首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
水分胁迫对甘薯叶肉细胞光合电子传递的影响   总被引:7,自引:1,他引:6  
水分胁迫降低了甘薯叶肉细胞的光合能力。在有解偶联剂存在时,水分胁迫对叶肉细胞的光合电子传递没有影响,但在无解偶联剂存在下,水分胁迫促进了甘薯叶肉细胞的光合电子传递,表现出明显的解偶联效应。水分胁迫伤害了甘薯叶绿体偶联因子结构,使ATP合成受阻,叶肉细胞的光合滞后期加长。  相似文献   

2.
水分胁迫降低了甘薯叶肉细胞的光合能力。在有解偶联剂存在时,水分胁迫对叶肉细胞的光合电子传递滑影响,但在无解偶联剂存在下,水分胁迫促进了甘薯叶肉细胞的光合电子传递,表现出明显的解偶联效应。水分胁迫伤害了甘薯叶绿体偶联因子结构,使ATP合成受阻,叶肉细胞的光合滞后期加长。  相似文献   

3.
在缓慢干旱条件下,小麦叶片渗透调节能力在一定范围内随胁迫程度的加剧而增加,而在快速干旱下,渗透调节能力丧失。小麦叶片通过渗透调节使光合速率和气孔导度对水分胁迫的敏感性降低,叶片维持较高的电子传递能力、RuBP羧化酶活性和叶绿体光合能量转换系统活性,并推迟了小麦叶片光合速率受气孔因素限制向叶肉细胞光合活性限制转变的时间。  相似文献   

4.
水分胁迫对小麦叶片光合作用的影响及其与抗旱性的关系   总被引:10,自引:1,他引:9  
在水分胁迫初期,两个小麦品种叶片光合速率,气孔导度和细胞间隙CO_2浓度降低,气孔限制值增加,光合速率的降低主要是气孔因素的限制。中度到严重水分胁迫使叶片光合速率、气孔导度和气孔限制值降低,细胞间隙CO_2浓度明显增加,且叶圆片放氧能力,叶绿体Hill反应、叶绿素荧光强度和表观量子产额降低,此时光合速率的降低主要是叶肉细胞光合活性的下降引起的。抗旱性弱的郑引一号叶肉细胞光合活性比抗旱性强的丰抗13更容易受到水分胁迫的影响。  相似文献   

5.
水分胁迫下小麦叶肉细胞超微结构变化与抗旱性的关系   总被引:22,自引:5,他引:17  
本文用电子显微镜观察研究了抗旱性不同的6个小麦品种在不同程度水分胁迫下叶肉细胞超微结构的变化。结果表明:轻度水分胁迫(-0.5MPa)对参试的6个小麦品种叶肉细胞超微结构几乎没有影响。中度(-1.0MPa)和严重(-1.5MPa)水分胁迫下的叶肉细胞超微结构发生了程度不同的变化,且这种变化与品种抗旱性相一致。抗旱性愈弱的品种,对水分胁迫反应愈敏感。但表现在叶肉细胞结构上的变化过程基本一致。胁迫导致叶肉细胞质壁分离,液泡膜破裂。叶绿体变成球形挤入细胞中央,类囊体肿胀。线粒体基质变稀,脊减少。最终叶绿体、线粒体解体。其它细胞器消失,细胞中出现大量的小泡。  相似文献   

6.
水分胁迫下烟草光合作用的气孔与非气孔限制   总被引:11,自引:0,他引:11  
快速水分胁迫处理时,处于中度水分胁迫(Ψ_w=-1.54MPa)的烟草叶肉活性、叶绿体放氧能力及光合暗反应受到的影响很小;处于严重水分胁迫(Ψ_w=-1.84MPa)的RuBPCase,FBPase及果糖二磷酸醛缩酶活性明显降低,叶肉活性和叶绿体放氧能力受到强烈的抑制。  相似文献   

7.
水分胁迫条件下气孔与非气孔因素对小麦光合的限制   总被引:31,自引:1,他引:30  
较长时间、中度以上土壤干旱条件下,盆栽小麦叶片光合下降,气孔导度虽然降低,但叶内部CO_2浓度升高,叶肉CO_2导度下降,电子传递和羧化反应受到抑制,表明叶片光合的下降并非气孔部分关闭所致,叶肉细胞光合能力降低是干旱下小麦光合下降的原因。  相似文献   

8.
水分胁迫对春小麦苗期叶肉细胞和气孔数的影响   总被引:5,自引:0,他引:5  
利用显微摄像系统与离析法对甘肃陇中6个品种春小麦不同水分状况下苗期的叶肉细胞和叶片气孔数目进行观测,发现不同环数叶肉细胞占总人细胞的百分比在不同水分胁迫下和不同品种间均未表现出显著差异。随胁迫强度的增大,各品种不同叶肉细胞的宽试和高度都由分散分布向某一值集中,且在同一水分状况下,不同环数叶肉细胞随品种的变化趋势几乎一致。叶片上、下表皮(即为近、远轴叶表皮,下同)气孔数在不同水分胁迫下的变化不同,但  相似文献   

9.
研究PEG模拟水分胁迫条件对玉米叶肉细胞超微结构的影响,探讨了超微结构的变化与保护酶活性及膜酯过氧化伤害之间的关系。试验表明,在水分胁迫初期,叶肉细胞超微结构变化较小,此时,叶片的SOD及过氧化氢酶活性明显升高,质膜相对透性和丙二醛含量增加缓慢,随着胁迫时间的延长,叶肉细胞超微结构破坏加重,且不同细胞对水分胁迫的敏感性相差很大,叶片CAT性下降,质膜透性和MDA含量急增;复水后,叶片超微结构,SO  相似文献   

10.
人们对植物叶片的光合作用研究较多,近几年来又有不少工作深入研究完整叶绿体的光合作用特性。但是,前者显著受气孔开度的影响,且难于直接从生化方面进行研究,后者则未包括光合作用的全部过程。因此,很需要从叶细胞水平来研究光合作用。研究文献中涉及的叶肉细胞的分离,多用酶学方法。这种方法虽然适用于多种植物,但手续繁杂费时。我们实验室曾发现,从甘薯叶片很容易用机械方法分离得到叶肉细胞,并研究过它的光合磷酸化特征。在本文中我们进一步证明,这样分离得到的甘薯叶细胞具有光合作用活力。此外,我们还用机械方法分离得到了可以用于光合作用研究的大豆叶肉细胞。现将部分结果简述如下:  相似文献   

11.
Water stress inhibited the photosynthetic O2 evolution rate of wheat leaves. It was shown that water stress decreased the electron transport rate, the activities of photophosphorylation and, coupling factor, and, the synthesis of ATP in chloroplasts. PS Ⅱ electron transport was more senstitive to water stress than PS Ⅰ. The reduction in photophosphorylation activity might be the results of reduction in electron transport rate and coupling factor activity, as well as the uncoupling effect of water stress on chloroplasts. The uncoupling effect could be due to the inhibition of light induced proton translocation in chloroplasts.  相似文献   

12.
High-resolution images of the chlorophyll fluorescence parameter Fq'/Fm' from attached leaves of commelina (Commelina communis) and tradescantia (Tradescantia albiflora) were used to compare the responses of photosynthetic electron transport in stomatal guard cell chloroplasts and underlying mesophyll cells to key environmental variables. Fq'/Fm' estimates the quantum efficiency of photosystem II photochemistry and provides a relative measure of the quantum efficiency of non-cyclic photosynthetic electron transport. Over a range of light intensities, values of Fq'/Fm' were 20% to 30% lower in guard cell chloroplasts than in mesophyll cells, and there was a close linear relationship between the values for the two cell types. The responses of Fq'/Fm' of guard and mesophyll cells to changes of CO2 and O2 concentration were very similar. There were similar reductions of Fq'/Fm' of guard and mesophyll cells over a wide range of CO2 concentrations when the ambient oxygen concentration was decreased from 21% to 2%, suggesting that both cell types have similar proportions of photosynthetic electron transport used by Rubisco activity. When stomata closed after a pulse of dry air, Fq'/Fm' of both guard cell and mesophyll showed the same response; with a marked decline when ambient CO2 was low, but no change when ambient CO2 was high. This indicates that photosynthetic electron transport in guard cell chloroplasts responds to internal, not ambient, CO2 concentration.  相似文献   

13.
Several component processes of photosynthesis were measured in osmotically stressed mesophyll cells of Xanthium strumarium L. The ribulose-1,5-bisphosphate regeneration capacity was reduced by water stress. Photophoshorylation was sensitive to water stress but photosynthetic electron transport was unaffected by water potentials down to-40 bar (-4 MPa). The concentrations of several intermediates of the photosynthetic carbon-reduction cycle remained relatively constant and did not indicate that ATP supply was limiting photosynthesis in the water-stressed cells.Abbreviations Hepes 4-(2-hydroxyethyl)-1-piperazinepropanesulfonic acid - PGA 3-phosphoglyceric acid - RuBP ribulose-1,5-bisphosphate  相似文献   

14.
Our current understanding of the photosynthetic process in species utilizing the C4 photosynthetic pathway suggests that photosynthetic efficiency should be enhanced by: 1) maximizing the conductance of the gas phase transport pathway from the leaf exterior to the mesophyll cell surfaces; 2) maximizing cytoplasmic connections and metabolite transport between bundle sheath and mesophyll parenchyma cells; and 3) minimizing the conductance of the gas phase transport pathway from the bundle sheath cells to the leaf exterior. In this study we have examined several species in the Poaceae with C4 photosynthesis to determine if there is any evidence for anatomical specialization which would lead to enhanced photosynthetic efficiency by these processes. Observations with light and scanning electron microscopes revealed specializations in mesophyll cell morphology and arrangement which include branched cells forming intercellular channels. These specializations are hypothesized to contribute to photosynthetic efficiency through its influence on the above transport processes.  相似文献   

15.
High resolution chlorophyll a fluorescence imaging was used to compare the photosynthetic efficiency of PSII electron transport (estimated by Fq'/Fm') in guard cell chloroplasts and the underlying mesophyll in intact leaves of six different species: Commelina communis, Vicia faba, Amaranthus caudatus, Polypodium vulgare, Nicotiana tabacum, and Tradescantia albifora. While photosynthetic efficiency varied between the species, the efficiencies of guard cells and mesophyll cells were always closely matched. As measurement light intensity was increased, guard cells from the lower leaf surfaces of C. communis and V. faba showed larger reductions in photosynthetic efficiency than those from the upper surfaces. In these two species, guard cell photosynthetic efficiency responded similarly to that of the mesophyll when either light intensity or CO2 concentration during either measurement or growth was changed. In all six species, reducing the O2 concentration from 21% to 2% reduced guard cell photosynthetic efficiency, even for the C4 species A. caudatus, although the mesophyll of the C4 species did not show any O2 modulation of photosynthetic efficiency. This suggests that Rubisco activity is significant in the guard cells of these six species. When C. communis plants were water-stressed, the guard cell photosynthetic efficiency declined in parallel with that of the mesophyll. It was concluded that the photosynthetic efficiency in guard cells is determined by the same factors that determine it in the mesophyll.  相似文献   

16.
Bcl-2 overexpression protects cells from apoptosis induced by many cytotoxic agents. In this study, we investigated the effects of uncoupling mitochondrial electron transport in both HL60 wild-type and Bcl-2-overexpressing cells using the protonophore carbonyl cyanide m-chlorophenylhydrazone. We found that uncoupling mitochondrial electron transport induced apoptosis in wild-type, but not in Bcl-2-overexpressing cells. To investigate the mechanism of action of Bcl-2-mediated inhibition of cyanide m-chlorophenylhydrazone-induced apoptosis, we measured the mitochondrial transmembrane potential (DeltaPsi(m)) after uncoupling mitochondrial electron transport and found that both HL-60 wild-type and Bcl-2-overexpressing cells similarly depolarize following cyanide m-chlorophenylhydrazone exposure. Western blot analysis demonstrated that Bcl-2 overexpression did not completely block cytochrome c release from mitochondria after uncoupling mitochondrial electron transport. Since Bcl-2 may act as an antioxidant, we studied the effect of altering the cellular redox state prior to uncoupling mitochondrial electron transport in Bcl-2-overexpressing cells. Depletion of mitochondrial (but not cytosolic) glutathione induced apoptosis in Bcl-2-overexpressing cells and negated the protective effect of Bcl-2. Furthermore, following glutathione depletion, Bcl-2-overexpressing cells were sensitized to undergo cyanide m-chlorophenylhydrazone-induced apoptosis. These data suggest that the action of Bcl-2 is dependent, in part, on the cellular and mitochondrial redox state.  相似文献   

17.
光合作用是地球上最重要的化学反应。虽然针对植物光合作用已经进行了广泛深入的研究, 但从三维层面探讨植物叶片光合功能及其调节作用的工作较少。叶片结构、光合机构组分、叶片内光能吸收和传递均具有明显的三维特性, 极大影响叶片内CO2转运、叶肉细胞的电子传递和碳同化, 进而使叶片光合功能及其调控表现出复杂的三维特征。因此, 从三维角度分析叶片光合特性有助于理解光合作用机理, 也能够为提高植物光合作用效率提供理论支持。  相似文献   

18.
High-resolution imaging of chlorophyll a fluorescence from intact tobacco leaves was used to compare the quantum yield of PSII electron transport in the chloroplasts of guard cells with that in the underlying mesophyll cells. Transgenic tobacco plants with reduced amounts of Rubisco (anti-Rubisco plants) were compared with wild-type tobacco plants. The quantum yield of PSII in both guard cells and underlying mesophyll cells was less in anti-Rubisco plants than in wild-type plants, but closely matched between the two cell types regardless of genotype. CO2 assimilation rates of anti-Rubisco plants were 4.4 micromol m(-2) s(-1) compared with 17.3 micromol m(-2) s(-1) for the wild type, when measured at a photon irradiance of 1000 micromol m(-2) s(-1) and ambient CO2 of 380 micromol mol(-1). Despite the large difference in photosynthetic capacity between the anti-Rubisco and wild-type plants, there was no discernible difference in the rate of stomatal opening, steady-state stomatal conductance or response of stomatal conductance to ambient CO2 concentration. These data demonstrate clearly that the commonly observed correlation between photosynthetic capacity and stomatal conductance can be disrupted in the long term by manipulation of photosynthetic capacity via antisense RNA technology. It was concluded that stomatal conductance is not directly determined by the photosynthetic capacity of guard cells or the leaf mesophyll.  相似文献   

19.
A new type of microfluorometer was applied to assess photosynthesis at the single-cell level by chlorophyll fluorescence using the saturation pulse method. A microscopy–pulse amplitude modulation (PAM) chlorophyll fluorometer was combined with a Zeiss Axiovert 25 inverted epifluorescence microscope for high-resolution measurements on single mesophyll and guard cells and the respective protoplasts. Available information includes effective quantum yield of photosystem II, relative electron transport rate and energization of the thylakoid membrane due to the transthylakoidal proton gradient. Dark–light induction curves of guard cell (GCPs) and mesophyll cell protoplasts (MCPs) displayed very similar characteristics, indicating similar functional organization of thylakoid membranes in both types of chloroplasts. Light response curves, however, revealed much earlier saturation of photosynthetic electron flow in GCPs than in MCPs. Under anaerobiosis, photosynthetic electron flow and membrane energization were severely suppressed. A similar effect was observed in guard cells when epidermal peels were incubated with the fungal toxin fusicoccin which activates the plasma membrane H+-ATPase and causes irreversible opening of stomata. The drop in electron transport rate was prevented by blocking ATP consumption of the H+ pump or by glucose addition. These results show that chlorophyll fluorescence quenching analysis allows profound insights into stomatal physiology.  相似文献   

20.
Plectonema boryanum exhibits temporal separation of photosynthesis and nitrogen fixation under diazotrophic conditions. During nitrogen fixation, the photosynthetic electron transport chain becomes impaired, which leads to the uncoupling of the PSII and PSI activities. A 30-40% increase in PSI activity and continuous generation of ATP through light-dependent processes seem to support the nitrogen fixation. The use of an artificial electron carrier that shuttles electrons between the plastoquinone pool and plastocyanin, bypassing cytochrome b/f complex, enhanced the photosynthetic electron transport activity five to six fold during nitrogen fixation. Measuring of full photosynthetic electron transport activity using methyl voilogen as a terminal acceptor revealed that the photosynthetic electron transport components beyond plastocyanin might be functional. Further, glycolate can act as a source of electrons for PSI for the nitrogen fixing cells, which have residual PSII activity. Under conditions when PSI becomes largely independent of PSII and glycolate provides electrons for PSI activity, the light-dependent nitrogen fixation also was stimulated by glycolate. These results suggest that during nitrogen fixation, when the photosynthetic electron transport from PSII is inhibited at the level of cytochrome b/f complex, an alternate electron donor system for PSI may be required for the cells to carry out light dependent nitrogen fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号