首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Question: The aim of the present study is to determine whether seed/seedling predation will increase and Fagus survival will decline with the recovery of the Sasa cover. Methods: We examined Fagus crenata regeneration for seven years in an old‐growth Fagus‐Sasa forest near Lake Towada, northern Japan, by examining the effects of simultaneous death of Sasa, tree canopy gap formation, mast seeding of Fagus and seed and seedling predation by rodents on the survival of Fagus seeds and current year seedlings. We established four types of sites differing in forest canopy (closed or gap) and Sasa status (dead or alive) following the simultaneous flowering and death of Sasa kurilensis (dwarf bamboo) in 1995. Results: Fallen Fagus seed was abundant in 1997 and 2000 (mast years). In sites with alive Sasa, survival from the first growing season was low due to high seed and seedling predation. In sites with dead Sasa, seed survival under the canopy was high for both mast years, but in gaps it varied between years. Seedling survival was highest in canopy gaps with dead Sasa (gap‐dead) in 1998, because of higher light levels and lower predation by rodents. However, seedling survival in these plots was low in 2001, apparently because rapid Sasa recovery favoured rodent predation. In both mast years, Sasa die‐back had significant positive effects on seed and seedling survival under closed canopies because the seedlings there were more successful in escaping predation. Conclusion: The change in successful sites for the early stage of regeneration of Fagus appears to reflect the combined effects of canopy gap, seed/seedling predation and revegetation of Sasa.  相似文献   

2.
Microsatellite markers can yield high‐resolution genetic profiles for individual identification, and for parentage analysis, when evaluating gene dispersal in populations. Fagus crenata is an important dominant species in the cool temperate forests in Japan, and although many studies on the species have been conducted the patterns of gene dispersal via pollen and seeds are poorly understood. In order to be better informed about gene dispersal in Fagus crenata, we have developed 16 new microsatellite loci from an enriched library of genomic DNA. These 16 loci were highly variable, with 3–40 alleles per locus and an expected heterozygosity value of 0.11–0.98.  相似文献   

3.
Abstract. Question: Which are the structural attributes and the history of old‐growth Fagus forest in Mediterranean montane environments? What are the processes underlying their structural organization? Are these forests stable in time and how does spatial scale affect our assessment of stability? How do these forests compare to other temperate deciduous old‐growth forests? Location: 1600–1850 m a.s.l., Fagus forest near the tree line, central Apennines, Italy. Methods: An old‐growth Fagus forest was studied following historical, structural and dendroecological approaches. History of forest cover changes was analysed using aerial photographs taken in 1945, 1954, 1985 and 1994. The structural analysis was carried out in the primary old‐growth portion of the forest using 18 circular and two rectangular plots. Dendroecological analyses were conducted on 32 dominant or co‐dominant trees. Results: These primary old‐growth Fagus remnants consist of four patches that escaped logging after World War II. Both living and dead tree components are within the range of structural attributes recognized for old‐growth in temperate biomes. Dendroecological analyses revealed the roles of disturbance, competition and climate in structuring the forest. We also identified a persistent Fagus community in which gap‐phase regeneration has led to a mono‐specific multi‐aged stand at spatial scales of a few hectares, characterized by a rotated‐sigmoid diameter distribution. Conclusion: Even at the relatively small spatial scale of this study, high‐elevation Apennine Fagus forests can maintain structural characteristics consistent with those of old‐growth temperate forests. These results are important for managing old‐growth forests in the Mediterranean montane biome.  相似文献   

4.
Abstract. We used classification tree analysis to develop a climate‐based distribution model for Fagus crenata forests in Japan. Four climatic variables judged likely to affect the distribution of the species (summer and winter precipitation, minimum temperature of the coldest month and Kira's warmth index) were chosen as independent variables for the model. Latitudinal and longitudinal information was also used to examine effects of spatial autocorrelation on the model. The climatic factors associated with the distribution of the forests were analysed using a classification tree to devise prediction rules. Predicted areas of high probability for forest occurrence lay mainly on the Sea of Japan side of northern Honshu and southern Hokkaido. This is consistent with actual forest distribution. Some areas with high predicted probabilities of F. crenata forest occurrence were beyond the current natural northern range limits of these forests. Since these areas were widely scattered, it was assumed that the species has been hindered from colonizing them due to dispersal limitations. Deviance‐weighted scores, used to compare magnitudes of the contributions of predictor variables, revealed winter precipitation as the most influential factor, followed by the warmth index, the minimum temperature of the coldest month and summer precipitation. Attempts were made to generate ecological explanations for the effects of the four climatic factors on the distribution of F. crenata forests.  相似文献   

5.
While clonal growth is important in the East Asian Fagus subgenus Engleriana and the North American Fagus grandifolia (subgenus Fagus), for other subgenus Fagus species the vast majority of regeneration involves sexual reproduction with clonal growth only rarely observed. Here we aim to confirm using nuclear microsatellite markers whether clonal growth occurs in the Japanese endemic species Fagus crenata (subgenus Fagus) by investigating the origin of multi-stemmed clumps found within a high-elevation dwarf beech forest on Sado Island, Niigata Prefecture. We found that all stems collected from three separate clumps belonged to the same clump-specific multi-locus genotypes. The maximum size of clones was 3–4 m in diameter, comparable in size to those seen in the predominantly asexually regenerating Japanese species Fagus japonica (subgenus Engleriana). The species capacity for clonal growth is likely to underlie its ability to persist at high-elevation exposed sites at the limits of its ecological range.  相似文献   

6.
We analysed patterns of woody species richness in Pinus sylvestris and Fagus sylvatica forests in Catalonia (NE Spain) from forestry inventory databank in relation to climate and landscape structure. Both types of forests are found within the same climatic range, although they have been managed following somewhat different goals. Overall, woody species richness significantly increased when conditions get closer to the Mediterranean ones, with milder temperatures. Differences between the two types of forests arose when comparing the relationship between richness and forest patch size. Woody species richness increased in pine forests with patch size, while the opposite trend was observed in beech forests. This pattern is explained by the different behaviour of structural canopy properties, since leaf area index and canopy cover showed a steeper increase with increasing forest patch size in Fagus forests than in Pinus ones. Accordingly, richness decreased with canopy cover in Fagus plots, but not in Pinus ones. We suggest that these differences would be related to management history, which may have enhanced the preservation of beech stands in larger forest landscape units.  相似文献   

7.
Abstract. We reconstructed forest development and disturbance events (fire and logging) during the last 1000 yr with tree‐ring data, pollen and charcoal analysis from a semi‐natural Fagus sylvatica‐Picea abies forest (ca. 1 km2) in the hemiboreal zone. According to pollen analysis, Quercus robur together with Pinus sylvestris was abundant in the forest until the turn of the 18th/19th centuries when these species disappeared completely (Quercus) or nearly completely (Pinus) and were replaced by Fagus and Picea. The disappearance of Quercus was corroborated by the remarkable discovery of a single Quercus stump that had been cut in the 18th century and had become overgrown and preserved by a very old Picea. In total 11 fires were dated from 1555 to 1748 from fire scars in several Pinus stumps cut 100 ‐ 200 yr ago. Since the last fire in 1748, no Quercus or Pinus have regenerated in the core of the reserve apart from single pines in neighbouring managed forest (80 yr ago). During the period of documented fires Fagus was protected from fires in a refuge made up of large boulders. Picea colonized the region at the time when the fires ceased 250 yr ago. We hypothesize that most of the fires were probably of human origin because of their patchiness and high frequency compared to the natural background levels of lightning ignitions in the region. On a 300‐yr time scale, logging and fire suppression seem to strongly overshadow the effect of climate change on forest composition and dynamics.  相似文献   

8.
Abstract. The purpose of this study is to evaluate and to quantify the influence of management on the epiphytic species composition in Danish Fagus sylvatica forests. Trunks were chosen at random within selected blocks in both managed and unmanaged Fagus stands.117 trunks in 43 sample plots in three forests were investigated. Cover was estimated for 72 lichens, 29 bryophytes and two fungi on vertical trunks 0.3 ‐2 m above ground. 18 explanatory variables were recorded and arranged in three groups: eight management‐related variables, six micro‐climatic‐ and soil variables, and four geographical‐ and geological variables. Canonical Correspondence Analysis was used to test and to quantify the explaining power of the three groups of variables applying the variation partitioning approach. Detrended Correspondence Analysis was used to evaluate whether important gradients were ignored. It was concluded that the traditional ‘shelterwood uniform system’ used in Fagus forests has a marked influence on the epiphytic species composition. Thus, management‐related variables explained more than one third of the total variation explained, which equals 10.9% of the total variation. Microclimatic and soil variables explained 9.0%, and geographical and geological variables explained 6.0%. The following three recommendations are suggested to reduce the significant influence of management on the epiphytic species composition. First, it should be attempted to ensure a continuous occurrence of some big trees per ha to be left for natural death and decomposition. Second, regular thinning is necessary, especially in the first part of rotation. Third, a multi‐layered forest, where wind and desiccation effects are minimized, is recommended.  相似文献   

9.
Question: Can the pattern and pace of spontaneous Fagus forest expansion from 1975 to 2003 be accurately detected with mid‐resolution satellite imagery? Can the historical Fagus expansion be modelled on the basis of environmental predictors? If so, where are the highest probabilities for future Fagus expansion? What are the implications for park management? Location: Majella National Park, Italy, > 1000 m a.s.l.; municipalities of S. Eufemia and Pacentro. Methods: Fagus cover change was detected by overlaying three classified sequential satellite images. Historical Fagus expansion was related to environmental variables using ordinary logistic and autologistic regression models. Fagus expansion probabilities were generated with the best predictive model. Results: From 1975 to 2003 Fagus advanced into abandoned farmland and subalpine pastures from the contiguous, midaltitudinal Fagus forest and from Fagus outliers, at a rate of 1.2 % per year. Substantial spatial and temporal variations in expansion rates were detected. The ordinary and autologistic models based on the single predictor Distance‐from‐Fagus‐1975 forecasted the Fagus expansion well (AUC 0.81 resp. 0.88). Multiple logistic models, including the topo‐climatic and substrate predictors, improved prediction insignificantly. The strong predictive power of proximity to historical Fagus presence is explained by the dispersal biology of Fagus combined with the shading impact of the Fagus canopy at the forest fringe. Conclusion: Decade‐long Fagus expansion patterns might be reliably forecasted by proximity to historical Fagus distribution. Consequences for park management options are outlined.  相似文献   

10.
Successful forest expansion into grassland can be limited by seed dispersal and adverse conditions for tree seedlings in the grassland environment. In the high‐elevation Andes, human‐induced fragmentation has exacerbated the patchy distribution of Polylepis forests, threatening their unique biological communities and spurring restoration interest. Studies of Polylepis forest extent in Peru suggest that forest borders have remained stable over the past century despite decreasing anthropogenic disturbance, suggesting that tree seedling recruitment is being limited in the open grassland habitat. We studied natural seedling dispersion patterns of Polylepis sericea and Polylepis weberbaueri (Rosaceae) at forest–grassland edges across a range of environmental conditions to examine seedling recruitment and colonization of grasslands in Huascaran National Park (Peru). Using data from 2367 seedlings found in 48 forest–grassland edge plots (15 m × 15 m) at forest patches between 3900–4500 masl, we employed generalized mixed modelling to identify the significant associations of seedling densities with environmental covariates. In addition, we compared these associations to patterns of adult presence on the landscape. Seedling densities were associated with a combination of variables varying within (distance to forest edge) and among (elevation and dry season solar irradiation) plots across the landscape. For both species, seedling densities decreased with increasing distance away from the forest in a manner consistent with short‐distance seed dispersal by wind. Our results suggest that such short‐distance dispersal may slow forest expansion, but that there also appear to be substantial post‐dispersal limitations to seedling establishment in the grassland. Polylepis sericea densities decreased with elevation, while P. weberbaueri increased with elevation and decreased with solar irradiation. Associations of adult presence with elevation and solar irradiation mirrored those of seedling densities. Management of areas with forest patches dominated by these species should consider these differences in their environmental tolerances, particularly during species selection and zonation for reforestation.  相似文献   

11.
Temperate deciduous forests in Monsoon Asia are classified into three forest types which differ in floristic composition, dynamics and disturbance regime. The cool temperate mixed deciduous broadleaf/conifer forest, dominated by Quercus spp. (mainly Q. mongolica or Q. crispula) and conifers, is distributed in northern parts of the temperate zone. The cool temperate deciduous forest, dominated by Fagus crenata, is distributed in Honshu, Japan under a humid climate through the year. The warm temperate deciduous forest dominated by Quercus spp. (mainly Q. acutissima or Q. serrata) occurs in the continental areas, the Korean Peninsula, and the Pacific Ocean side of Japan. The species diversity of cool temperate deciduous forest was lower than the other two types because of the intensive dominance of Fagus crenata. The disturbance regimes also varies among the three types; small scale treefall gaps are prevailing in the cool temperate deciduous forest, while larger scaled disturbances are important in the other two forest types. Fire seems to be important in the warm temperate deciduous forest, and both fire and large scale blowdowm seems important in the cool temperate mixed broadleaf/conifer forest. These differences in forest composition and disturbance regimes associated with climatic conditions and ancient human impacts have a close analogy with the Northeastern Hardwood forests in North America.  相似文献   

12.
This paper reviews the differences in the distribution and regeneration ofFagus crenata between two types of Japanese beech forests, the Japan Sea (JS)-type and the Pacific Ocean (PO)-type, and discusses the causal factors and characteristics of these forests, particularly the PO-type.F. crenata in PO-type forests regenerates sporadically rather than constantly, whereas regeneration in the JS-type forests is relatively constant with gap dynamics.F. crenata has dominated in snowy areas both in the past, after the last glacial age, when there was less human disturbance, and in the present. Snow accumulation facilitates beech regeneration in snowy JS-type forests, but not in the less snowy PO-type. Snow protects beechnuts from damage caused by rodents, desiccation, and freezing. In addition, snow suppresses dwarf bamboo in the spring, thus increasing the amount of sunlight available for beech seedlings on the forest floor. Snow also supplies melt water during the growing season and limits the distribution of herbivores. Moreover, snow reduces the number of forest fires during the dry winter and early spring seasons. The low densities ofF. crenata impede its regeneration, because disturbed wind pollination lowers seed fertility and predators are less effectively satiated. In snowy JS-type beech forests,F. crenata dominates both at the adult and the juvenile stages because it regenerates well, while other species are eliminated by heavy snow pressure. On the less snowy PO-side, deciduous broad-leaved forests with various species are a primary feature, althoughF. crenata dominates because of its large size and long lifespan.  相似文献   

13.
Akita-sugi (Cryptomeria japonica, Japanese cedar that is grown in Akita) forests are among the most important for commercially valuable timber in Japan. Historically, these forests have been severely exploited, although now some parts of them are conserved. It is important to know the detailed history of the forests in order to utilize them sustainably in the future. This study analyzes the pollen in an annually laminated lake sediment core from Ichi-no-Megata on the Oga peninsula, Akita, Japan, to understand the history of Akita-sugi cedar forests. An age-depth model was developed based on the results of an accelerator mass spectrometer dating of 13 plant macrofossils from the surface to 422 cm in depth, the Towada-a tephra and other well-known event layers. The dominant pollen taxa were Cryptomeria and Fagus crenata by ad 1000. The first increase of Cryptomeria was detected around 1700 bc. By the 1st century ad, Cryptomeria forest was established. At that time, Cryptomeria was mixed with deciduous trees, mainly F. crenata. The pollen analysis found evidence that the main loss of woodland occurred during the 11th century ad, when forest lands were cleared for agriculture. Substantial natural forests nevertheless remained until the 16th century, after which forest resources were exhausted. Conservation and plantation activities took place later, but human activity in response to severe famines prevented the recovery of the forests. After the famine periods, the remaining forests recovered to their previous condition, but after World War II, the natural forests shrank further and plantation forests without deciduous trees were established over large areas.  相似文献   

14.
Question: How much is the probability distribution of Fagus crenata forests predicted to change under a climate change scenario by the 2090s, and what are the potential impacts on these forests? What are the main factors inducing such changes? Location: The major islands of Japan. Methods: A predictive distribution model was developed with four climatic factors (summer precipitation, PRS; winter precipitation, PRW; minimum temperature of the coldest month, TMC; and warmth index, WI) and five non‐climatic factors (topography, surface geology, soil, slope aspect and inclination). A climate change scenario was applied to the model. Results: Areas with high probability (> 0.5) were predicted to decrease by 91%, retreating from the southwest, shrinking in central regions, and expanding northeastwards beyond their current northern limits. A vulnerability index (the reciprocal of the predicted probability) suggests that Kyushu, Shikoku, the Pacific Ocean side of Honshu and southwest Hokkaido will have high numbers of many vulnerable F. crenata forests. The forests with high negative sensitivity indices (the difference between simulated probabilities of occurrence under current and predicted climates) mainly occur in southwest Hokkaido and the Sea of Japan side of northern Honshu. Conclusion: F. crenata forest distributions may retreat from some islands due to a high WI. The predicted northeastward shift in northern Hokkaido is associated with increased TMC and PRS. High vulnerability and negative sensitivity of the forests in southern Hokkaido are due to increased WI.  相似文献   

15.
Woody encroachment into grasslands is occurring across the world and is of concern to land managers. Studies of forest–grassland boundaries have informed models describing factors that govern tree establishment and the maintenance and origin of grassland ecosystems. Central to these models is the role of fire relative to ‘bottom up’ resources such as soil and the geological substrate in determining the extent of grassland and forest in the landscape. The view that human lit fires have shaped vegetation across the Australian continent has been bolstered by early 19th century observations of Aboriginal‐set fires in Tasmanian montane grasslands and the documented encroachment of trees into these grasslands in the 20th century. We examined the pattern of lateral encroachment of woolly tea‐tree (Leptospermum lanigerum (Sol. ex Aiton) Sm.) into these grasslands and used tree ring chronologies to investigate (i) past fire activity and (ii) how the geological substrate mediates growth rates of L. lanigerum. Changes in fire regimes inferred from L. lanigerum recruitment were corroborated by historical records. Encroachment (and increases in woody cover) of trees into grasslands was highest on granitic substances, although L. lanigerum growth rates were highest on basalt substrates, followed by conglomerate, granite and Mathinna sediments. Frequent burning up to the 1980s may have stymied the encroachment of trees in grasslands underlain by basalt. Growth rates decreased with increasing distance from the forest edge. This may be due to incremental changes in soil resources, grass competition and/or microclimate. The dynamics between grasslands and forests in montane Tasmania are consistent with tree growth–fire interaction models that highlight the interplay of edaphic factors, growth rates and fire history. Such complexity cautions against generalizations concerning the direct effects of landscape fire in shaping vegetation distribution across Australia.  相似文献   

16.
Abstract. In the cool temperate zone in Japan Fagus crenata (beech) is a highly dominating climax species, especially in the snow-rich regions at higher altitudes. The explanation for this dominance was studied with special reference to the tolerance of tree trunks to snow pressure. Traits of six tree species: trunk bend, trunk height decrease, trunk damage and basal sprouting rate were measured in Fagus forest in the Echigo Mountains, central Japan along a snow pressure gradient. The following general trends were recognized: (1) trunk bend and trunk height decrease; (2) snow pressure caused trunk injury; (3) when the trunk bend exceeded a critical angle, the number of sprouts increased remarkably. Although the tolerances were different among the six species, most of them were seriously damaged by snow pressure, and many trunks were reduced in size. On the other hand, many sprouts emerged from deformed trunks and contributed to the maintenance of the population under heavy snow pressure. F. crenata was the only species whose trunk form and maximum size were hardly influenced by snow pressure.  相似文献   

17.
Vertical vegetation zones along 30° N latitude in humid East Asia   总被引:1,自引:0,他引:1  
Structural changes in altitudinal vegetation zones along a 30° N parallel were studied based on vegetation data from 20 mountains in East Asia, from 85° E to 130° E longitude. The altitude of comparable vegetation zones showed a sharp increase of 1400–1900 m from east to west. Forest limit reached an altitude of 4400–4600 m in the eastern Tibetan Plateau, being the highest forest limit in the world. The limidng factor for the upper limit of a vegetation zone was different in the east and west. Low temperature in winter controlled the upward distribution of the evergreen broadleaf forest in the east, whereas the limiting factor was growing season warmth in the west. A close correlation was found between the climatic indices and annual range of monthly mean temperature (ART) at the upper limit of a vegetation zone.Component genera of each vegetation zone along the 30° N parallel were analyzed, and it was found that the alternation of component genera from east to west was much more apparent in cool-temperate forests, reflecting their response to macrotopography and air masses. The distribution of Fagus extended into winter-cold regions, whilst Tsuga occurred principally in oceanic and warm climates. The northern limit of Tsuga corresponded well to an ART isotherm of 23 °C and its southern limit coincided with that of Fagus. According to the distribution of Fagus and Tsuga, the cool-temperate forests in East Asia along the 30° N belt were divided into three types: deciduous broadleaf forest (represented by Fagus), mixed forest (dominated by Fagus, Tsuga and others), and mixed evergreen forest (consisting mainly of Tsuga and sclerophyll oaks).  相似文献   

18.
Aim Fagus grandifolia var. mexicana (Martinez) Little has an extraordinarily restricted distribution in the Mexican montane cloud forests. Isolated Fagus (beech) populations have been recorded in less than 10 small areas (2–40 ha) in the eastern Sierra Madre at altitudes from 1400 to 2000 m. The objectives were to determine tree and seedling age, forest structure, phenology, litterfall patterns and the relationship between mast and climatic variables. Location We report on three Fagus stands at the Acatlan Volcano, Veracruz, Mexico. Methods Changes in forest cover were determined using aerial photographs. Within each stand, basal area, density and tree species composition were determined in a 0.1‐ha band transect. Additionally, litterfall production was quantified and phenophases were recorded monthly over a 3‐year period, and 60 tree cores were collected to determine age distribution and tree‐ring growth. Results The forest was atypical in several respects. Fagus was the only dominant tree species in the crater stand, although in the rim and at the top of the volcano it was codominant with other tree species. Juveniles occurred only on the rim, but there was a seedling bank in the crater. Although forest cover in the area increased between 1968 and 1993, the Fagus stands did not change in size. Leaf production peaked in March and April, and leaf fall occurred from October through February. Litterfall production was the highest in November. During mast years, flowering started in February and between mast events there were no flowers or fruits. Minimum temperatures were highly correlated with Fagus litterfall and leaf fall. Seedlings ranged in age from 2 to 18 years and were 13–60 cm tall. Tree cores ranged from 76 to 120 years, but trees were older than the core samples. Main conclusions Although beech is considered a gap regeneration species that reaches the canopy after alternating periods of release and suppression, the trees in the crater were released when less than 1.5 m tall and have suffered few periods of suppression since. The results indicate that the crater stand was established after a severe disturbance destroyed the existing forest. We conclude that the relict beech population should be able to maintain itself, if not severely disturbed by humans or by climatic changes related to global warming.  相似文献   

19.
  • Changes in land‐use patterns are a major driver of global environmental change. Cessation of traditional land‐use practices has led to forest expansion and shifts in forest composition. Consequently, former monospecific forests maintained by traditional management are progressing towards mixed forests. However, knowledge is scarce on how the presence of other tree species will affect reproduction of formerly dominant species. We explored this question in the wind‐pollinated tree Juniperus thurifera. We hypothesised that the presence of heterospecific trees would have a negative effect on cone production and on the proportion of cones attacked by specialised predators.
  • We assessed the relative importance of forest composition on cone production, seed development and pre‐dispersal cone damage on nine paired pure and mixed J. thurifera forests in three regions across the Iberian Peninsula. The effects of forest composition on crop size, cone and seed characteristics, as well as damage by pre‐dispersal arthropods were tested using mixed models.
  • Cone production was lower and seed abortion higher in mixed forests, suggesting higher pollination failure. In contrast, cone damage by arthropods was higher in pure forests, supporting the hypothesis that presence of non‐host plants reduces damage rates. However, the response of each arthropod to forest composition was species‐specific and the relative rates of cone damage varied depending on individual tree crops.
  • Larger crop sizes in pure forests compensated for the higher cone damage rates, leading to a higher net production of sound seeds compared to mixed forests. This study indicates that ongoing changes in forest composition after land abandonment may impact tree reproduction.
  相似文献   

20.
We investigated plant species diversity as it related to stand structure and landscape parameters in abandoned coppice forests in a temperate, deciduous forest area of central Japan, where Fagus crenata was originally dominant. The species occurring in the study plots were classified into habitat types based on a statistical analysis of their occurrence bias in particular habitats (e.g., primary forest, coniferous plantation) in the landscape studied. The relationships between stand structure, which reflected the gradient of management, and forest floor plant species diversity (H and J) and richness (number of species per unit area) were not significant. However, these factors did influence the forest floor plant composition of the different types of habitat. According to the multiple regression analysis, species diversity and the richness of forest floor plants was affected by landscape parameters rather than by stand structure. For trees, species richness was mainly affected by the relative dominance of F. crenata, which is one of the stand structure parameters that decreases with intensive management. This is probably because many of the tree species that are characteristic of coppice forests increase after F. crenata have been eliminated by management; these species are not dominant in the original forest, where they are suppressed by F. crenata, the shade-tolerant dominant species. The species diversity (H and J) of trees was positively correlated with some landscape parameters, including the road density around the study plot, which may be associated with the intensity of management activity. The number of disturbance-tolerant species increased with increasing road density. Stand structure mainly affected disturbance-intolerant forest floor plant species and disturbance-tolerant tree species. Thus, the species diversity responses differed between forest floor plants and trees. The impact of forest management on species diversity was more prominent for forest floor plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号