首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work presents a predator-prey Lotka-Volterra model in a two patch environment. The model is a set of four ordinary differential equations that govern the prey and predator population densities on each patch. Predators disperse with constant migration rates, while prey dispersal is predator density-dependent. When the predator density is large, the dispersal of prey is more likely to occur. We assume that prey and predator dispersal is faster than the local predator-prey interaction on each patch. Thus, we take advantage of two time scales in order to reduce the complete model to a system of two equations governing the total prey and predator densities. The stability analysis of the aggregated model shows that a unique strictly positive equilibrium exists. This equilibrium may be stable or unstable. A Hopf bifurcation may occur, leading the equilibrium to be a centre. If the two patches are similar, the predator density dependent dispersal of prey has a stabilizing effect on the predator-prey system.  相似文献   

2.
Predators often have type II functional responses and live in environments where their life history traits as well as those of their prey vary from patch to patch. To understand how spatial heterogeneity and predator handling times influence the coevolution of patch preferences and ecological stability, we perform an ecological and evolutionary analysis of a Nicholson-Bailey type model. We prove that coevolutionarily stable prey and searching predators prefer patches that in isolation support higher prey and searching predator densities, respectively. Using this fact, we determine how environmental variation and predator handling times influence the spatial patterns of patch preferences, population abundances and per-capita predation rates. In particular, long predator handling times are shown to result in the coevolution of predator and prey aggregation. An analytic expression characterizing ecological stability of the coevolved populations is derived. This expression implies that contrary to traditional theoretical expectations, predator handling time can stabilize predator-prey interactions through its coevolutionary influence on patch preferences. These results are shown to have important implications for classical biological control.  相似文献   

3.
I analyze the dynamics of predator and prey populations living in two patches. Within a patch the prey grow logistically and the predators have a Holling type II functional response. The two patches are coupled through predator migration. The system can be interpreted as a simple predator-prey metapopulation or as a spatially explicit predator-prey system. Asynchronous local dynamics are presumed by metapopulation theory. The main question I address is when synchronous and when asynchronous dynamics arise. Contrary to biological intuition, for very small migration rates the oscillations always synchronize. For intermediate migration rates the synchronous oscillations are unstable and I found periodic, quasi-periodic, and intermittently chaotic attractors with asynchronous dynamics. For large predator migration rates, attractors in the form of equilibria or limit cycles exist in which one of the patches contains no prey. The dynamical behavior of the system is described using bifurcation diagrams. The model shows that spatial predator-prey populations can be regulated through the interplay of local dynamics and migration.  相似文献   

4.
Spatial patterns in a discrete-time SIS patch model   总被引:1,自引:0,他引:1  
How do spatial heterogeneity, habitat connectivity, and different movement rates among subpopulations combine to influence the observed spatial patterns of an infectious disease? To find out, we formulated and analyzed a discrete-time SIS patch model. Patch differences in local disease transmission and recovery rates characterize whether patches are low-risk or high-risk, and these differences collectively determine whether the spatial domain, or habitat, is low-risk or high-risk. In low-risk habitats, the disease persists only when the mobility of infected individuals lies below some threshold value, but for high-risk habitats, the disease always persists. When the disease does persist, then there exists an endemic equilibrium (EE) which is unique and positive everywhere. This EE tends to a spatially inhomogeneous disease-free equilibrium (DFE) as the mobility of susceptible individuals tends to zero. The limiting DFE is nonempty on all low-risk patches and it is empty on at least one high-risk patch. Sufficient conditions for the limiting DFE to be empty on other high-risk patches are given in terms of disease transmission and recovery rates, habitat connectivity, and the infected movement rate. These conditions are also illustrated using numerical examples.  相似文献   

5.
In this article, we develop population game theory, a theory that combines the dynamics of animal behavior with population dynamics. In particular, we study interaction and distribution of two species in a two-patch environment assuming that individuals behave adaptively (i.e., they maximize Darwinian fitness). Either the two species are competing for resources or they are in a predator-prey relationship. Using some recent advances in evolutionary game theory, we extend the classical ideal free distribution (IFD) concept for single species to two interacting species. We study population dynamical consequences of two-species IFD by comparing two systems: one where individuals cannot migrate between habitats and one where migration is possible. For single species, predator-prey interactions, and competing species, we show that these two types of behavior lead to the same population equilibria and corresponding species spatial distributions, provided interspecific competition is patch independent. However, if differences between patches are such that competition is patch dependent, then our predictions strongly depend on whether animals can migrate or not. In particular, we show that when species are settled at their equilibrium population densities in both habitats in the environment where migration between habitats is blocked, then the corresponding species spatial distribution need not be an IFD. Thus, when species are given the opportunity to migrate, they will redistribute to reach an IFD (e.g., under which the two species can completely segregate), and this redistribution will also influence species population equilibrial densities. Alternatively, we also show that when two species are distributed according to the IFD, the corresponding population equilibrium can be unstable.  相似文献   

6.
刘志广 《生态学报》2018,38(8):2958-2964
建立了一个显式含有空间庇护所的两斑块Leslie-Gower捕食者-食饵系统。假设只有食饵种群在斑块间以常数迁移率迁移,且在每个斑块上食饵间的迁移比局部捕食者-食饵相互作用发生的时间尺度要快。利用两个时间尺度,可以构建用来描述所有斑块总的食饵和捕食者密度的综合系统。数学分析表明,在一定条件下,存在唯一的正平衡点,并且此平衡点全局稳定。进一步,捕食者的数量随着食饵庇护所数量增加而降低;在一定条件下,食饵的数量随着食饵庇护所数量增加先增加后降低,在足够强的庇护所强度下,两物种出现灭绝。对比以往研究,利用显式含有和隐含空间庇护所的数学模型所得结论不一致,这意味着在研究庇护所对捕食系统种群动态影响时,空间结构可能起着重要作用。  相似文献   

7.
The Lotka-Volterra predator-prey model with prey density dependence shows the final prey density to be independent of its vital rates. This result assumes the community to be well mixed so that encounters between predators and prey occur as a product of the landscape densities, yet empirical evidence suggests that over small spatial scales this may not be the normal pattern. Starting from an individual-based model with neighborhood interactions and movements, a deterministic approximation is derived, and the effect of local spatial structure on equilibrium densities is investigated. Incorporating local movements and local interactions has important consequences for the community dynamics. Now the final prey density is very much dependent on its birth, death, and movement rates and in ways that seem counterintuitive. Increasing prey fecundity or mobility and decreasing the coefficient of competition can all lead to decreases in the final density of prey if the predator is also relatively immobile. However, analysis of the deterministic approximation makes the mechanism for these results clear; each of these changes subtly alters the emergent spatial structure, leading to an increase in the predator-prey spatial covariance at short distances and hence to a higher predation pressure on the prey.  相似文献   

8.
Spatial and temporal heterogeneity are often described as important factors having a strong impact on biodiversity. The effect of heterogeneity is in most cases analyzed by the response of biotic interactions such as competition of predation. It may also modify intrinsic population properties such as growth rate. Most of the studies are theoretic since it is often difficult to manipulate spatial heterogeneity in practice. Despite the large number of studies dealing with this topics, it is still difficult to understand how the heterogeneity affects populations dynamics. On the basis of a very simple model, this paper aims to explicitly provide a simple mechanism which can explain why spatial heterogeneity may be a favorable factor for production. We consider a two patch model and a logistic growth is assumed on each patch. A general condition on the migration rates and the local subpopulation growth rates is provided under which the total carrying capacity is higher than the sum of the local carrying capacities, which is not intuitive. As we illustrate, this result is robust under stochastic perturbations.  相似文献   

9.
This article uses simple models to explore the impact of adaptive movement by consumers on the population dynamics of a consumer-resource metacommunity consisting of two identical patches. Consumer-resource interactions within a patch are described by the Rosenzweig-MacArthur predator-prey model, and these dynamics are assumed to be cyclic in the absence of movement. The per capita movement rate from one patch to the other is an increasing function of the difference between the per capita birth minus death rate in the destination patch and that in the currently occupied patch. Several variations on this model are considered. Results show that adaptive movement frequently creates anti-phase cycles in the two patches; these suppress the predator-prey cycle and lead to low temporal variation of the total population sizes of both species. Paradoxically, even when movement is very sensitive to the fitness difference between patches, perfect synchrony of patches is often much less likely than in comparable systems with random movement. Under these circumstances adaptive movement of consumers often generates differences in the average properties of the two patches. In addition, mean global densities and responses to global perturbations often differ greatly from similar systems with no movement or random movement.  相似文献   

10.
Many studies of metapopulation models assume that spatially extended populations occupy a network of identical habitat patches, each coupled to its nearest neighbouring patches by density-independent dispersal. Much previous work has focused on the temporal stability of spatially homogeneous equilibrium states of the metapopulation, and one of the main predictions of such models is that the stability of equilibrium states in the local patches in the absence of migration determines the stability of spatially homogeneous equilibrium states of the whole metapopulation when migration is added. Here, we present classes of examples in which deviations from the usual assumptions lead to different predictions. In particular, heterogeneity in local habitat quality in combination with long-range dispersal can induce a stable equilibrium for the metapopulation dynamics, even when within-patch processes would produce very complex behaviour in each patch in the absence of migration. Thus, when spatially homogeneous equilibria become unstable, the system can often shift to a different, spatially inhomogeneous steady state. This new global equilibrium is characterized by a standing spatial wave of population abundances. Such standing spatial waves can also be observed in metapopulations consisting of identical habitat patches, i.e. without heterogeneity in patch quality, provided that dispersal is density dependent. Spatial pattern formation after destabilization of spatially homogeneous equilibrium states is well known in reaction–diffusion systems and has been observed in various ecological models. However, these models typically require the presence of at least two species, e.g. a predator and a prey. Our results imply that stabilization through spatial pattern formation can also occur in single-species models. However, the opposite effect of destabilization can also occur: if dispersal is short range, and if there is heterogeneity in patch quality, then the metapopulation dynamics can be chaotic despite the patches having stable equilibrium dynamics when isolated. We conclude that more general metapopulation models than those commonly studied are necessary to fully understand how spatial structure can affect spatial and temporal variation in population abundance.  相似文献   

11.
We consider a predator-prey model in a two-patch environment and assume that migration between patches is faster than prey growth, predator mortality and predator-prey interactions. Prey (resp. predator) migration rates are considered to be predator (resp. prey) density-dependent. Prey leave a patch at a migration rate proportional to the local predator density. Predators leave a patch at a migration rate inversely proportional to local prey population density. Taking advantage of the two different time scales, we use aggregation methods to obtain a reduced (aggregated) model governing the total prey and predator densities. First, we show that for a large class of density-dependent migration rules for predators and prey there exists a unique and stable equilibrium for migration. Second, a numerical bifurcation analysis is presented. We show that bifurcation diagrams obtained from the complete and aggregated models are consistent with each other for reasonable values of the ratio between the two time scales, fast for migration and slow for local demography. Our results show that, under some particular conditions, the density dependence of migrations can generate a limit cycle. Also a co-dim two Bautin bifurcation point is observed in some range of migration parameters and this implies that bistability of an equilibrium and limit cycle is possible.  相似文献   

12.
We consider a predator–prey model system for spatially distributed species over patches. Each predator species has a unique preferred patch (shelter and reproduction site) and travel for chasing prey. Its individuals are split into resident from the preferred patch and travelers. Further there is at most one resident predator species per patch. Depending on the availability of local anthropized resources not related to local prey on the preferred patch, one distinguishes between well-fed and starving predators. We assume prey species do not disperse at the predator scale.In this study we are interested in the number of persistent stationary states for the resulting ordinary differential equations model system. There exists at most one persistent predator–prey stationary state when there is exactly one starving resident predators per patch provided all functional responses to predation are Lotka–Volterra like or when a single starving resident predators is available. Else multiple persistent predator–prey stationary state are likely to exist. A specific emphasis is put on toy-model systems with 2 or 3 patches. Slow–fast dynamical methodology is also used for locally asymptotically stable purposes.Numerical experiments suggest that several scalings may govern the dynamics at stabilization.  相似文献   

13.
We study the effects of density dependent migrations on the stability of a predator-prey model in a patchy environment which is composed with two sites connected by migration. The two patches are different. On the first patch, preys can find resource but can be captured by predators. The second patch is a refuge for the prey and thus predators do not have access to this patch. We assume a repulsive effect of predator on prey on the resource patch. Therefore, when the predator density is large on that patch, preys are more likely to leave it to return to the refuge. We consider two models. In the first model, preys leave the refuge to go to the resource patch at constant migration rates. In the second model, preys are assumed to be in competition for the resource and leave the refuge to the resource patch according to the prey density. We assume two different time scales, a fast time scale for migration and a slow time scale for population growth, mortality and predation. We take advantage of the two time scales to apply aggregation of variables methods and to obtain a reduced model governing the total prey and predator densities. In the case of the first model, we show that the repulsive effect of predator on prey has a stabilizing effect on the predator-prey community. In the case of the second model, we show that there exists a window for the prey proportion on the resource patch to ensure stability.  相似文献   

14.
Resource enrichment can potentially destabilize predator-prey dynamics. This phenomenon historically referred as the "paradox of enrichment" has mostly been explored in spatially homogenous environments. However, many predator-prey communities exchange organisms within spatially heterogeneous networks called metacommunities. This heterogeneity can result from uneven distribution of resources among communities and thus can lead to the spreading of local enrichment within metacommunities. Here, we adapted the original Rosenzweig-MacArthur predator-prey model, built to study the paradox of enrichment, to investigate the effect of regional enrichment and of its spatial distribution on predator-prey dynamics in metacommunities. We found that the potential for destabilization was depending on the connectivity among communities and the spatial distribution of enrichment. In one hand, we found that at low dispersal regional enrichment led to the destabilization of predator-prey dynamics. This destabilizing effect was more pronounced when the enrichment was uneven among communities. In the other hand, we found that high dispersal could stabilize the predator-prey dynamics when the enrichment was spatially heterogeneous. Our results illustrate that the destabilizing effect of enrichment can be dampened when the spatial scale of resource enrichment is lower than that of organismss movements (heterogeneous enrichment). From a conservation perspective, our results illustrate that spatial heterogeneity could decrease the regional extinction risk of species involved in specialized trophic interactions. From the perspective of biological control, our results show that the heterogeneous distribution of pest resource could favor or dampen outbreaks of pests and of their natural enemies, depending on the spatial scale of heterogeneity.  相似文献   

15.
相互作用的集合种群研究动态   总被引:1,自引:0,他引:1  
周淑荣  李金花  王刚 《生态科学》2005,24(4):289-294
在集合种群水平上,两个或更多物种可以生活在同一个斑块网络中而没有相互作用.但在很多情况下,种间的相互作用会影响种群的迁移率、灭绝率和侵占率,从而调节相应物种的集合种群动态.这方面的研究主要有集合种群水平上物种之间的竞争、捕食以及在没有任何环境异质性的条件下物种在空间上聚集分布的产生和维持等.综述了近年来关于集合种群水平上的竞争,捕食者和猎物系统以及捕食与复杂空间动态的最新研究成果.  相似文献   

16.
Understanding the distribution of individuals in space is a primary concern to ecologists and managers. With the advent of remote monitoring technology, we have been able to answer where individuals are but we often lack an understanding of why they are located in a particular place from a behavioral perspective. Increasingly, ecologists are becoming aware of the crucial role individual behavior may play in ecological processes. The movement of individuals within fragmented landscapes is no exception. We used a dynamic state variable model to explicitly account for the behavioral trade-off between acquiring forage and predation risk in a spatial context. We found that when individuals were able to become behaviorally unavailable for predation within a patch as a result of their energetic state, foraging strategy, or the effectiveness of anti-predator behaviors, they were able to mitigate the potential travel costs associated with the spatial configuration of patches to use riskier patches. However, when this was not possible, patch choice became an effective way of minimizing the risk of predation. Individuals appear to trade-off predation risk and the acquisition of forage in a hierarchical fashion depending on whether or not the spatial arrangement and context of patches constrained their anti-predator behavior. We suggest that a better understanding how patch selection and the behavioral trade-offs associated with predation risk occur at multiple scales may help bridge the gap between animal behavior and landscape ecology.  相似文献   

17.
We present a mathematical framework that combines extinction-colonization dynamics with the dynamics of patch succession. We draw an analogy between the epidemiological categorization of individuals (infected, susceptible, latent and resistant) and the patch structure of a spatially heterogeneous landscape (occupied-suitable, empty-suitable, occupied-unsuitable and empty-unsuitable). This approach allows one to consider life-history attributes that influence persistence in patchy environments (e.g., longevity, colonization ability) in concert with extrinsic processes (e.g., disturbances, succession) that lead to spatial heterogeneity in patch suitability. It also allows the incorporation of seed banks and other dormant life forms, thus broadening patch occupancy dynamics to include sink habitats. We use the model to investigate how equilibrium patch occupancy is influenced by four critical parameters: colonization rate, extinction rate, disturbance frequency and the rate of habitat succession. This analysis leads to general predictions about how the temporal scaling of patch succession and extinction-colonization dynamics influences long-term persistence. We apply the model to herbaceous, early-successional species that inhabit open patches created by periodic disturbances. We predict the minimum disturbance frequency required for viable management of such species in the Florida scrub ecosystem.  相似文献   

18.
The study of butterfly movements has focused on dispersal behaviour in the framework of population persistence in heterogeneous landscapes. The ecological significance of routine movements has received less attention. These movements may be influenced by structural attributes of habitat patches or may reflect the distribution of food, mates, host plants or ecological interactions. The relative influence of structural and functional factors on flight patterns is poorly understood, partly because butterfly movements are often described by simplified representations of actual trajectories. Using high-resolution GPS tracking we obtained accurate trajectories of routine movements of Plebejus argus in a heterogeneous natural landscape. Habitat quality in patches was ranked according to the abundance of host and nectar plants as well as the abundance of nests of its mutualistic ant Lasius niger. Movements were slow and winding in high quality habitats whereas faster, straighter flights were observed in poor habitats. At edges, butterflies often crossed without any exploratory behaviour towards patches of better quality, suggesting they may use cues to detect resources at some distance. Conversely, individuals usually stayed in the patch after exploring edges with other patches of lower quality. However, scanning also preceded exits towards clearly unsuitable habitat, compatible with transfers to distant high-quality patches. We conclude that patterns of movement in P. argus were explained by spatial heterogeneity defined by functional rather than structural criteria. We also show that inexpensive handheld GPS receivers allow depicting detailed flying trajectories in open flat terrain revealing complex behavioural patterns.  相似文献   

19.
Patch choice and population size   总被引:5,自引:0,他引:5  
The distribution of animals between feeding patches has been the subject of considerable theoretical and empirical investigation. When all animals are equal and fitness is well represented by intake rate, the ideal free distribution requires the animals to be distributed in such a way as to equalize intake rate in each feeding patch. We refer to this as the equal rates policy. This approach ignores the effect of stochasticity in the food supply on starvation. It also ignores predation. An alternative approach is based on the assumption that each animal tries to minimize its death rate. An optimal policy now involves making decisions about which patch to use on the basis of the current level of energy reserves. We investigate a simple model of population dynamics in which over-winter mortality is either derived from animals adopting the equal rates policy or the optimal state-dependent policy to decide between two feeding patches. We show that the state-dependent policy results in a larger equilibrium population size than the equal rates policy. This difference can be considerable when the foraging environment is very stochastic. Furthermore, the state-dependent policy may result in a viable equilibrium population when the equal rates policy does not. The equilibrium under the state-dependent policy may be less stable than that under the equal rates policy. We identify conditions under which the state-dependent policy results in approximately equal intake rates on the two feeding patches. Levels of mortality as a result of predation are investigated. We show that, under some circumstances, the proportion of mortality that is due to predation may decrease as the predation pressure increases.  相似文献   

20.
 Habitat degradation is the slow – and often subtle – deterioration in habitat quality that accompanies human activities through increases in road density, pesticide use, hunting pressure, etc. Such degradation is of particular concern in fragmented habitats where economic or jurisdictional boundaries rather than ecological ones determine the level of exploitation adjoining habitat patches endure. To examine the consequences habitat degradation might have on species interactions, we posited a patch of pristine habitat surrounded by “matrix” habitat whose degradation level was variable. Using a coupled pair of diffusive Lotka–Volterra competition equations with Robin (mixed) boundary conditions, we modeled the dynamics of two competing species inhabiting the pristine patch and incorporated matrix degradation through a tunable “hostility” parameter representing species’ mortality rates in the matrix. We found that the numerical range of competition coefficients over which one species is the competitive dominant and the other inferior may grow or shrink as matrix quality deteriorates. In some cases, degradation of the exterior habitat would bring about a complete competitive reversal inside the preserve. This result, wherein a formerly inferior species supplants a formerly dominant one – even inside the “protected” remnant patch itself – has policy implications for both nature reserve design and management of human activities outside park boundaries. Received: 30 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号