首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Galectin-3 is a β-galactoside binding lectin with roles in diverse processes including proliferation, apoptosis, inflammation and fibrosis which are dependent on different domains of the molecule and subcellular distribution. Although galectin-3 is known to be upregulated in acute kidney injury, the relative importance of its different domains and functions are poorly understood in the underlying pathogenesis. Therefore we experimentally modulated galectin-3 in folic acid (FA)-induced acute kidney injury utilising modified citrus pectin (MCP), a derivative of pectin which can bind to the galectin-3 carbohydrate recognition domain thereby predominantly antagonising functions linked to this role. Mice were pre-treated with normal or 1% MCP-supplemented drinking water one week before FA injection. During the initial injury phase, all FA-treated mice lost weight whilst their kidneys enlarged secondary to the renal insult; these gross changes were significantly lessened in the MCP group but this was not associated with significant changes in galectin-3 expression. At a histological level, MCP clearly reduced renal cell proliferation but did not affect apoptosis. Later, during the recovery phase at two weeks, MCP-treated mice demonstrated reduced galectin-3 in association with decreased renal fibrosis, macrophages, pro-inflammatory cytokine expression and apoptosis. Other renal galectins, galectin-1 and -9, were unchanged. Our data indicates that MCP is protective in experimental nephropathy with modulation of early proliferation and later galectin-3 expression, apoptosis and fibrosis. This raises the possibility that MCP may be a novel strategy to reduce renal injury in the long term, perhaps via carbohydrate binding-related functions of galectin-3.  相似文献   

2.
This study investigated the antibacterial activity of glycolipid-rich extracts of the brown macroalga Fucus evanescens in cell culture. Accessions were collected on the Arctic coast of Ungava Bay, Nunavik, Quebec. The crude ethyl acetate extract of these accessions showed strong antibacterial activity (≥4 log(10) cfu) against Hemophilus influenzae , Legionella pneumophila , Propionibacterium acnes (ATCC and clinical isolate), and Streptococcus pyogenes at 100?μg/mL. This algal extract inhibited by 3 log(10) Clostridium difficile and methicillin-resistant Staphylococcus aureus , whereas Bacillus cereus , Escherichia coli , Klebsiella pneumoniae , and Pseudomonas aeruginosa were not significantly affected. Further investigations of the activity of a glycolipid-rich fraction, extracted with dichloromethane, against Propionibacterium acnes showed an MIC(100) of 50?μg/mL, with an inhibition of more than 99% at only 7.8?μg/mL. The main active compound, a β-d-galactosyl O-linked glycolipid, was synthesized for the bioassay and showed an MIC(100) of 50?μg/mL but lost its activity more quickly with only 50% of inhibition at 12.5?μg/mL. Therefore, the semipurified F. evanescens extract could be a good choice for future research into the development of alternative treatments for acne therapy.  相似文献   

3.
In this minireview, we examine the ability of modified citrus pectin (MCP), a complex water soluble indigestible polysaccharide obtained from the peel and pulp of citrus fruits and modified by means of high pH and temperature treatment, to affect numerous rate-limiting steps in cancer metastasis. The anti-adhesive properties of MCP as well as its potential for increasing apoptotic responses of tumor cells to chemotherapy by inhibiting galectin-3 anti-apoptotic function are discussed in the light of a potential use of this carbohydrate-based substance in the treatment of multiple human malignancies.  相似文献   

4.
Prostate cancer will develop chemoresistance following a period of chemotherapy. This is due, in part, to the acquisition of antiapoptotic properties by the cancer cells and, therefore, development of novel strategies for treatment is of critical need. Here, we attempt to clarify the role of the antiapoptotic molecule galectin-3 in prostate cancer cells using siRNA and antagonist approaches. The data showed that Gal-3 inhibition by siRNA or its antagonist GCS-100/modified citrus pectin (MCP) increased cisplatin-induced apoptosis of PC3 cells. Recent studies have indicated that cisplatin-induced apoptosis may be mediated by calpain, a calcium-dependent protease, as its activation leads to cleavage of androgen receptor into an androgen-independent isoform in prostate cancer cells. Thus, we examined whether calpain activation is associated with the Gal-3 function of regulating apoptosis. Here, we report that Gal-3 inhibition by siRNA or GCS-100/MCP enhances calpain activation, whereas Gal-3 overexpression inhibits it. Inhibition of calpain using its inhibitor and/or siRNA attenuated the proapoptotic effect of Gal-3 inhibition, suggesting that calpain activation may be a novel mechanism for the proapoptotic effect of Gal-3 inhibition. Thus, a paradigm shift for treating prostate cancer is suggested whereby a combination of a non-toxic anti-Gal-3 drug together with a toxic chemotherapeutic agent could serve as a novel therapeutic modality for chemoresistant prostate cancers.  相似文献   

5.
Citrus pectin (CP) and pH-modified citrus pectin (MCP) are highly branched and non-branched complex polysaccharides, respectively, rich in galactoside residues, capable of combining with the carbohydrate-binding domain of galectin-3. We reported previously that intravenous injection of B16-F1 murine melanoma cells with CP or MCP into syngeneic mice resulted in a significant increase or decrease of lung colonization, respectively (Platt D, Raz A (1992)J Natl Cancer Inst 84:438–42). Here we studied the effects of these polysaccharides on cell-cell and cell-matrix interactions mediated by carbohydrate-recognition. MCP, but not CP, inhibited B16-F1 melanoma cells adhesion to laminin and asialofetuin-induced homotypic aggregation. Both polysaccharides inhibited anchorage-independent growth of B16-F1 cells in semisolid medium, i.e. agarose. These results indicate that carbohydrate-recognition by cell surface galectin-3 may be involved in cell-extracellular matrix interaction and play a role in anchorage-independent growth as well as thein vivo embolization of tumour cells.Abbreviations CP natural citrus pectin - MCP pH-modified CP - EHS Englebreth-Holm Swarm - CMF-PBS Ca2+-and Mg2+-free phosphate-buffered saline, pH 7.2 - HRP horseradish peroxidase - ABTS 2,2-azino-di(3-ethylbenzthiazoline sulfonic acid - DMEM Dulbecco's modified Eagle's minimal essential medium - BSA bovine serum albumin  相似文献   

6.
Pectin has been shown to inhibit the actions of galectin-3, a β-galactoside-binding protein associated with cancer progression. The structural features of pectin involved in this activity remain unclear. We investigated the effects of different ginseng pectins on galectin-3 action. The rhamnogalacturonan I-rich pectin fragment, RG-I-4, potently inhibited galectin-3-mediated hemagglutination, cancer cell adhesion and homotypic aggregation, and binding of galectin-3 to T-cells. RG-I-4 specifically bound to the carbohydrate recognition domain of galectin-3 with a dissociation constant of 22.2 nm, which was determined by surface plasmon resonance analysis. The structure-activity relationship of RG-I-4 was investigated by modifying the structure through various enzymatic and chemical methods followed by activity tests. The results showed that (a) galactan side chains were essential to the activity of RG-I-4, whereas arabinan side chains positively or negatively regulated the activity depending on their location within the RG-I-4 molecule. (b) The activity of galactan chain was proportional to its length up to 4 Gal residues and largely unchanged thereafter. (c) The majority of galactan side chains in RG-I-4 were short with low activities. (d) The high activity of RG-I-4 resulted from the cooperative action of these side chains. (e) The backbone of the molecule was very important to RG-I-4 activity, possibly by maintaining a structural conformation of the whole molecule. (f) The isolated backbone could bind galectin-3, which was insensitive to lactose treatment. The novel discovery that the side chains and backbone play distinct roles in regulating RG-I-4 activity is valuable for producing highly active pectin-based galectin-3 inhibitors.  相似文献   

7.
The O-polysaccharide fraction of the lipopolysaccharide from Klebsiella pneumoniae serotype O8 was found to comprise two galactose-containing homopolymers. Structural analysis, using chemical and high-field nuclear magnetic resonance (NMR) techniques, established that the K. pneumoniae O8 polysaccharides are composed of the linear, disaccharide repeating units OAc 1 2/6 →3)-β-d -Galf-(1 →3)-α- d -Galp-(1→d -Galactan I-OAc →3)-α-d -Galp-(1 →3)-β-d -Galp-(1→d -Galactan II. K. pneumoniae O8 mutant RFK-1 was isolated by resistance to phage KO1-2; strain RFK-1 expressed only d -galactan I-OAc. The 1H- and 13C-NMR resonances from this O-polysaccharide indicate that all of the O-acetyl groups within the K. pneumoniae O8 polysaccharide are carried on d -galactan I and O-acetylation occurs only on the β- d -galactofuranose residues; 60% of the available β- d -galactofuranose residues are non-acetylated. The O-acetylation of the remaining residues is equally distributed between the O-2 and O-6 positions. The carbohydrate backbone structures in the O8 polysaccharide are identical to d -galactan I and II expressed by K. pneumoniae O1, accounting for the antigenic cross-reaction between strains belonging to serotypes O1 and O8. However, the O1 polysaccharides are not acetylated and the O-acetyl groups present in the K. pneumoniae serotype O8 polysaccharides provide a structural basis for their recognition as distinct serotypes. The rfb (O-polysaccharide biosynthesis) gene cluster of K. pneumoniae serotype O1 determines the synthesis of d -galactan I. rfbKpo1-specific gene probes were used to examine conservation in the rfb gene clusters of other K. pneumoniae serotypes which produce d -galactan I. Six O1 strains were examined and all showed hybridization with rfbKpO1 probes under conditions of high stringency. Three serotype O2 strains produce d -galactan I and these strains also contained DNA sequences recognized by rfbKpO1 probes under high stringency. The physical maps of these homologous rfb chromosomal regions showed some polymorphism. Surprisingly, the rfbKpO8 region from K. pneumoniae serotype O8 was only recognized by rfbKpO1 probes under low-stringency hybridization conditions, providing evidence for two substantially different clonal groups of rfb genes from K. pneumoniae strains with structurally related O-antigens.  相似文献   

8.
The partially degraded polysaccharide obtained by means of mild acid hydrolysis of APS–I, an acidic polysaccharide in soy sauce, was incubated with an endo-polygalacturonase, and some acidic sugars liberated were fractionated and purified from the enzymatic hydrolyzate. They were identified as d-galacturonic acid (Gal A), its α-l,4-linked dimer and trimer, d-xylose (Xyl) β1→3 Gal A and Xyl β1→3 Gal A α1→4 Gal A, and an acidic polymer composed of the above-mentioned sugars through methylation analysis and other methods.

Methyl-esterized APS–I was subjected to β-elimination with pectin lyase or by heat treatment. The high molecular fraction which was highly resistant to β-elimination, was concluded to be β-1,4-linked d-galactan of which reducing-end group was attached to d-galacturonic acid. On the basis of these findings and previous knowledges, the construction of APS–I was also discussed.  相似文献   

9.
Adhesion and spreading of retinal pigment epithelial (RPE) cells on fibronectin-rich extracellular matrices is a crucial event in the pathogenesis of proliferative vitreoretinopathy (PVR). In the present study we explored the capacity of galectin-3, a β-galactoside-binding endogenous lectin, to inhibit early PVR-associated cellular events from a therapeutic perspective. We assessed the relative expression levels of galectin-3 in native RPE and dedifferentiated, cultured RPE. Galectin-3 was constitutively expressed under in vivo and in vitro conditions and was abundant in cultured cells. Treatment of human RPE cells with soluble galectin-3 disclosed no toxicity within control limits up to 250 μg/ml. When added to the medium, galectin-3 dose-dependently inhibited attachment and spreading of the cells on fibronectin by more than 75%. When coated on the plastic surface, galectin-3 alone impaired attachment and spreading of RPE cells, and reduced attachment but not spreading on fibronectin. Galectin-3 bound to the cell surface, and, as determined by the use of the competing sugar β-lactose, galectin-3-mediated effects were dependent on carbohydrate binding. To ascertain the role of the ability of galectin-3 to form pentamers, we proteolytically removed the N-terminal, cross-linking section. The remaining C-terminal carbohydrate-binding domain alone failed to bind to cells and was functionally inactive. These results emphasize the relevance of both properties, i.e., glycan-binding and cross-linking of glycan moieties, for the inhibitory activity of galectin-3. Incubation of mobilized RPE cells with galectin-3 significantly disturbed microfilament assembly and, in correlation with decreased attachment, inhibited ERK phosphorylation. Therefore, galectin-3, acting as a cross-linking lectin on the cell surface, negatively regulates attachment and spreading of RPE cells in vitro. This effect, at least in part, is attributed to an inhibition of the ERK-MAPK pathway, which prevents cytoskeletal rearrangements needed for RPE cell attachment and spreading. Further investigation at this pathway may disclose a promising nouveau perspective for treatment and prophylaxis of early PVR.  相似文献   

10.
Galectin-3, a β-galactoside-binding lectin, has been proposed to have multifaceted functions in various pathophysiological conditions. However, the characteristics of galectin-3 and its molecular mechanisms of action are still largely unknown. In this study, we show that galectin-3 exerts cytokine-like regulatory actions in rat and mouse brain-resident immune cells. Both the expression of galectin-3 and its secretion into the extracellular compartment were significantly enhanced in glia under IFN-γ-stimulated, inflamed conditions. After exposure to galectin-3, glial cells produced high levels of proinflammatory mediators and exhibited activated properties. Notably, within minutes after exposure to galectin-3, JAK2 and STAT1, STAT3, and STAT5 showed considerable enhancement of tyrosine phosphorylation; thereafter, downstream events of STAT signaling were also significantly enhanced. Treatment of the cells with pharmacological inhibitors of JAK2 reduced the galectin-3-stimulated increases of inflammatory mediators. Using IFN-γ receptor 1-deficient mice, we further found that IFN-γR 1 might be required for galectin-3-dependent activation of the JAK-STAT cascade. However, galectin-3 significantly induced phosphorylation of STATs in glial cells from IFN-γ-deficient mice, suggesting that IFN-γ does not mediate activation of STATs. Collectively, our findings suggest that galectin-3 acts as an endogenous danger signaling molecule under pathological conditions in the brain, providing a potential explanation for the molecular basis of galectin-3-associated pathological events.  相似文献   

11.
Galectin-3 is a galactose-/lactose-binding protein (M(r) approximately 30,000), identified as a required factor in the splicing of pre-mRNA. Immunofluorescence staining revealed that galectin-3 distributes differentially between the nucleus and the cytoplasm, depending on the proliferative state of the cells under analysis. Using digitonin-permeabilized mouse 3T3 fibroblasts, we provide evidence that galectin-3 is rapidly and selectively exported from the nucleus. Although both phosphorylated and nonphosphorylated isoforms of galectin-3 are found in the nuclear fraction, only phosphorylated galectin-3 is identified in the exported fraction, implying that phosphorylation is important for the nuclear export of the protein. The rate of galectin-3 export is temperature dependent and is decreased by the addition of wheat germ agglutinin. More strikingly, galectin-3 export can be inhibited by the addition of leptomycin B, a drug that disrupts the interaction between the leucine-rich nuclear export signal and its receptor, CRM1 (chromosome maintenance region 1). Indeed, a putative leucine-rich nuclear export signal can be found in residues 241-249 of the murine galectin-3 sequence. Finally, gel filtration of the exported material showed that galectin-3 can be found in at least two high molecular weight complexes (approximately 650 and approximately 60 kDa), both of which can be disrupted by lactose.  相似文献   

12.
Potato pulp is a poorly utilized, high-volume co-processing product resulting from industrial potato starch manufacturing. Potato pulp mainly consists of the tuber plant cell wall material and is particularly rich in pectin, notably galactan branched rhamnogalacturonan I type pectin which has previously been shown to exhibit promising properties as dietary fiber. The objective of this study was to solubilize dietary fibers from potato pulp by a one-step minimal treatment procedure and evaluate the prebiotic potential of the fibers. Statistically designed experiments were conducted to investigate the influence of enzyme type, dosage, substrate level, incubation time, and temperature on the enzyme catalyzed solubilization to define the optimal minimal enzyme treatment for maximal fiber solubilization. The result was a method that within 1 min released 75% [weight/weight (w/w)] dry matter from 1% (w/w) potato pulp treated with 1.0% (w/w) [enzyme/substrate (E/S)] pectin lyase from Aspergillus nidulans and 1.0% (w/w) E/S polygalacturonase from Aspergillus aculeatus at pH 6.0 and 60 °C. Molecular size fractionation of the solubilized fibers revealed two major fractions: one fraction rich in galacturonic acid of 10–100 kDa indicating mainly homogalacturonan, and a fraction >100 kDa rich in galactose, presumably mainly made up of β-1,4-galactan chains of rhamnogalacturonan I. When fermented in vitro by microbial communities derived from fecal samples from three healthy human volunteers, both of the solubilized fiber fractions were more bifidogenic than fructo-oligosaccharides (FOS). Notably the fibers having molecular masses of >100 kDa selectively increased the densities of Bifidobacterium spp. and Lactobacillus spp. 2–3 times more than FOS.  相似文献   

13.
The paper describes the bio efficacy of a protease inhibitor; isolated from Allium sativumgarlic’ (ASPI); against Aedes aegypti mosquito, a well-known transmitter of dengue and Chikungunya. The purification of protease inhibitor from Allium sativumgarlic’ (ASPI) was carried out by ammonium sulfate precipitation followed by Fast Protein Liquid Chromatography using akta DEAE-Cellulose column. The protein fraction demonstrating trypsin inhibitory activity was further evaluated for its insecticidal activity using gut protease inhibition assay and larvicidal assay. ASPI is an inhibitor of porcine trypsin (IC50 of 650.726?μg/mL) and has molecular weight of ~15?kDa determined by SDS PAGE similar to other inhibitors of the Kunitz-type family (14–26?kDa). ASPI demonstrated 50% reduced activity of Ae. aegypti midgut proteases and showed a dose-dependent acute toxicity on Ae. aegypti 3rd instars exhibiting LC50 value of ~50.827?μg/mL. After ten days of larval exposure ASPI resulted in a 24-h delay of larval development and ~72% mortality at 61.5?μg/mL. These results suggest that ASPI may serve as potent insecticidal agent and hence opens a new gateway in the field of phyto-remediation.  相似文献   

14.
Microbial β‐1,4‐galactanases are glycoside hydrolases belonging to family 53, which degrade galactan and arabinogalactan side chains in the hairy regions of pectin, a major plant cell wall component. They belong to the larger clan GH‐A of glycoside hydrolases, which cover many different poly‐ and oligosaccharidase specificities. Crystallographic complexes of Bacillus licheniformis β‐1,4‐galactanase and its inactive nucleophile mutant have been obtained with methyl‐β(1→4)‐galactotetraoside, providing, for the first time, information on substrate binding to the aglycone side of the β‐1,4‐galactanase substrate binding groove. Using the experimentally determined subsites as a starting point, a β(1→4)‐galactononaose was built into the structure and subjected to molecular dynamics simulations giving further insight into the residues involved in the binding of the polysaccharide from subsite ?4 to +5. In particular, this analysis newly identified a conserved β‐turn, which contributes to subsites ?2 to +3. This β‐turn is unique to family 53 β‐1,4‐galactanases among all clan GH‐A families that have been structurally characterized and thus might be a structural signature for endo‐β‐1,4‐galactanase specificity. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
D-Galacto-D-xylo-D-glucans (amyloids) from Balsamina, Tropaeolum, and Tamarindus seeds behave in a similar manner in the presence of various glycosidase preparations: slow depolymerization by enzymes from several germinated or non-germinated seeds, and hydrolysis into monosaccharides and oligosaccharides by commercial cellulase and hemicellulase preparations from fungi. A purified cellulase from Penicillium notatum gave a dialyzable fraction almost exclusively composed of α-D-xylopyranosyl-(1→6)-D-glucose residues and a nondialyzable fraction composed of chains of β-D-(1→4)[withsome (1→3)]-glucopyranosyl residues; β-D-galacto-pyranosyl-(1→2)-α-D-xylosyl groups are linked to some of the β-D-glucosyl residues at 0-6. The presence of (1→3)-linkages in the D-glucan chain of the Balsamina was verified by methylation and sequential periodate oxidation-borohydride reduction; the distribution of the substituents on the D-glucan chain is not regular. The main D-glucan backbone, where the β-D-glucosyl residues are partly linked at 0-6 to β-D-galactosyl-(1→2)-D-xylosyl groups, is linked to D-glucan chains where almost all the D-glucose units are linked at 0-6 by one α-D-xylosyl group. The presence of 3,6-di-O-methyl-D-glucose after permethylation and hydrolysis suggests that the xyloglucan chains are linked to 0-2 of the D-glucosyl units of the galactoxyloglucan backbone.  相似文献   

16.
Immunochemical studies on the specificity of soybean agglutinin   总被引:9,自引:0,他引:9  
The specificity of the purified soybean agglutinin has been studied immunochemically by quantitative precipitin and quantitative precipitin inhibition assays. The lectin is precipitated by human A and Lea blood-group substance, by the products of the second, third, fourth, and fifth stages of periodate oxidation of a human H blood-group substance (JS), and by precursor blood-group substances, as well as by a pig-submaxillary mucin having blood-group A activity, by partially hydrolyzed blood-group B substances (Pl fraction), and by group C streptococcal polysaccharide. The activity is attributable to terminal α-linked 2-acetamido-2-deoxy-d-galactopyranosyl or to α- or β-d-galactopyranosyl residues. The lectin did not precipitate with human blood-group H substances, with the product of the first stage of periodate oxidation (JS), with streptococcal group A polysaccharide, or with pig-submaxillary mucin devoid of blood-group A activity, and is poorly precipitated by blood-group B substances. Inhibition of precipitation with various monosaccharides indicated that the lectin is strongly specific for 2-acetamido-2-deoxy-d-galactose and for its oligosaccharides, and to a lesser extent for d-galactose and its oligosaccharides; the α-glycosides of both sugars were slightly more reactive than the β-glycosides of 2-acetamido-2-deoxy-d-galactose, and both α- and β-glycosides were more active than the free monosaccharides. Aromatic α- and β-glycosides of 2-acetamido-2-deoxy-d-galactose and d-galactose were better inhibitors than the corresponding methyl or ethyl compounds. The blood-group A trisaccharide α-d-GalNAcp-(1→3)-β-d-Galp-(1→3)-d-GlcNAc was more active than the disaccharide lectins by the use of precipitation with polysaccharides, as well as inhibition reactions, is essential to the understanding of their reactivity with cell-surface receptors.  相似文献   

17.
为明确紫球藻多糖的化学结构,本文采用化学分析和光谱分析方法对紫球藻多糖的一级糖链结构进行了分析。GC分析表明该多糖由木糖、葡萄糖和半乳糖组成,为一种杂多糖,其摩尔比为:2.96∶1.25∶3.06;红外光谱分析结果显示紫球藻多糖为硫酸化多糖,糖苷键类型为β构型;化学分析结果推断紫球藻多糖糖链连接方式以1→3为主,存在少量1→2,1→4,1→6键型,且半乳糖在支链或主链末端有较大量的存在,木糖和葡萄糖在主链或靠近主链区域有特定分布;NMR分析显示紫球藻多糖的硫酸酯基连在C-6上,且多糖的糖苷键为β型;GC-MS联机分析进一步确定紫球藻多糖为一种主要含有1→3糖苷键,并含有1→4,1→6糖苷键的杂多糖。综合上述分析,推断出紫球藻多糖的糖链主链的重复单元结构。  相似文献   

18.
Two amyloid-type fractions were isolated from field-bean (Dolichos lablab) hulls by 10% alkali extraction followed by acetylation and solvent fractionation. The major, chloroform-insoluble fraction and a minor, chloroform-soluble fraction were found to be homogeneous in sedimentation analysis and molecular-sieve chromatography. The polysaccharides contained xylose and glucose in various proportions. Methylation analysis, periodate oxidation, Smith degradation, oxidation by chromium trioxide, and oligosaccharide studies indicated a new type of structure for the major fraction (glucose:xylose ratio of 1.9:1) in that it had a backbone of (1→4)-linked β-d-glucose residues interspersed with single or multiple residues of (1→4)-linked β-d-xylose, and to which some single d-xylosyl groups are attached through O-6 of d-glucose. In contrast, the minor fraction (glucose:xylose ratio of 1:3.7) had a backbone of (1→4)-linked β-d-xylose interspersed with (1→4)-β-d-glucose and having a side chain of d-xylose, attached through O-6 of d-glucose. The third fraction was found to be a mixture of linear (1→4)-d-glucan and (1→4)-d-xylan.  相似文献   

19.
Organic extracts of the sponge Aplysina fistularis (Pallas 1766) were tested for antimicrobial activity against Gram positive bacteria (Staphylococcus aureus) and Gram negative bacteria (Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa). The minimal inhibitory concentration (MIC) and toxic activity of extract were determined. Susceptibility trials of organic fractions obtained by VLC: Hexane, EtOAc and CHCl3 showed that EtOAc fraction has antibacterial activity against E. coli, while CHCl3 fraction inhibited E. coli and S. aureus growth. The later refractioning of EtOAc fraction and the biodirected assays showed that fractions F12 and F13 of EtOAc/Hex and EtOAc F14 were bioactive against Gram positive and Gram negative bacteria. Only EtOAc/MeOH Sf2 from subfractionig of EtOAc F14 produced inhibition for E. coli and S. aureus. In Sf2 EtOAc/MeOH, MIC was moderate for S. aureus (MIC > 256 g/ml). F4 CHCl3/MeOH produced a high inhibition in S. aureus (MIC = 0.125 g/ml) and for E. coli (MIC > 16 g/ml). F10 CHCl3/MeOH showed a moderate activity against S. aureus (MIC > 128 g/ml) and low activity against E. coli (MIC = 512 g/ml). F10 CHCL3/MeOH did no present toxic activity against Artemia salina. The fractiorts F4 CHCL3/MeOH and Sf2 EtOAc/MeOH were toxic for this organism when the concentration was higher than 100 microg/ml. LC50 in both cases was 548.4 and 243.4 microg/ml respectively. Secondary metabolites of medium polarity obtained from A. fistularis have a wide spectrum of anti bacterial activity. Toxicity analysis suggests that only F10 CHCL3/MeOH has potential as an antimicrobial agent for clinical use.  相似文献   

20.
Arabinogalactans (AGs) are branched galactans to which arabinose residues are bound as side chains and are widely distributed in plant cell walls. They can be grouped into two types based on the structures of their backbones. Type I AGs have β-1,4-galactan backbones and are often covalently linked to the rhamnogalacturonan-I region of pectins. Type II AGs have β-1,3-galactan backbones and are often covalently linked to proteins. The main enzymes involved in the degradation of AGs are endo-β-galactanases, exo-β-galactanases, and β-galactosidases, although other enzymes such as α-l-arabinofuranosidases, β-l-arabinopyranosidases, and β-d-glucuronidases are required to remove the side chains for efficient degradation of the polysaccharides. Galactanolytic enzymes have a wide variety of potential uses, including the bioconversion of AGs to fermentable sugars for production of commodity chemicals like ethanol, biobleaching of cellulose pulp, modulation of pectin properties, improving animal feed, and determining the chemical structure of AGs. This review summarizes our current knowledge about the biochemical properties and potential applications of AG-degrading enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号