that cellobiose can strongly inhibit hydrolysis reaction of cellulase, whereas it has no effect on the adsorption of cellulase on cellulose surface. The experimental data of FT-IR spectra, fluorescence spectrum and circular dichroism suggested that cellobiose can be combined with trypto-phan residue located near the active site of cellobiohydrolase and then form steric hindrance, which prevents cellulose molecule chains from diffusing into active site of cellulase. In addition, the molecular conformation of cellobiohydrolase changes after cellobiose binding, which also causes most of the non-productive adsorption. Under these conditions, microfibrils cannot be separated from cellulose chains, thus further hydrolysis of cell  相似文献   

18.
To obtain strains that are able to efficiently produce ethanol from different carbohydrates, mainly cellulose hydrolysates, several species of the genus Candida and a Zygosaccharomyces fermentati strain were examined for their ability to utilize cellobiose and produce ethanol, as well as for their thermotolerance and the possibility of genetic manipulation. Candida obtusa and Zygosaccharomyces fermentati tolerated the maximal temperature for growth, possessed the highest cellobiase activity, and offered the possibility of genetic manipulation, although neither of them proved to be a good producer of ethanol. Intergeneric hybrids of Saccharomyces cerevisiae and Z. fermentati were obtained after protoplast fusion. They were selected as prototrophic strains, after isolation of auxotrophic mutants from Z. fermentati and fusion with an S. cerevisiae strain which was also auxotrophic. The hybrids, which appeared at a frequency of 2 X 10(-7), presented characteristics of both parents, such as resistance to certain drugs and the ability to grow with either cellobiose or lactic acid as the sole carbon source; they were very stable, even under nonselective conditions. These hybrids may have important industrial applications as good fermenting strains.  相似文献   

19.
J Lou  K A Dawson    H J Strobel 《Applied microbiology》1996,62(5):1770-1773
In bacteria, cellobiose and cellodextrins are usually degraded by either hydrolytic or phosphorolytic cleavage. Prevotella ruminicola B(1)4 is a noncellulolytic ruminal bacterium which has the ability to utilize the products of cellulose degradation. In this organism, cellobiose hydrolytic cleavage activity was threefold greater than phosphorolytic cleavage activity (113 versus 34 nmol/min/mg of protein), as measured by an enzymatic assay. Cellobiose phosphorylase activity (measured as the release of P(i)) was found in cellobiose-, mannose-, xylose-, lactose-, and cellodextrin-grown cells (> 92 nmol of P(i)/min/mg of protein), but the activity was reduced by more than 74% for cells grown on fructose, L-arabinose, sucrose, maltose, or glucose. A small amount of cellodextrin phosphorylase activity (19 nmol/min/mg of protein) was also detected, and both phosphorylase activities were located in the cytoplasm. Degradation involving phosphorolytic cleavage conserves more metabolic energy than simple hydrolysis, and such degradation is consistent with substrate-limiting conditions such as those often found in the rumen.  相似文献   

20.
Growing cultures of Fibrobacter succinogenes S85 digested cellulose at a rapid rate, but nongrowing cells and cell extracts did not have detectable crystalline cellulase activity. Cells that had been growing exponentially on cellobiose initiated cellulose digestion and succinate production immediately, and cellulose-dependent succinate production could be used as an index of enzyme activity against crystalline cellulose. Cells incubated with cellulose never produced detectable cellobiose, and cells that were preincubated for a short time with thiocellobiose lost their ability to digest cellulose (competitive inhibition [K(infi)] of only 0.2 mg/ml or 0.56 mM). Based on these results, the crystalline cellulases of F. succinogenes were very sensitive to feedback inhibition. Different cellulose sources bound different amounts of Congo red, and the binding capacity was HCl-regenerated cellulose > ball-milled cellulose > Sigmacel > Avicel > filter paper. Congo red binding capacity was highly correlated with the maximum rates of metabolism of cellulose digestion and inversely related to K(infm). Congo red (250 (mu)g/ml) did not inhibit the growth of F. succinogenes S85 on cellobiose, but this concentration of Congo red inhibited the rate of ball-milled cellulose digestion. A Lineweaver-Burk plot of ball-milled cellulose digestion rate versus the amount of cellulose indicated that Congo red was a competitive inhibitor of cellulose digestion (K(infi) was 250 (mu)g/ml).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号