首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In most shallow water marine systems, fluid movements vary on scales that may influence local community dynamics both directly, through changes in the abundance of species, and indirectly, by modifying important behaviors of organisms. We examined how differences in current speed affect the outcome of predator-prey interactions for two species of marine benthic predators (knobbed whelks, Busycon carica, and blue crabs, Callinectes sapidus) foraging on two common prey species (bay scallops, Argopecten irradians, and hard clams, Mercenaria mercenaria). The predators differ in their foraging strategies and prey in their potential escape responses. Predation by blue crabs, highly mobile predators/scavengers that rely upon chemical odors transported in the water column to locate prey, could be strongly affected by changes in current speed and turbulent mixing because their foraging strategy relies on a high degree of spatial integration of prey odor plumes. Whelks, slow moving, predatory gastropods that often forage with their bodies buried in the sediment, may be less susceptible to flow-induced distortion of prey odor plumes because their sluggish movements result in a high degree of temporal integration of prey odors. Bay scallops, relatively mobile bivalves capable of rapid short-distance swimming burst, and hard clams, sedentary bivalves, have been shown to respond to varying degrees to predator odors that are dispersed in the water column. Flow regime for the predator-prey experiments was manipulated in situ using large channels. Predation by blue crabs on both juvenile hard clams and bay scallops decreased with increases in water flow (0-12 vs. 0-30 cm s−1). Whelk predation on bay scallops increased with increases in water flow, whereas predation by whelks on hard clams did not differ between flow regimes. For blue crabs movement decreased at periods of high water flow. Because blue crabs locate prey through chemolocation of water-borne cues, which are diluted rapidly at higher flows, decreases in foraging may result from the inability to successfully detect prey at enhanced flows. Differences in predation by whelks could not be explained by a similar mechanism. Visual observations of foraging whelks revealed no differences in whelk behavior between the two flow regimes. The pattern of higher whelk predation on scallops at enhanced flow is likely to be related to a flow-inhibiting ability of scallops to detect predator approach. Thus, flow enhancement interferes with three of the predator-prey systems but the effect on predator success depends on whether the predator or prey is most affected.  相似文献   

2.
The diets of predators should reflect interactions between their behavioural and anatomical constraints and the availability and accessibility of prey, although feeding preferences may also reflect adaptation to locally abundant prey, particularly in closed populations. On the south‐east coast of Australia, the whelk Haustrum vinosum (Lamarck, 1822) and its prey communities provide a model system in which to test the effect of variation in prey availability on diet and dietary preferences. Haustrum vinosum is a direct developing species, forming effectively closed populations, with the potential for local adaptation at local and regional scales. Here we show that populations of whelks east and west of a biogeographical barrier encounter different prey assemblages, and have different feeding patterns and apparent prey preferences. We then use a prey choice experiment to test for evidence that H. vinosum from three populations west of the barrier display an inherent preference for its most frequently encountered western prey species, the mussel Brachidontes rostratus (Dunker, 1857), over a novel prey, the barnacle Tesseropora rosea (Krauss, 1848). We detected no prey preference within any population, suggesting past association with B. rostratus did not influence prey selection. Our data support the hypothesis that predators with limited dispersal and high population differentiation are able to maintain flexible generalist foraging patterns, even when they encounter novel prey. © 2013 The Linnean Society of London  相似文献   

3.
1. Feeding behaviour of generalist and specialist predators is determined by a variety of trophic adaptations. Specialised prey‐capture adaptations allow specialists to catch relatively large prey on a regular basis. As a result, specialists might be adapted to exploit each item of prey more thoroughly than do generalists. 2. It was expected that obligatory specialist cursorial spiders would feed less frequently than generalists but for a longer time and, thus, that their foraging pause would be longer. First, the feeding frequencies of three generalist spider species (Cybaeodamus taim, Harpactea hombergi, Hersiliola sternbergsi) were compared with those three phylogenetically related specialist species: myrmecophagous Zodarion rubidum, and araneophagous Nops aff. variabilis and Palpimanus orientalis. 3. Generalists captured more prey, exploited each item of prey for a significantly shorter time, and had a shorter foraging pause than was the case for specialists. Generalists also gained significantly less relative amount of prey mass than did specialists. 4. Second, the study compared the prey DNA degradation rate in the gut of generalists and specialists by means of PCR. The degradation rate was not significantly different between specialists and generalists: the detectability half‐life was estimated to exist for 14.3 days after feeding. 5. This study shows that the feeding strategies of cursorial generalist and obligatory specialist spiders are different. Obligatory specialists have evolved a feeding strategy that is based on thorough exploitation of a few large prey, whereas generalists have evolved a strategy that is based on short exploitation of multiple small items of prey.  相似文献   

4.
SUMMARY 1. Exotic zebra mussels, Dreissena polymorpha, occur in southern U.S. waterways in high densities, but little is known about the interaction between native fish predators and zebra mussels. Previous studies have suggested that exotic zebra mussels are low profitability prey items and native vertebrate predators are unlikely to reduce zebra mussel densities. We tested these hypotheses by observing prey use of fishes, determining energy content of primary prey species of fishes, and conducting predator exclusion experiments in Lake Dardanelle, Arkansas. 2. Zebra mussels were the primary prey eaten by 52.9% of blue catfish, Ictalurus furcatus; 48.2% of freshwater drum, Aplodinotus grunniens; and 100% of adult redear sunfish, Lepomis microlophus. Blue catfish showed distinct seasonal prey shifts, feeding on zebra mussels in summer and shad, Dorosoma spp., during winter. Energy content (joules g−1) of blue catfish prey (threadfin shad, Dorosoma petenense; gizzard shad, D. cepedianum; zebra mussels; and asiatic clams, Corbicula fluminea) showed a significant species by season interaction, but shad were always significantly greater in energy content than bivalves examined as either ash-free dry mass or whole organism dry mass. Fish predators significantly reduced densities of large zebra mussels (>5 mm length) colonising clay tiles in the summers of 1997 and 1998, but predation effects on small zebra mussels (≤5 mm length) were less clear. 3. Freshwater drum and redear sunfish process bivalve prey by crushing shells and obtain low amounts of higher-energy food (only the flesh), whereas blue catfish lack a shell-crushing apparatus and ingest large amounts of low-energy food per unit time (bivalves with their shells). Blue catfish appeared to select the abundant zebra mussel over the more energetically rich shad during summer, then shifted to shad during winter when shad experienced temperature-dependent stress and mortality. Native fish predators can suppress adult zebra mussel colonisation, but are ultimately unlikely to limit population density because of zebra mussel reproductive potential.  相似文献   

5.
We report on the effects of previous foraging experience on prey-selection by the bivalve feeding polychaete Halla okudai, including whether there was evidence of frequency-dependent predation. Three separate batches of H. okudai were maintained for 30 days on clams, mussels, or oysters, before being offered a choice among these three prey. Initially individuals from all three treatments consumed more clams than mussels, and no oysters. As the number of clams was depleted the polychaetes shifted their diet to include a greater proportion of mussels, but even after 20 days oysters were only eaten by polychaetes that had been previously acclimated to them. Nevertheless, polychaetes from each treatment inspected significantly more of the prey species to which they had initially been acclimated, suggesting that previous experience may increase the likelihood of certain prey being detected. When individuals of H. okudai were repeatedly offered the same prey species, handling time did not decrease (and therefore prey profitability did not increase) with experience, which may be because H. okudai paralyses its prey with toxic mucus. Since repeated experience of the same prey species gives no advantage in terms of reduced handling time, we suggest this may be why this species does not show frequency-dependent prey-selection.  相似文献   

6.
If generalist insect predators are a selective force contributing to patterns of feeding specialization by insect herbivores, then predators should be deterred from eating allelochemical-fed prey. The attack and feeding behaviors of naive predators (Podisus maculiventris stinkbugs) reared on control caterpillars (Manduca sexta) fed plain diet were compared to experienced predators reared on caterpillars fed tomato allelochemicals. Tomatine-fed prey were found more quickly by both naive and tomatine-experienced predators, and chlorogenic acid-experienced predators were more stimulated to begin searching for prey. However, experienced predators were less likely to attack both chlorogenic acidfed and tomatine-fed caterpillars than were naive predators. These results indicate that allelochemical-fed prey were easier for predators to locate, but allelochemical-containing prey often deterred predation by experienced predtors.  相似文献   

7.
A case of local feeding specialization in the European badger (Meles meles), a carnivore species with morphological, physiological and behavioural traits proper to a trophic generalist, is described. For the first time, we report a mammalian species, the European rabbit (Oryctolagus cuniculus), as the preferred prey of badgers. Secondary prey are consumed according to their availability, compensating for temporal fluctuations in the abundance of rabbit kittens. We discuss how both predator (little ability to hunt) and prey (profitability and predictability) features, may favour the observed specialization, as predicted by foraging theory. Badgers show a trend to specialize on different prey in different areas throughout the species range. It is suggested that changes in prey features can reverse the badger feeding strategy at the population level. Such dynamic behavioural responses make difficult to label badgers as generalists or specialists at the species level.  相似文献   

8.
A long‐standing debate concerns how functional responses are best described. Theory suggests that ratio dependence is consistent with many food web patterns left unexplained by the simplest prey‐dependent models. However, for logistical reasons, ratio dependence and predator dependence more generally have seen infrequent empirical evaluation and then only so in specialist predators, which are rare in nature. Here we develop an approach to simultaneously estimate the prey‐specific attack rates and predator‐specific interference (facilitation) rates of predators interacting with arbitrary numbers of prey and predator species in the field. We apply the approach to surveys and experiments involving two intertidal whelks and their full suite of potential prey. Our study provides strong evidence for predator dependence that is poorly described by the ratio dependent model over manipulated and natural ranges of species abundances. It also indicates how, for generalist predators, even the qualitative nature of predator dependence can be prey‐specific.  相似文献   

9.
We examined food utilization in a community of aphidophagous hoverfly larvae (Diptera: Syrphidae and Chamaemyiidae) in open lands in an urban habitat in central Japan for 3 years. The community consisted of 17 hoverfly species feeding on 20 aphid species occurring on 14 species of dominant herbaceous plants. In terms of larval prey preference, the dominant eight species of hoverfly were categorized into three groups: a polyphagous ‘generalist’ group consisting of four species,Episyrphus balteatus, Betasyrphus serarius, Syrphus vitripennis andSphaerophoria sp.; an oligophagous ‘specialist’ group consisting of three species,Metasyrphus hakiensis, Dideoides latus andParagus hemorrhous; andLeucopis puncticornis, which showed a preference for two aphid species on the plantTorilis scabra. The prey aphids of the second group have behavioral or morphological defense mechanisms that are effective for preventing attacks by generalist hoverflies; two prey aphids are aggressive toward generalist predators and the others are protected by ant-attendance. The specialist hoverflies seem to be adapted to overcome these defense mechanisms. The prey ranges overlapped little between the generalist and the specialist groups, while those within the generalist group overlapped greatly.  相似文献   

10.
Prey preference of top predators and energy flow across habitat boundaries are of fundamental importance for structure and function of aquatic and terrestrial ecosystems, as they may have strong effects on production, species diversity, and food‐web stability. In lakes, littoral and pelagic food‐web compartments are typically coupled and controlled by generalist fish top predators. However, the extent and determinants of such coupling remains a topical area of ecological research and is largely unknown in oligotrophic high‐latitude lakes. We analyzed food‐web structure and resource use by a generalist top predator, the Arctic charr Salvelinus alpinus (L.), in 17 oligotrophic subarctic lakes covering a marked gradient in size (0.5–1084 km2) and fish species richness (2–13 species). We expected top predators to shift from littoral to pelagic energy sources with increasing lake size, as the availability of pelagic prey resources and the competition for littoral prey are both likely to be higher in large lakes with multispecies fish communities. We also expected top predators to occupy a higher trophic position in lakes with greater fish species richness due to potential substitution of intermediate consumers (prey fish) and increased piscivory by top predators. Based on stable carbon and nitrogen isotope analyses, the mean reliance of Arctic charr on littoral energy sources showed a significant negative relationship with lake surface area, whereas the mean trophic position of Arctic charr, reflecting the lake food‐chain length, increased with fish species richness. These results were supported by stomach contents data demonstrating a shift of Arctic charr from an invertebrate‐dominated diet to piscivory on pelagic fish. Our study highlights that, because they determine the main energy source (littoral vs. pelagic) and the trophic position of generalist top predators, ecosystem size and fish diversity are particularly important factors influencing function and structure of food webs in high‐latitude lakes.  相似文献   

11.
1. To reduce the risk of being eaten by predators, prey alter their morphology or behaviour. This response can be tuned to the current danger if chemical or other cues associated with predators inform the prey about the risks involved. 2. It is well known that various prey species discriminate between chemical cues from predators that fed on conspecific prey and those that fed on heterospecific prey, and react stronger to the first. It is therefore expected that generalist predators are more successful in capturing a given prey species when they are contaminated with chemical cues from another prey species instead of cues from the same prey species. 3. Here, a generalist predatory mite was studied that feeds on thrips larvae as well as on whitefly eggs and crawlers. Mites were marked with cues (i.e. body fluids) of one of these two prey species and were subsequently offered thrips larva. 4. Predators marked with thrips cues killed significantly fewer thrips than predators marked with whitefly cues, even though the predator's tendency to attack was the same. In addition, more thrips larvae sought refuge in the presence of a predatory mite marked with thrips cues instead of whitefly cues. 5. This suggests that generalist predators may experience improved attack success when switching prey species.  相似文献   

12.
The skeleton is a complex arrangement of anatomical structures that covary to various degrees depending on both intrinsic and extrinsic factors. Among the Feliformia, many species are characterized by predator lifestyles providing a unique opportunity to investigate the impact of highly specialized hypercarnivorous diet on phenotypic integration and shape diversity. To do so, we compared the shape of the skull, mandible, humerus, and femur of species in relation to their feeding strategies (hypercarnivorous vs. generalist species) and prey preference (predators of small vs. large prey) using three-dimensional geometric morphometric techniques. Our results highlight different degrees of morphological integration in the Feliformia depending on the functional implication of the anatomical structure, with an overall higher covariation of structures in hypercarnivorous species. The skull and the forelimb are not integrated in generalist species, whereas they are integrated in hypercarnivores. These results can potentially be explained by the different feeding strategies of these species. Contrary to our expectations, hypercarnivores display a higher disparity for the skull than generalist species. This is probably due to the fact that a specialization toward high-meat diet could be achieved through various phenotypes. Finally, humeri and femora display shape variations depending on relative prey size preference. Large species feeding on large prey tend to have robust long bones due to higher biomechanical constraints.  相似文献   

13.
Prey organisms reduce predation risk by altering their behavior, morphology, or life history. Avoiding or deterring predators often incurs costs, such as reductions in growth or fecundity. Prey minimize costs by limiting predator avoidance or deterrence to situations that pose significant risk of injury or death, requiring them to gather information regarding the relative threat potential predators pose. Chemical cues are often used for risk evaluation, and we investigated morphological responses of oysters (Crassostrea virginica) to chemical cues from injured conspecifics, from heterospecifics, and from predatory blue crabs (Callinectes sapidus) reared on different diets. Previous studies found newly settled oysters reacted to crab predators by growing heavier, stronger shells, but that adult oysters did not. We exposed oysters at two size classes (newly settled oyster spat and juveniles ~2.0 cm) to predation risk cue treatments including predator or injured prey exudates and to seawater controls. Since both of the size classes tested can be eaten by blue crabs, we hypothesized that both would react to crab exudates by producing heavier, stronger shells. Oyster spat grew heavier shells that required significantly more force to break, an effective measure against predatory crabs, when exposed to chemical exudates from blue crabs as compared to controls. When exposed to chemical cues from injured conspecifics or from injured clams (Mercenaria mercenaria), a sympatric bivalve, shell mass and force were intermediate between predator treatments and controls, indicating that oysters react to injured prey cues but not as strongly as to cues released by predators. Juvenile oysters of ~ 2.0 cm did not significantly alter their shell morphology in any of the treatments. Thus, newly settled oysters can differentiate between predatory threats and adjust their responses accordingly, with the strongest responses being to exudates released by predators, but oysters of 2.0 cm and larger do not react morphologically to predatory threats.  相似文献   

14.
Although ecologists have speculated that sublethal predation can impact prey dynamics, consequences of these predator effects have seldom been experimentally tested. In soft‐sediment marine communities, fishes crop extended feeding siphons of buried clams, potentially causing clams to reduce their burial depth, thereby enhancing their susceptibility to excavating lethal predators. We simulated cropping of the confamilial clams, Protothaca staminea and Venerupis philippinarum, by removing the top 40% of siphons, which caused each species to burrow 33–50% shallower than conspecifics with intact siphons. To examine subsequent consequences of reduced burial depth, we exposed cropped and intact clams to natural levels of predation in the field. Because of a naturally longer siphon, Protothaca, even after cropping, remained at relatively safe burial depths. In contrast, siphon cropping nearly doubled the mortality rate of Venerupis. Thus, while sublethal predation facilitates lethal predation, this linkage depends on specific life history characteristics, even among ecologically similar species.  相似文献   

15.
Akihiko Mougi  Kinya Nishimura 《Oikos》2008,117(11):1732-1740
Destabilization of one predator–one prey systems with an increase in nutrient input has been viewed as a paradox. We report that enrichment can damp population cycles by a food‐web structure that balances inflexible and flexible interaction links (i.e. specialist and generalist predators). We modeled six predator–prey systems involving three or four species in which the predators practice optimal foraging based on prey profitability determined by handling time. In all models, the balance of interaction links simultaneously decreased the amplitude of population oscillations and increased the minimum density with increasing enrichment, leading to a potential theoretical resolution of the paradox of enrichment in non‐equilibrium dynamics. The stabilization mechanism was common to all of the models. Important previous studies on the stability of food webs have also demonstrated that a balance of interaction strengths stabilizes systems, suggesting a general rule of ecosystem stability.  相似文献   

16.
The use of plant-feeding predators for biological pest control has traditionally been neglected, mainly due to the risk of them feeding on crop plants and causing economically significant damage. Yet, these predators offer advantages for biological pest control. They are mostly generalist predators that have an impact on several crop pests. They may also be able to establish on crops early in the growing season, when pests colonize them, and can remain on the target crop when prey is scarce. Therefore, management programs must seek to minimize risks while maximizing benefits. In vegetable crops, most of the literature on zoophytophagous predators has focused on four species: Dicyphus tamaninii, Dicyphus hesperus, Macrolophus pygmaeus and Nesidiocoris tenuis (Heteroptera, Miridae). The capacity of these species to produce crop damage in tomatoes varies. This damage has been related to relative predator-to-prey abundance, with damage increasing at high predator abundances and low prey densities. In this review, we analyze the use of these species in biological control programs and the associated benefits and risks. The differences in the damage caused by the four predatory species examined could not be attributed to either stylet morphology or saliva composition. However, feeding on specific plant structures where they may find the resources required for their development is what probably determines feeding damage. Understanding when and why these predators increase their feeding on plants or on certain plant parts is of crucial importance for integrating them in biological control programs.  相似文献   

17.
Summer food of sympatric red fox and pine marten in the German Alps   总被引:1,自引:1,他引:0  
Based on fecal analyses, we compared summer diet composition and trophic niche breadth for the sympatric red fox Vulpes vulpes (n=55 scats) and pine marten Martes martes (n=64) in the foothills of the German Alps. Mammals accounted for 41 and 51% of the consumed biomass by pine martens and red foxes, respectively, and no single mammal species exceeded 8% of the diet. The larger red fox consumed a wider range of prey sizes than the smaller pine marten, and both consumed large amounts of plants and also insects. Whereas the Levins index suggested that both predators have specialist feeding niches, the Shannon-Wiener index showed that both predators were relatively generalist. Despite its preliminary nature, our study suggests that a strict distinction between generalist and specialist trophic niches is not justified for medium-sized carnivores in the Alps, particularly as results greatly depend on the indices used.  相似文献   

18.
1. Predators select a prey according to its energetic and nutritional composition. Generalist predators avoid, whereas specialists often specialise on well‐defended prey. The aim of this study was to find the suitability of woodlice prey for generalist and specialist predators by comparing their handling efficiency. 2. Laboratory experiments were performed in which specialist and generalist predators were reared on monotypic diets comprising one or other of two woodlice species that differ in their defensive strategies: rollers (Armadillidium) and clingers (Porcellio). A control group was reared on a mixture of arthropods (excluding woodlice). Three spider predators were used that differ in their adaptations to deal with woodlice prey: a woodlice specialist, Dysdera crocata; an oligophagous generalist, Pholcus phalangioides, that also captures woodlice; and a euryphagous generalist, Tegenaria domestica, that does not feed on woodlice. The frequency of capture was recorded and various fitness parameters were measured, namely survival, growth rate, and ontogenetic development. 3. It was found that the specialist, D. crocata, performed best on the Porcellio diet, and similarly well on Armadillidium and mixed diets. The two generalists, P. phalangioides and T. domestica, had poor performance on both woodlice diets but performed well on the mixed diet. 4. The results show that woodlice are unsuitable prey for both oligophagous and euryphagous generalist predators.  相似文献   

19.
Although invasive species often resemble their native counterparts, differences in their foraging and anti-predator strategies may disrupt native food webs. In a California estuary, we showed that regions dominated by native crabs and native whelks have low mortality of native oysters (the basal prey), while regions dominated by invasive crabs and invasive whelks have high oyster mortality and are consequently losing a biologically diverse habitat. Using field experiments, we demonstrated that the invasive whelk’s distribution is causally related to a large-scale pattern of oyster mortality. To determine whether predator–prey interactions between crabs (top predators) and whelks (intermediate consumers) indirectly control the pattern of oyster mortality, we manipulated the presence and invasion status of the intermediate and top trophic levels in laboratory mesocosms. Our results show that native crabs indirectly maintain a portion of the estuary’s oyster habitat by both consuming native whelks (density-mediated trophic cascade) and altering their foraging behavior (trait-mediated trophic cascade). In contrast, invasive whelks are naive to crab predators and fail to avoid them, thereby inhibiting trait-mediated cascades and their invasion into areas with native crabs. Similarly, when native crabs are replaced with invasive crabs, the naive foraging strategy and smaller size of invasive crabs prevents them from efficiently consuming adult whelks, thereby inhibiting strong density-mediated cascades. Thus, while trophic cascades allow native crabs, whelks, and oysters to locally co-exist, the replacement of native crabs and whelks by functionally similar invasive species results in severe depletion of native oysters. As coastal systems become increasingly invaded, the mismatch of evolutionarily based strategies among predators and prey may lead to further losses of critical habitat that support marine biodiversity and ecosystem function. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Since generalist predators feed on a variety of prey species they tend to persist in an ecosystem even if one particular prey species is absent. Predation by generalist predators is typically characterized by a sigmoidal functional response, so that predation pressure for a given prey species is small when the density of that prey is low. Many mathematical models have included a sigmoidal functional response into predator–prey equations and found the dynamics to be more stable than for a Holling type II functional response. However, almost none of these models considers alternative food sources for the generalist predator. In particular, in these models, the generalist predator goes extinct in the absence of the one focal prey. We model the dynamics of a generalist predator with a sigmoidal functional response on one dynamic prey and fixed alternative food source. We find that the system can exhibit up to six steady states, bistability, limit cycles and several global bifurcations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号