首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
施华中 《植物学报》1998,15(3):6-10
以花粉作为外源DNA的媒介,获得转基因植株是有潜力的遗传转化体系。它可避免离体培养过程中的遗传变异和转基因植株的嵌合现象。本文介绍以花粉为外源基因的载体,利用植物有性生殖过程和小孢子胚胎发生两条途径进行植物遗传转化的研究进展。  相似文献   

2.
Advances in Pollen Mediated Genetic Transformation   总被引:4,自引:0,他引:4  
植物遗传转化技术是植物科学基础理论与应用研究的有力武器,已成为植物遗传改良的重要途径之一。但是、目前遗传转化所采用的受体系统,大都需要体外培养和植株再生过程,才能获得转基因植株。其中、基因型限制和遗传变异是该技术不可逾越的两大障碍。花粉管通道法可省去转化体的离体培养,不过、多数植物受花器结构的限制而难以经花柱注射DNA,只能向子房注射,并不是真正的“花粉管通道”。又由于此法外源基因的导入发生在授粉之后,因此该方法亦不属于花粉遗传转化。利用小孢子胚胎发生体系进行遗传转化与利用花粉作为外源DNA的媒介,继而、通过授粉受精获得转基因种子,是目前花粉遗传转化的两个重要方面和活跃的研究方向。前者仍需要离体再生系统,后者则可以利用植物自身的再生机制,本文称之为花粉介导法(polen-mediatedtransformation)。该方法通过自然的胚胎发育过程获得转基因子代,避免了组织培养过程中的遗传变异和转基因植株的嵌合现象。可望成为简便快速的植物遗传转化体系。目前对花粉介导的遗传转化进行专门评述的文献较少,本文对该领域的研究分三个层次进行了综述。一、外源基因转化方法小孢子或由小孢子形成的胚状体是很有潜力的遗传转化受体  相似文献   

3.
花粉作为外源基因媒介的植物遗传转化   总被引:7,自引:0,他引:7  
以花粉作为2外源DNA的媒介,获得转基因植株是有潜力的遗传转化体系,它可避免离体培养过程中的遗传变异和转基因植株的嵌合现象。本文介绍以花粉为外源基因的载体,利用植物有性生殖过程和小孢子胚胎发生两条途径进行植物遗传转化的研究进展。  相似文献   

4.
基因枪在水稻遗传转化中的应用及其转化技术的优化   总被引:3,自引:0,他引:3  
赵彬 《生物技术》1998,8(1):4-6
1983年Zambryski等人用根瘤农杆菌介导法进行烟草基因转移,获得了世界上首例转基因植株.随后,应用DNA直接导入技术如电击法(electroporation)和PEG介导法(PEG—mediated)成功地获得了转基因水稻植株.近年来,随着基因枪技术的建立和发展,水稻遗传转化成功的报道逐年增多.目前基因枪技术在植物遗传转化中的应用超过了根瘤农杆菌介导和其它转化方法的应用.这是因为基因枪转化技术不受植物种类的限制,不需要以原生质体作为转化的受体,可以将外源基因直接导入细胞、组织或器官,因而克服了根瘤农杆菌  相似文献   

5.
组织培养和用于研究植物发育的转基因植物   总被引:1,自引:0,他引:1  
一、前言产生转基因植物的关键在于所分离的植物细胞或外植体在培养过程中具有的生长及分裂能力,以及在适当条件下再生成完整植株的能力。一旦细胞吸取了外源DNA,只要该外源DNA稳定地保存于细胞中,那么转基因植物就能够得到再生。在过去的几年中,植物转化方面的进展已经为研究植物DNA序列的功能提供了多种可能性。由于植物转化方便可行,短的生活周期,泛义遗传学,以及可产生大量转基因植物个体的简单性均证明在努力探讨基因表达调控的分子基础方面,植物将会起到非常重要的作用。全能性  相似文献   

6.
玉米丛生芽体系的建立及抗除草剂转基因植株再生   总被引:20,自引:0,他引:20  
以玉米优良自交系为材料, 利用芽尖分生组织诱导胚状体和丛生芽, 建立起一种快速有效且取材不受季节限制的玉米丛生芽诱导体系. 以丛生芽组织块为受体, 用基因枪将从拟南芥(Arabidopsis thaliana)突变体中克隆的抗除草剂基因als (acetolac-tate synthase)导入玉米细胞, 经除草剂chlorsulfuron筛选得到抗性组织块并再生植株. PCR检测和Southern杂交表明, 部分再生植株转入了als 基因. 除草剂喷施试验表明, 转基因植株及其子一代具有良好的抗除草剂特性. 建立了一种新的受基因型限制小的玉米离体培养及转基因受体系统, 能快速有效地获得大批转基因植株.  相似文献   

7.
柑桔基因转化新方法的研究   总被引:14,自引:0,他引:14  
尽管应用基因转化进行果树品种改良已日益引起重视,但是在受体的应用和转化方法上还存在着诸多困难。一方面,大多数果树尚不能从细胞或原生质体再生成完整植株,即使少数已可以再生的果树树种,也并非众多品种都能再生成功,而是存在着明显的基因型差异性。同时,还有再生植株童期过长的问题。另一方面,目前在植物基因转化中常用的两种方法即DNA直接吸入法和农杆菌介导的载体法,若以细胞或原生质体为受体,不仅存在再生困难的问题,而且再生过程费时长;若以叶盘、愈伤组织或珠心组织等为受体,既需要在转化后除去农杆菌,又需要排除转化与非转化组织的嵌合性。这些因素都大大地限制了基因转化在果树中的应用。因此,根据多年生果树的生长特点,建立一种适用的基因转化技术已成当务之急。本文采用农杆菌介导的附体腋芽转化-离体扩繁鉴定的方法,成功地将GUS基因转入沙田柚。结果证明这是一种简单、快速、高效的基因转化方法。  相似文献   

8.
目的:研究菊苣再生植株的遗传稳定性.方法:以菊苣叶片为外植体,经第一代和第二代体细胞再生获得再生植株,分别对再生植株提取DNA,从12个引物中筛选了2个多态性好的引物,对第一代和第二代体细胞再生植株进行RAPD标记.结果:菊苣第一代体细胞无性系没有发生DNA多态性变异,第二代体细胞无性系在分子水平发生了1条DNA多态性变异.结论:RAPD分子标记方法可以鉴定菊苣组织培养过程中的遗传稳定性和遗传变异,为菊苣快繁和遗传转化奠定了基础.  相似文献   

9.
转基因白桦的遗传变异分析   总被引:6,自引:0,他引:6  
应用细胞学方法分析了由农杆菌介导法获得的转基因白桦的细胞学变异情况,结果表明转基因白桦的染色体变异频率为78.5%,远远高于非转基因白桦的变异频率(15.3%),且变异以非整倍体占多数。同时用RAPD标记方法研究了转基因白桦在DNA水平的变异情况,结果显示DNA多态性指数为31.67,并与其它转基因植物的变异情况作了比较研究。最后分析、讨论了产生变异的原因:(1)组织培养过程中产生突变;(2)外源基因的整合及重排时宿主基因组的插入位点及相邻基因转录表达的干扰;(3)应用抗生素和除草剂等筛选转基因植株时促进了转基因植株的变异程度。并提出减少转基因植物体细胞克隆变异的建议。  相似文献   

10.
植物LRR型类受体蛋白激酶在植物生命活动中发挥着重要作用。前期研究发现, 大豆(Glycine max)LRR型类受体蛋白激酶基因GmSARK可能参与调控大豆叶片的衰老过程。利用CaMV 35S启动子驱动组成型过表达GmSARK基因可导致转基因植株出现致死表型, 据此构建了可诱导型启动子GVG驱动GmSARK基因过表达的双元表达载体, 转化野生型拟南芥(Arabidopsis thaliana)并获得了多株转基因植株。研究结果表明, 外源施加诱导物地塞米松可引起GmSARK基因在转基因植株中过表达, 并导致转基因植株出现叶片变黄下卷和生长受抑制等表型; 外源细胞分裂素处理可以抑制GmSARK的表达, 但是不能逆转GmSARK过表达所引起的上述变化。  相似文献   

11.
Referee: Dr. Paul Hooykass, Institut of Molecular Plant Sciences, Leiden University, Clusius Laboratory, Wassenaarseweg 64, 2333, Al Leiden, Netherlands Recent reports suggest the transfer of superfluous DNA sequences to plant genomes during transformation processes. This review investigates the evidence from the published literature for the prevalence of this phenomenon and highlights methods to limit or prevent DNA transfer and subsequent potentially detrimental evolutionary consequences. Evidence for superfluous foreign DNA transfer using both Agrobacterium-mediated transformation and direct DNA transfer methods such as microprojectile bombardment and PEG-mediated transformation of protoplasts is reported. In the case of Agrobacterium-mediated transformation, the lack of information on the integration of sequences from outside of the T-DNA borders has been due to the general belief by researchers that T-DNA processing is precise. This assumption was based on analysis of T-DNA in tumors and as a result the majority of T-DNA integration events have been identified exclusively using DNA probes, which are homologous only to DNA from within the T-DNA borders. Where direct gene transfer protocols are employed, any part of the transforming plasmid and indeed accompanying carrier DNA may become integrated into the plant genome. The main body of evidence proving that superfluous vector DNA sequences are present in plant genomes transformed using direct transfer methods is confined to the identification of plasmid concatamers integrated into plant genomes. The limited amount of recorded evidence pertaining to superfluous vector DNA integration in transgenic plants and transformed tissues makes it impossible to draw definitive conclusions as to the factors involved in promoting this phenomenon. However, there are methods available for removing superfluous sequences from transgenic plants. These have been developed for the removal of selectable marker genes, whose presence in transgenic plants has been a source of much controversy, but can equally be applied to other DNA sequences. Suggestions have been made in the review that might limit or prevent the integration of superfluous vector sequences during transformation procedures; however, these are not proven and further research is required.  相似文献   

12.
A number of different methods, involving direct DNA delivery are now available for plant transformation. Here we review the most recently developed technique which involves the mixing of silicon carbide whiskers with plant cells and plasmid DNA. Fertile transgenic plants have now been produced using whisker-mediated transformation, and this method can now be considered as a simple, inexpensive alternative for plant transformation. A brief review on transformation of animal cells andChlamydomonas using whiskers technology is also included.  相似文献   

13.
A major limitation of crop biotechnology and breeding is the lack of efficient molecular technologies for precise engineering of target genomic loci. While transformation procedures have become routine for a growing number of plant species, the random introduction of complex transgenenic DNA into the plant genome by current methods generates unpredictable effects on both transgene and homologous native gene expression. The risk of transgene transfer into related plant species and consumers is another concern associated with the conventional transformation technologies. Various approaches to avoid or eliminate undesirable transgenes, most notably selectable marker genes used in plant transformation, have recently been developed. These approaches include cotransformation with two independent T-DNAs or plasmid DNAs followed by their subsequent segregation, transposon-mediated DNA elimination, and most recently, attempts to replace bacterial T-DNA borders and selectable marker genes with functional equivalents of plant origin. The use of site-specific recombination to remove undesired DNA from the plant genome and concomitantly, via excision-mediated DNA rearrangement, switch-activate by choice transgenes of agronomical, food or feed quality traits provides a versatile “transgene maintenance and control” strategy that can significantly contribute to the transfer of transgenic laboratory developments into farming practice. This review focuses on recent reports demonstrating the elimination of undesirable transgenes (essentially selectable marker and recombinase genes) from the plant genome and concomitant activation of a silent transgene (e.g., a reporter gene) mediated by different site-specific recombinases driven by constitutive or chemically, environmentally or developmentally regulated promoters. These reports indicate major progress in excision strategies which extends application of the technology from annual, sexually propagated plants towards perennial, woody and vegetatively propagated plants. Current trends and future prospects for optimization of excision-activation machinery and its practical implementation for the generation of transgenic plants and plant products free of undesired genes are discussed.  相似文献   

14.
Successful transformation of plant cells has been obtained utilizing vectors and DNA delivery methods derived from the plant pathogen, Agrobacterium tumefaciens. This soil bacterium is capable of transferring a DNA segment (T‐DNA), located between specific nucleotide border sequences, from its large tumor inducing (Ti) plasmid into the nuclear DNA of infected plant cells. The exploitation of the Agrobacterium/Ti plasmid system for plant cell transformation has been facilitated by (1) the construction of modified Agrobacterium strains in which the genes responsible for pathogenicity have been deleted; (2) the design of intermediate vectors containing selectable drug markers for introducing foreign genes into the Ti plasmid and subsequently into plant cells; and (3) the development of efficient in vitro methods for transforming plant cells and tissues with engineered Agrobacterium strains. These modifications have led to the development of a simple, efficient, and reproducible transformation system from which morphologically normal transformed plants can be readily regenerated. The foreign genes are stably maintained and expressed in the resulting plants and are inherited by progeny as typical Mendelian traits. The availability of transformation systems has already facilitated numerous studies on gene expression and regulation in plants and should eventually allow for the modification of various crop species in an agronomically significant manner. The needs and possibilities for the development of alternate vectors and transformation procedures will be discussed.  相似文献   

15.
Retrofitting YACs for direct DNA transfer into plant cells   总被引:3,自引:0,他引:3  
The utility of plant YAC libraries prepared in conventional YAC vectors would be dramatically increased if these YACs could be used directly for plant transformation. A pair of vectors that allow clones from YAC libraries to be modified (retrofitted) for plant transformation by direct DNA transfer methods, such as particle bombardment or electroporation, has been developed. Modification of the YAC is achieved in two sequential yeast transformation steps by taking advantage of the homologous recombination system in yeast. Using this approach, two plant-selectable marker genes and DNA sequence elements required for copy number amplification in yeast can be introduced into YACs present in yeast strain AB1380. The utility of these vectors is demonstrated by retrofitting YACs that contain inserts ranging in size from 80 to 700 kb. The 6- to 12-fold increase in copy number of these modified YACs facilitates the isolation of YAC DNA for direct DNA transformation methods. Retrofitted YACs were used for particle bombardment to examine the efficiency with which their large DNA inserts are transferred into plant cells. The availability of these retrofitting vectors should facilitate the transfer of YAC DNA inserts into plant cells and thus help bridge the gap between existing mapping techniques and plant transformation procedures.  相似文献   

16.
Advances in selectable marker genes for plant transformation   总被引:1,自引:0,他引:1  
Plant transformation systems for creating transgenics require separate process for introducing cloned DNA into living plant cells. Identification or selection of those cells that have integrated DNA into appropriate plant genome is a vital step to regenerate fully developed plants from the transformed cells. Selectable marker genes are pivotal for the development of plant transformation technologies because marker genes allow researchers to identify or isolate the cells that are expressing the cloned DNA, to monitor and select the transformed progeny. As only a very small portion of cells are transformed in most experiments, the chances of recovering transgenic lines without selection are usually low. Since the selectable marker gene is expected to function in a range of cell types it is usually constructed as a chimeric gene using regulatory sequences that ensure constitutive expression throughout the plant. Advent of recombinant DNA technology and progress in plant molecular biology had led to a desire to introduce several genes into single transgenic plant line, necessitating the development of various types of selectable markers. This review article describes the developments made in the recent past on plant transformation systems using different selection methods adding a note on their importance as marker genes in transgenic crop plants.  相似文献   

17.
Summary Current methods for creating transgenic varieties are labor and time intensive, comprised of the generation of hundreds of plants with random DNA insertions, screening for the few individuals with appropriate transgene expression and simple integration structure, and followed by a lengthy breeding process to introgress the engineered trait into cultivated varieties. Various modifications of existing methods have been proposed to speed up the different steps involved in plant transformation, as well as a few add-on technologies that seek to address issues related to biosafety or intellectual property. The problem with an assortment of independently developed improvements is that they do not integrate seamlessly into a single transformation system. This paper presents an integrated strategy for plant transformation, where the introduced DNA will be inserted precisely into the genome, the transgenic locus will be introgressed rapidly into field varieties, the extraneous transgenic DNA will be removed, the transgenic plants will be molecularly tagged, and the transgenic locus may be excised from pollen and/or seed.  相似文献   

18.
In relation to the question which DNA form (single- or double-stranded) is transferred by Agrobacterium tumefaciens to plant cells, we studied the behaviour of single-stranded DNA, as compared to double-stranded DNA, when it is introduced into plant protoplasts by electroporation. To this end, we cloned a construct with a plant NPTII gene as well as a CAT gene in the M13 vectors tg130 and tg131. We found that both complementary single-stranded molecules gave rise to substantial CAT activity in plant protoplasts, suggesting that single-stranded DNA is converted into double-stranded DNA by the plant cell replication machinery. Unexpectedly, we found that single-stranded DNA leads to a 3–10 fold higher frequency of stable transformation (selection for kanamycin resistance) than double-stranded DNA. These results indicate that the use of single-stranded DNA might be considered in experiments in which optimal transformation frequencies are needed, e.g. with protoplasts form recalcitrant plant species.Abbreviations ss single-stranded - ds double-stranded - CAT chloramphenicol acetyl transferase - NPTII neomycin phosphotransferase II - RT room temperature  相似文献   

19.
利用基因工程技术手段研究基因功能过程中,构建基因表达载体处于转基因植物的主导地位,采用合适的构建方法会使实验效果事半功倍。植物基因表达载体的构建方法除了传统构建法、Gateway技术、三段T-DNA法、一步克隆法等,还有近年来出现的几种新型的载体构建方法:基于竞争性连接原理快速构建小片段基因表达载体;MicroRNA前体PCR置换法适用于构建小分子RNA表达载体;重组融合PCR法特别适用于插入片段中含有较多限制性酶切位点的载体构建;利用In-Fusion试剂盒可以将任何目的片段插入一个线性化载体的某个区域;构建多片段复杂载体可采用不依赖序列和连接的克隆方法(Sequence and ligation-independent cloning,SLIC)法;Gibson等温拼接法;Golden Gate拼接法。本文将在总结分析前人工作的基础上,结合自己工作的体会和经验分析这7种新方法的特点,期望通过这几种新的方法给植物基因工程表达载体的构建提供新的思路。  相似文献   

20.
Plant transformation has its roots in the research on Agrobacterium that was being undertaken in the early 1980s. The last two decades have seen significant developments in plant transformation technology, such that a large number of transgenic crop plants have now been released for commercial production. Advances in the technology have been due to development of a range of Agrobacterium-mediated and direct DNA delivery techniques, along with appropriate tissue culture techniques for regenerating whole plants from plant cells or tissues in a large number of species. In addition, parallel developments in molecular biology have greatly extended the range of investigations to which plant transformation technology can be applied. Research in plant transformation is concentrating now not so much on the introduction of DNA into plant cells, but rather more on the problems associated with stable integration and reliable expression of the DNA once it has been integrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号