首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The larval pre-competency period and competency window are important in delimiting the potential dispersal distance for pelagic larvae of sessile marine fauna. Here, we provide evidence for morphological changes in the late planulae of Lophelia pertusa that have implications for their dispersal potential. Three weeks after spawning, the planulae gain functional cnidocysts, indicating that they are competent to settle at this time. Cnidae have been shown to be used for primary anchoring during settling, and before this time point, the larvae most probably do not have the ability to attach to a substrate in high flow conditions. The appearance of functional cnidae coincides with larvae gaining a flexible mouth that can be opened to the full width of the larva. The larval isorhizas differ the most from the adult polyps isorhizas, while the p- and b-mastigophores bear more resemblance to the adult homologues of similar size. The external and internal morphology of late planulae is further described with demonstration of long apical cilia and its effect on swimming agility, morphological changes of the ciliated cells in the larval mouth region and an internal nerve plexus. This study also indicates that L. pertusa planulae seek out cryptic spaces for settling.  相似文献   

2.
This report is a comprehensive fine structural analysis of the morphological changes occurring during metamorphosis of the marine hydrozoan Mitrocomella polydiademata. Five stages are recognized during metamorphosis: planulae just prior to settlement, ball and filiform stages, immature polyps, and primary feeding polyps. Settlement and metamorphosis of cnidarian planulae involve such changes as ciliary arrest, discharge of nematocytes, secretion of glandular cells, differentiation of cells, and changes in cell and body shape.  相似文献   

3.
Larval dispersal and recruitment are important factors that determine the distribution of adult corals. The relationships between larval dispersal, recruitment, and the adult distribution of the blue octocoral, Heliopora coerulea, were investigated on Shiraho Reef, Ishigaki Island, southwest Japan. Heliopora coerulea is a surface brooder that releases planulae in June or July on Shiraho Reef. We observed planulae between 1998 and 2000 and found that they did not swim actively; instead, they crawled into their settlement positions after becoming grounded on the substratum. Planulae occurred throughout the water column and were dispersed by tidal and wind-driven currents around the parent population on the reef flat. Recruitment was observed only within 350 m of the parent populations, including areas between the branches of the adult colony. The planulae of H. coerulea had a narrow dispersal range as a result of their mostly benthic, shorter larval duration, and the influence of weaker currents. Thus, the dispersal distance of larvae is determined by their position in the water column, the currents that deliver the larvae, and the competency period of the larvae. The narrow dispersal range of H. coerulea was consistent with recruitment of sexually derived larvae onto their natal reef.  相似文献   

4.
Dispersal of propagules plays an important role in the distribution of corals. Pocillopora damicornis, Seriatopora hystrix, and Stylophora pistillata are all brooders and release planulae having symbiotic zooxanthellae. Planulae showed a great size variation, especially at peaks of planulation, and we found negative correlations between zooxanthella density and planula size in S. hystrix and S. pistillata. Studies of the larval life of planulae under both light and dark conditions have revealed that larger planulae have a longer lifetime. When planulae of the same size were compared, it was found that they lived longer under light conditions than under dark conditions. These findings suggest that planulae utilize energy from photosynthetic products of zooxanthellae and that these corals enjoy long-distance dispersal by producing larger planulae with greater dispersal potential. It is conceivable that variation in the dispersal potential of planulae is a means of adaptation by which planulae can increase their chances of finding a suitable habitat.  相似文献   

5.
Eggs of medusae develop into lecithotrophic planulae that undergo metamorphosis at different ages to form polyps. As planulae age they decrease in size as their yolk stores are utilized. The planulae of most Phialidium medusae develop into polyps where there is a decrease in the size of the holdfast region and a relative increase in the size of the hydranth region as they age. These changes occur independently of the decrease in planula size. In planulae with a decrease in the size of the holdfast region and an increase in the size of the hydranth-forming region there was a 50% decline in polyps that successfully stayed attached to the substrate after metamorphosis. These aged planulae produced an initial hydranth with the same number of tentacles as polyps from full-sized young planulae while young half-sized planulae produced hydranths where the tentacle number was smaller. The first phase of polyp colony growth with a small initial hydranth was slower than growth of a colony with a larger initial hydranth. Predation during this period led to more death in colonies with a small initial hydranth. The decline in successful attachment in aged planulae was not offset by the higher rate of growth and a smaller window of time where predation leads to death, suggesting that this age-related developmental change in planulae was not adaptive.  相似文献   

6.
Summary These experiments were done in order to define the role that polarity plays during embryogenesis in hydrozoans.Parts of hydrozoan embryos isolated at different developmental stages from early cleavage to postgastrula will regulate to form normal planulae. During this process, the original anterior-posterior axis of the part is conserved. In normal embryos the posterior pole of the anterior-posterior axis is congruent with the site where the polar bodies are given off and with the site where the first cleavage is initiated. By centrifuging fertilized eggs, it is possible to create embryos in which the first cleavage initiation site does not correspond to the site where the polar bodies are given off. In these embryos the posterior pole of the anterior-posterior axis corresponds to the first cleavage initiation site. When parts of these embryos are isolated at different stages they also regulate to form normal planulae. The axial properties of these planulae are determined by the site of first cleavage initiation.The interactions between regions of the embryo with different axial properties were studied by grafting together parts in such a way as to create embryos with abnormal axial arrangements. Following gastrulation interactions take place between the grafted parts leading to the formation of normal planulae with a new set of axial properties.Blastula stage embryos can be dissociated into single cells and the cells can be reaggregated. These reaggregates form normal planulae. Polarity can be entrained in the reaggregates by grafting a small piece of tissue from any part of an intact blastula to the reaggregate. These cells organize the formation of an axis of symmetry with an appropriate orientation with respect to the graft.  相似文献   

7.
We determined the monthly percentage of biochemical components in planulae of the soft coral Heteroxenia fuscescens, for a 3-year period, and evaluated the findings in relation to seasonal fluctuations in water temperature. We determined the biochemical profile and metabolic rate of aging planulae and examined the possible absorption of dissolved organic material (DOM) from the water by the planulae. Our study is the first to present a long-term biochemical profile of planulae. They contained an average of 2.2% ash, 51.5% lipid, 33.6% protein, and 1.3% carbohydrate. Calculation of the average energetic content of a planula revealed a value of 1. 63 J planula(-1). Significant seasonal differences in planulae weight were noted between the summer and the other seasons. A significant decrease (41%) from the initial weight, 0.029 mg, took place in the planulae dry weight within 15 days. Significant decreases over time were also found in lipid (50%) and carbohydrate (83%) concentration but not in protein (20%). Metabolic rates of a planula was 0.06 microl O(2) planula(-1) hr(-1). The study shows for the first time that a soft coral planulae can take up dissolved free amino acids from seawater. Even though each of the amino acids was initially present at equimolar concentrations, there was a much faster uptake for the neutral, nonpolar amino acids, than for polar and basic ones. The potential contribution to the metabolic demand of planulae, from the uptake of amino acids, is estimated to be 11%. It is suggested that this uptake does not appear to be due to energetic considerations, but may have a more significant impact on their nitrogen budget.  相似文献   

8.
The planulae of almost all investigated cnidarian species possess neuron‐like cells. The distribution of these cells is usually uneven throughout the long axis of the planula. The majority of these cells are located in the anterior half of the planula body. Scyphozoan planulae, as well as anthozoan planulae, have a sensory structure at the anterior pole called an apical organ, which is believed to take part in metamorphosis induction. Hydrozoan planulae also possess sensory cells. It has been previously shown in several cnidarian larvae that their neuronal cells contain the neurotransmitter, serotonin. The present study describes the peculiarities of serotonin‐like immunoreactive cells in Aurelia aurita (Scyphozoa) and Gonothyraea loveni (Hydrozoa) planulae. We show that several cells in the presumptive apical organ of A. aurita are immunoreactive to antibodies against serotonin, while G. loveni planulae have an accumulation of serotonin‐positive cells near the anterior pole. Additional serotonin‐like immunoreactive cells are found in the lateral ectoderm of both planulae. Treatment of A. aurita and G. loveni planulae with serotonin or its blockers show that serotonin is likely involved in the initiation of planula settlement.  相似文献   

9.
10.
Colonial hydroid Laomedea flexuosa inhabits the narrow belt of low littoral zone in the White Sea. What is a reason of so limited habitat? The authors studied the time of planulae release and its behavior during free swimming stages and settlement of larvae in nature and under laboratory conditions. Three methods were used to registrate the tidal dependent dynamic of planulae release: 1) plankton collecting bags around Fucus inflatus kelp with mature hydroids colonies; 2) active stirring kelps with hydroids in container with water, which is an old way to stimulate planulae release; 3) direct account of the mature planulae into gonangia. The dynamic of intensity of L. flexuosa planulae release was investigated according 3-4 phases of tidal cycle. All data were statistically tested. For L. flexuosa a moment of general larvae release was found in phase with the period of low water. This correlation could explain strict limitation in occurrence of L. flexuosa only in the lower part of intertidal zone. Laboratory experiments show that planulae release is stimulated by littoral drainage, and renewal of water movement during the beginning of tide. The decrease in time of planulae settlement is an affective way for marine sedentary species to stay in a narrow zone of optimal habitat.  相似文献   

11.
The purpose of the present, morphological analysis is to recognize a functional connection between shear stress tau, which Human Red Cells, treated with glutaraldehyde, are subjected and their energy of bending (U), during the shape transition, turbulent shear-flow dependent, under the hypothesis of "isoareal" transformation. The experimental basis of this analysis is the work of Sutera and Mehrjardi.  相似文献   

12.
Large membrane-bound inclusions were clearly visible within the gastrodermis and lipid-containing cells of planulae and settled larvae of the zooxanthellate coral, Pocillopora damicornis after fixation or freeze-substitution. We suggest that these inclusions may be a novel potassium (kalium) chloride concentrating organelle, for which we propose the name kalisome. The inclusions were more abundant in settled larvae than in planulae and were not present in mature polyps. In planulae of the azooxanthellate coral, Dendrophyllia sp. these inclusions were extremely rare. Quantitative X-ray microanalysis of freeze-substituted preparations showed that the inclusions in P. damicornis settled larvae contained very high, positively correlated, concentrations of K (2.5 mol x kg(-1)) and Cl (2.5 mol x kg(-1)). Lower concentrations of both K (1.2 mol x kg(-1)) and Cl (1.3 mol x kg(-1)) were detected in P. damicornis planulae, yet higher concentrations were measured in Dendrophyllia planulae (K=6.0 mol x kg(-1); Cl=5.1 mol x kg(-1)). No significant (P>0.05) differences in concentration were observed between inclusions in freeze-substituted and freeze-dried sections of planulae. Symbiotic algae (zooxanthellae) in P. damicornis planulae and settled larvae also contained deposits with high levels of K and Cl, but these were not positively correlated and no structures associated with them were retained by fixation. Significant (P<0.05) concentration differences were also observed between deposits in freeze-substituted and freeze-dried sections. However, similar to 'kalisomes,' zooxanthellae deposits were more abundant in settled larvae than planulae and absent in mature polyps. Higher concentrations of K and Cl were also detected in settled larvae (K=0.7 mol x kg(-1); Cl=1.1 mol x kg(-1)) in comparison to planulae (K=0.4 mol x kg(-1); Cl=0.5 mol x kg(-1)).  相似文献   

13.
Broadcast-spawning corals expel eggs and sperm, and the fertilized eggs develop into planulae in the water column. As these sessile corals generally disperse during the planktonic larval stage, their larval characteristics (e.g., survival and settlement rates) are thought to be important for their dispersal. Although some studies of coral larval dispersal have focused on the maximum time that larvae can remain viable and settle, the relevance of this maximum settlement competency period for long distance dispersal remains unclear. To examine the relationship between competency periods and genetic differentiation, we performed laboratory experiments to investigate settlement rates of planulae and determine the degree of genetic differentiation in Acropora digitifera in the Ryukyu Archipelago, southern Japan. In addition, we compared our findings to published data for A. tenuis, which was studied using our methods. Our results indicated that the maximum settlement competency period was lower in A. digitifera planulae (54 days) than in A. tenuis (69 days) planulae. The mean survival rates at 45 days and 59 days after spawning were less than 10%. Furthermore, percentages of planulae that remained viable and settle at 30 days after spawning (survival rate x settlement rates at 30 days) were approximately 18% and 25% in A. digitifera and A. tenuis, respectively. By contrast, gene flow (N(e)m: number of migrations per generation) was significantly higher in A. digitifera (7.8 to 41.4) than in A. tenuis (3.1 to 22.5). These results indicate that the settlement competency period and survival rates are unlikely to be robust predictors of gene flow. Overall, we detected significant genetic differentiation between Kerama and Okinawa in A. digitifera. As direct observation of planula dispersal between Kerama and Okinawa has been reported, we concluded that genetic mixing is not complete, but that some localized planulae may disperse from Kerama to Okinawa via a specific current depending on reef or locality.  相似文献   

14.
Summary

The embryonic origin of the nervous system in Phialidium gregarium was investigated. Entoderm-free planulae, surgically produced by bisection at mid-gastrulation, and normal planulae were examined by light and electron microscopy to determine their cellular composition. The cell types that occur in the epidermis of the normal planula were described. The entoderm-free planulae were found to be devoid of interstitial cells and their derivatives, the nematocytes and ganglion cells. Neurosensory cells were present, however, indicating that they are derivatives of the ectodermal epithelium.

The role of nerve elements in the initiation of metamorphosis was also examined. Normal and entoderm-free planulae treated for four hours with 0.4% colchicine at two, three, or four days of development fail to undergo cesium-induced metamorphosis. Since such treatment in other hydrozoans eliminates interstitial cells and their derivatives [1-3], it might be argued that ganglion cells are necessary to initiate metamorphosis. The observation that entoderm-free planulae, devoid of interstitial cell derivatives, are capable of responding to induction by bacteria or cesium, however, indicates that in Phialidium the colchicine effect is on other cell types. The results are compared with findings for other Cnidaria.  相似文献   

15.
The recruitment of scyphomedusae planulae to the benthic polyp stage is important for population size and may be affected under projected climate change scenarios. In a laboratory study, we determined the combined effects of elevated temperature and reduced salinity on the behaviour, survival and settlement of Aurelia coerulea planulae. Three temperature levels (21, 24 and 27°C) and two salinity levels (31 and 22) were used. Reduced salinity had a significant negative effect on the swimming behaviour and settlement of A. coerulea planulae. The planulae moved quickly and preferred to settle under ambient salinity conditions. The settlement rate of A. coerulea planulae was high during the current ambient summer temperature (24°C), and elevated temperature increased the mortality rate and reduced their settlement rate. A. coerulea planulae were significantly smaller under the combined conditions of elevated temperature and reduced salinity. Our study provides information on the response of A. coerulea planulae to temperature and salinity, which is helpful for understanding how environmental factors will influence the recruitment dynamics of A. coerulea.  相似文献   

16.
Abstract. The reproductive biology, development, and planula behavior of the gorgonian Pseudopterogorgia elisabethae were studied at 2 sites in the Bahamas between 1996 and 2001. Colonies were gonochoric, and females brooded planulae on the colony surface. Gonads were observed only in colonies 18 cm high or larger. Spawning was asynchronous within and between sites but was concentrated 2–10 days after the new moons from late November through early January. Fertilized eggs developed into planulae over 1–2 days and the planulae remained attached to the surface of the female colony for an additional 2–4 days. Planulae were negatively buoyant and field observations suggest that larvae may settle within tens of meters of the maternal colony. P. elisabethae is harvested for natural products, and information on the reproduction of this commercially important species is crucial to the understanding of its population biology and to the development of management plans for the conservation of the species.  相似文献   

17.
Coral planulae settle, then metamorphose and form polyps. This study examined the morphological process of metamorphosis from planulae into primary polyps in the scleractinian corals Acropora nobilis and Acropora microphthalma, using the cnidarian neuropeptide Hym-248. These two species release eggs that do not contain Symbiodinium. The mode of acquisition of freshly isolated Symbiodinium (zooxanthellae) (FIZ) by the non-symbiotic polyp was also examined. Non-Hym-248 treated swimming Acropora planulae did not develop blastopore, mesenteries or coelenteron until the induction of metamorphosis 16 days after fertilization. The oral pore was formed by invagination of the epidermal layer after formation of the coelenteron in metamorphosing polyps. At 3 days after settlement and metamorphosis, primary polyps exposed to FIZ established symbioses with the Symbiodinium. Two–four days after exposure to FIZ, the distribution of Symbiodinium was limited to the gastrodermis of the pharynx and basal part of the polyps. Eight–ten days after exposure to FIZ, Symbiodinium were present in gastrodermal cells throughout the polyps.  相似文献   

18.
Larvae from diverse marine-invertebrate phyla are able to respondrapidly to environmental cues to settlement and to undergo veryrapid metamorphic morphogenesis because they share the developmentaltrait of metamorphic competence. The competent state, characteristicof larvae as diverse as those of cnidarian planulae, molluscanveligers, and barnacle cyprids, is one in which nearly all requisitejuvenile characters are present in the larva prior to settlement.Thus metamorphosis, in response to more or less specific environmentalcues (inducers), is mainly restricted to loss of larva-specificstructures and physiological processes. Competent larvae oftwo "model marine invertebrates" studied in the authors' laboratory,the serpulid polychaete Hydroides elegans and the nudibranchPhestilla sibogae, complete metamorphosis in about 12 and 20hr, respectively. Furthermore, little or no de novo gene actionappears to be required during the metamorphic induction processin these species. Contrasting greatly with the slow, hormonallyregulated metamorphic transitions of vertebrates and insects,competence and consequent rapid metamorphosis in marine invertebratelarvae are conjectured to have arisen in diverse phylogeneticclades because they allow larvae to continue to swim and feedin the planktonic realm while simultaneously permitting extremelyfast morphological transition from larval locomotory and feedingmodes to a different set of such modes that are adaptive tolife on the sea bottom.  相似文献   

19.
Restoration of degraded coral reef communities is dependent on successful recruitment and survival of new coral planulae. Degraded reefs are often characterized by high cover of fleshy algae and high microbial densities, complemented by low abundance of coral and coral recruits. Here, we investigated how the presence and abundance of macroalgae and microbes affected recruitment success of a common Hawaiian coral. We found that the presence of algae reduced survivorship and settlement success of planulae. With the addition of the broad-spectrum antibiotic, ampicillin, these negative effects were reversed, suggesting that algae indirectly cause planular mortality by enhancing microbial concentrations or by weakening the coral’s resistance to microbial infections. Algae further reduced recruitment success of corals as planulae preferentially settled on algal surfaces, but later suffered 100% mortality. In contrast to survival, settlement was unsuccessful in treatments containing antibiotics, suggesting that benthic microbes may be necessary to induce settlement. These experiments highlight potential complex interactions that govern the relationships between microbes, algae and corals and emphasize the importance of microbial dynamics in coral reef ecology and restoration. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
The settling behaviour and substratum preferences of the planulae of the Red Sea soft corals Xenia macrospiculata Gohar and Parerythropodium fulvum fulvum (Forskl) were examined in the laboratory. The planulae of the two species have a short pelagic phase and they tend to settle immediately upon leaving the parent colonies. Mucous secretion is used by the larvae for crawling and adhering to the substratum. They exhibit an aggregated pattern of settlement. The developing polyps are found in depressions or pits of the substratum. The planulae preferentially settle on rough substrata and avoid smooth surfaces. They search for substrata covered with an organic coating, composed of turf or crustose coralline algae. Such substrata create better conditions for larval settlement and metamorphosis. The planulae of P. f. fulvum exhibit a striking preference for upside-down attachment on undersides of the substrata, while Xenia macrospiculata utilizes both substratum faces for settlement. Light intensity seems insignificant in determining attachment sites. The findings of the experiments correspond well with the distributional patterns of juveniles of the two species as found in the natural environment. The specific requirements for settling of both species increase their chances of successful development and thus enhance their survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号