首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A technical set-up for irradiation of subcutaneous tumours in mice with nanosecond-pulsed proton beams or continuous proton beams is described and was successfully used in a first experiment to explore future potential of laser-driven particle beams, which are pulsed due to the acceleration process, for radiation therapy. The chosen concept uses a microbeam approach. By focusing the beam to approximately 100 × 100 μm(2), the necessary fluence of 10(9) protons per cm(2) to deliver a dose of 20 Gy with one-nanosecond shot in the Bragg peak of 23 MeV protons is achieved. Electrical and mechanical beam scanning combines rapid dose delivery with large scan ranges. Aluminium sheets one millimetre in front of the target are used as beam energy degrader, necessary for adjusting the depth-dose profile. The required procedures for treatment planning and dose verification are presented. In a first experiment, 24 tumours in mice were successfully irradiated with 23 MeV protons and a single dose of 20 Gy in pulsed or continuous mode with dose differences between both modes of 10%. So far, no significant difference in tumour growth delay was observed.  相似文献   

2.
In particle tumor therapy including beam scanning at accelerators, the dose per voxel is delivered within about 100 ms. In contrast, the new technology of laser plasma acceleration will produce ultimately shorter particle packages that deliver the dose within a nanosecond. Here, possible differences for relative biological effectiveness in creating DNA double-strand breaks in pulsed or continuous irradiation mode are studied. HeLa cells were irradiated with 1 or 5 Gy of 20-MeV protons at the Munich tandem accelerator, either at continuous mode (100 ms), or applying a single pulse of 1-ns duration. Cells were fixed 1 h after 1-Gy irradiation and 24 h after 5-Gy irradiation, respectively. A dose–effect curve based on five doses of X-rays was taken as reference. The total number of phosphorylated histone H2AX (gamma-H2AX) foci per cell was determined using a custom-made software macro for gamma-H2AX foci counting. For 1 h after 1-Gy 20-MeV proton exposures, values for the relative biological effectiveness (RBE) of 0.97 ± 0.19 for pulsed and 1.13 ± 0.21 for continuous irradiations were obtained in the first experiment 1.13 ± 0.09 and 1.16 ± 0.09 in the second experiment. After 5 Gy and 24 h, RBE values of 0.99 ± 0.29 and 0.91 ± 0.23 were calculated, respectively. Based on the gamma-H2AX foci numbers obtained, no significant differences in RBE between pulsed and continuous proton irradiation in HeLa cells were detected. These results are well in line with our data on micronucleus induction in HeLa cells.  相似文献   

3.
The results of the comparative study of radiation effects of the pulse reactor BARS-6 either in single pulse or continuos irradiation mode on human G0 lymphocytes are presented. Under identical doses the cytogenetic efficiency was observed to be higher for continuous irradiation (1 hour) than for single pulse irradiation with ultrahigh dose rate (0.5-3) x 106 Gy/minutes (pulse duration 65 x 10(-6) s). The difference averaged about 37% on total aberration frequency and 27% on the sum of dicentrics and centric rings. The influence of the dose rate and of the mixed gamma-neutron irradiation on the obtained results is discussed.  相似文献   

4.
The effectiveness of a 70-MeV proton beam in the induction of chromosome aberrations was studied. We employed peripheral lymphocytes and analyzed the frequencies of dicentrics and rings after irradiation at doses ranging from 0.1 to 8.0 Gy at various depths within a Lucite phantom. The frequency of chromosome aberrations after irradiation with an unmodulated proton beam at 5 mm showed a dose-response relationship similar to that of 60Co gamma rays. However, irradiation at greater depths with the spread-out Bragg peak induced higher aberration frequencies at doses lower than those with gamma rays. Furthermore, the distribution curve of chromosome aberration frequencies as a function of depth was found to be slightly different from the physically measured depth-dose curve. With the spread-out Bragg peak the biological effects were more marked at greater depths, resulting in a distribution of relative biological effectiveness values. The results obtained from chromosome aberration analysis may not be related directly to those for the relationship between dose and cell killing. Slight differences in values for relative biological effectiveness due to the change of dose and site of proton beam irradiation may not be important for practical proton beam therapy, but may be important in the prevention of late radiation injuries.  相似文献   

5.
The risk of developing normal tissue injuries often limits the radiation dose that can be applied to the tumour in radiation therapy. Microbeam Radiation Therapy (MRT), a spatially fractionated photon radiotherapy is currently tested at the European Synchrotron Radiation Facility (ESRF) to improve normal tissue protection. MRT utilizes an array of microscopically thin and nearly parallel X-ray beams that are generated by a synchrotron. At the ion microprobe SNAKE in Munich focused proton microbeams (“proton microchannels”) are studied to improve normal tissue protection. Here, we comparatively investigate microbeam/microchannel irradiations with sub-millimetre X-ray versus proton beams to minimize the risk of normal tissue damage in a human skin model, in vitro. Skin tissues were irradiated with a mean dose of 2 Gy over the irradiated area either with parallel synchrotron-generated X-ray beams at the ESRF or with 20 MeV protons at SNAKE using four different irradiation modes: homogeneous field, parallel lines and microchannel applications using two different channel sizes. Normal tissue viability as determined in an MTT test was significantly higher after proton or X-ray microchannel irradiation compared to a homogeneous field irradiation. In line with these findings genetic damage, as determined by the measurement of micronuclei in keratinocytes, was significantly reduced after proton or X-ray microchannel compared to a homogeneous field irradiation. Our data show that skin irradiation using either X-ray or proton microchannels maintain a higher cell viability and DNA integrity compared to a homogeneous irradiation, and thus might improve normal tissue protection after radiation therapy.  相似文献   

6.
Since radiation fields of space contain many-fold more protons than high atomic number, high energy (HZE) particles, cells in astronaut crews will experience on average several proton hits before an HZE hit. Thus radiation regimes of proton exposure before HZE particle exposure simulate space radiation exposure, and measurement of the frequency of neoplastic transformation of human primary cells to anchorage-independent growth simulates an initial step in cancer induction. Although previous investigations indicated a synergistic increase in transformation yields in the cells exposed to protons followed by HZE particles, these experiments did not differentiate between the effect of splitting of the dose into two fractions and that of changing the ion beams. To test this, we irradiated cells with split doses of either protons or HZE particles, then measured clonogenic survival and neoplastic transformation, as measured by colony formation in semi-solid soft agar medium. The data show that the split dose of 20 cGy plus 20 cGy of either H or HZE ions gave about the same effect as the 40 cGy uninterrupted dose, quite different from the effect of the mixed ion beam H + HZE irradiation. We also asked if lower proton doses than 20 cGy followed 15 min later by 20 cGy of HZE ions gave greater than additive transformation frequencies. Substantial increases in transformation levels were observed for all proton doses tested, including 1 cGy. These results point to the signal importance of protons in affecting the effect of space radiation on human cells.  相似文献   

7.
During space travel, astronauts will be exposed to protons and heavy charged particles. Since the proton flux is high compared to HZE particles, on average, it is assumed that a cell will be hit by a proton before it is hit by an HZE ion. Although the effects of individual ion species on human cells have been investigated extensively, little is known about the effects of exposure to mixed beam irradiation. To address this, we exposed human epithelial cells to protons followed by HZE particles and analyzed chromosomal damage using the multicolor banding in situ hybridization (mBAND) procedure. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of intra-chromosomal aberrations (inversions and deletions within a single painted chromosome) as well as inter-chromosomal aberrations (translocation to unpainted chromosomes). Our results indicated that chromosome aberration frequencies from exposures to protons followed by Fe ions did not simply decrease as the interval between the two exposures increased, but peak when the interval was 30 min.  相似文献   

8.
细菌视紫红质的光电响应特性和机制   总被引:3,自引:2,他引:1  
在ITO导电玻璃上制备定向细菌视紫红质 (BR)电泳沉积膜或LB膜组成光电池系统 ,在短脉冲激光照射下 ,测定其脉冲响应光电压 ;在间断光照射下 ,测定其对光强变化产生的微分响应信号。对脉冲光电响应和微分响应的机理及其关系进行理论分析和解释 ,认为脉冲响应是BR分子内部生色团快速光极化引起的电荷分离和希夫碱及其周围氨基酸去质子化和再质子化过程引起的质子定向运输产生的位移电流 ,是一个快反应过程 ,是微分响应的早期反应和基础。微分响应则是由于菌紫质的光驱动质子泵产生的连续质子流在光开和光关瞬间引起光电池系统充放电以及测量电路的耦合特性引起的 ,是一个慢变化过程  相似文献   

9.
In experiments with rats a study was made of the radiobiological influence of a pulse frequency (45.9 and 4.5 c-1) of a 1000 MeV proton beam. The estimates of metabolic parameters of the peripheral blood and spleen 24 h and the survival rate during 60 days following irradiation have demonstrated the increase in the biological effectiveness of the proton beam with decreasing pulse frequency. As to 60Co-gamma-radiation, RBE of protons was 1.10 +/- 0.04 at the pulse frequency of 9 c-1 and 0.98 +/- 0.03 at 45 c-1 as determined by the probit-logarithm dose method.  相似文献   

10.
Fast neutrons (FN) have a higher radio-biological effectiveness (RBE) compared with photons, however the mechanism of this increase remains a controversial issue. RBE variations are seen among various FN facilities and at the same facility when different tissue depths or thicknesses of hardening filters are used. These variations lead to uncertainties in dose reporting as well as in the comparisons of clinical results. Besides radiobiology and microdosimetry, another powerful method for the characterization of FN beams is the calculation of total proton and heavy ion kerma spectra. FLUKA and MCNP Monte Carlo code were used to simulate these kerma spectra following a set of microdosimetry measurements performed at the National Accelerator Centre. The calculated spectra confirmed major classical statements: RBE increase is linked to both slow energy protons and alpha particles yielded by (n,alpha) reactions on carbon and oxygen nuclei. The slow energy protons are produced by neutrons having an energy between 10 keV and 10 MeV, while the alpha particles are produced by neutrons having an energy between 10 keV and 15 MeV. Looking at the heavy ion kerma from <15 MeV and the proton kerma from neutrons <10 MeV, it is possible to anticipate y* and RBE trends.  相似文献   

11.
The application of a microchannel proton irradiation was compared to homogeneous irradiation in a three-dimensional human skin model. The goal is to minimize the risk of normal tissue damage by microchannel irradiation, while preserving local tumor control through a homogeneous irradiation of the tumor that is achieved because of beam widening with increasing track length. 20 MeV protons were administered to the skin models in 10- or 50-μm-wide irradiation channels on a quadratic raster with distances of 500 μm between each channel (center to center) applying an average dose of 2 Gy. For comparison, other samples were irradiated homogeneously at the same average dose. Normal tissue viability was significantly enhanced after microchannel proton irradiation compared to homogeneous irradiation. Levels of inflammatory parameters, such as Interleukin-6, TGF-Beta, and Pro-MMP1, were significantly lower in the supernatant of the human skin tissue after microchannel irradiation than after homogeneous irradiation. The genetic damage as determined by the measurement of micronuclei in keratinocytes also differed significantly. This difference was quantified via dose modification factors (DMF) describing the effect of each irradiation mode relative to homogeneous X-ray irradiation, so that the DMF of 1.21 ± 0.20 after homogeneous proton irradiation was reduced to 0.23 ± 0.11 and 0.40 ± 0.12 after microchannel irradiation using 10- and 50-μm-wide channels, respectively. Our data indicate that proton microchannel irradiation maintains cell viability while significantly reducing inflammatory responses and genetic damage compared to homogeneous irradiation, and thus might improve protection of normal tissue after irradiation.  相似文献   

12.
I review recent work at Los Alamos undertaken to evaluate neutron, proton, and photonuclear cross-sections up to 150 MeV (to 250 MeV for protons), based on experimental data and nuclear model calculations. These data are represented in the ENDF format and can be used in computer codes to simulate radiation transport. They permit calculations of absorbed dose in the body from therapy beams, and through use of kerma coefficients allow absorbed dose to be estimated for a given neutron energy distribution. In radiation protection, these data can be used to determine shielding requirements in accelerator environments and to calculate neutron, proton, gamma-ray, and radionuclide production. Illustrative comparisons of the evaluated cross-section and kerma coefficient data with measurements are given.  相似文献   

13.
We present a study of the under-response of the new Gafchromic EBT3 films and a procedure to accurately perform 2D and 3D proton dosimetry measurements for both pristine and spread out Bragg peaks (SOBP) of any energy. These new films differ from the previous EBT2 generation by a slightly different active layer composition, which we show has not effected appreciably their response. The procedure and the beam quality correction factor curve have been benchmarked using 29 MeV modulated proton beams. In order to show the correction to apply when EBT3 films are used as treatment verification tools in anthropomorphic phantoms, two simulation studies involving clinical energies are presented: a SOBP for eye treatments and a SOBP to treat 20 cm deep and 5 cm thick tumours. We find maximum under-responses of 37%, 30% and 7.7% for the modulated 29 MeV beam, eye and deep tumour treatment, respectively, which were attained close to the end of the peak tails, due to a higher proportion of very low energy protons. The maximum deviations between corrected and uncorrected doses were for the three cases, respectively, 20.7%, 8.3% and 2.1% of the average dose across flat region of the SOBP. These values were obtained close to the distal edge of the SOBPs, where the proportion of low energy protons was not as high as on the tail, but there still was a number of protons high enough to deposit a reasonable amount of dose in the films.  相似文献   

14.
In a solar particle event (SPE), an unshielded astronaut would receive proton radiation with an energy profile that produces a highly inhomogeneous dose distribution (skin receiving a greater dose than internal organs). The novel concept of using megavoltage electron-beam radiation to more accurately reproduce both the total dose and the dose distribution of SPE protons and make meaningful RBE comparisons between protons and conventional radiation has been described previously. Here, Yucatan minipigs were used to determine the effects of a superficial, SPE-like proton dose distribution using megavoltage electrons. In these experiments, dose-dependent increases in skin pigmentation, ulceration, keratinocyte necrosis and pigment incontinence were observed. Five of 18 animals (one each exposed to 7.5 Gy and 12.5 Gy radiation and three exposed to 25 Gy radiation) developed symptomatic, radiation-associated pneumonopathy approximately 90 days postirradiation. The three animals from the highest dose group showed evidence of mycoplasmal pneumonia along with radiation pneumonitis. Moreover, delayed-type hypersensitivity was found to be altered, suggesting that superficial irradiation of the skin with ionizing radiation might cause immune dysfunction or dysregulation. In conclusion, using total doses, patterns of dose distribution, and dose rates that are compatible with potential astronaut exposure to SPE radiation, animals experienced significant toxicities that were qualitatively different from toxicities previously reported in pigs for homogeneously delivered radiation at similar doses.  相似文献   

15.
M Gutman  E Nachliel  S Moshiach 《Biochemistry》1989,28(7):2936-2940
The diffusion of protons at the immediate vicinity of (less than 10 A from) a phospholipid membrane is studied by the application of the laser-induced proton pulse. A light-sensitive proton emitter (8-hydroxypyrene-1,3,6-trisulfonate) was trapped exclusively in the hydration layers of multilamellar vesicles made of egg phosphatidylcholine, and the protons were dissociated by a synchronizing laser pulse. The recombination of the proton with pyranin anion was monitored by time-resolved spectroscopy and analyzed by a diffusion-controlled formalism. The measured diffusion coefficient is only slightly smaller than the diffusion coefficient of proton in bulk water. Modulating the width of the hydration layer by external pressure had a direct effect on the diffusibility of the proton: the narrower the hydration layer, the slower is the diffusion of protons.  相似文献   

16.
The native ferric and cyanide-bound ferric forms of nine vertebrate and two yeast cytochromes c have been investigated by high-resolution proton nuclear magnetic resonance spectroscopy. Spectral comparisons have been made among the cytochromes with emphasis on the signal positions for heme and amino acid ligand protons. Consistent with earlier more limited studies of native ferric cytochromes c, the paramagnetically shifted proton NMR signals show little variation among species with up to 50% substitution of amino acids. Proton NMR spectra for the cyanide complexes also show little variation among species. The nitrogen-15 signal for the coordinated cyanide ion is known to be highly variable among other hemoproteins, but the signal covers a range of only 855 to 865 ppm (nitrate ion reference) for vertebrate cytochromes c and 884 to 886 ppm for yeast cytochromes c. The cyanide ligand probe thus reports an amazing conservation of the heme and proximal ligand environment among the cytochromes. Comparative proton and nitrogen-15 chemical shift values are consistent with a slightly stronger proximal histidine imidazole hydrogen bond to an amino acid carbonyl function than is the case for hemoglobin and myoglobin.  相似文献   

17.
Pulsed-dose-rate regimens are an attractive alternative to continuous low-dose-rate brachytherapy. However, apart from data obtained from modeling, only a few in vitro results are available for comparing the biological effectiveness of both modalities. Cells of two human cell lines with survival fractions of 80% (RT112) and 10% (HX142) after a single dose of 2 Gy and with different halftimes for split-dose recovery and low-dose recovery were used. The cells were irradiated with a continuous low dose rate (80 cGy per hour) or with pulsed dose rate. Two different pulsed dose rates were tested: 4.25 Gy/h and 63 Gy/h. The effects of dose per pulse and the length of the interval between the pulses were investigated while keeping the overall treatment time constant. Survival after low-dose-rate irradiation was indistinguishable from that after pulses of 4.25 Gy/h in cells of both cell lines. Survival decreased with increasing dose per pulse. When the dose rate during the pulses was increased, survival decreased even further. This effect was most pronounced for the radiosensitive HX142 cells. In clinical pulsed-dose-rate brachytherapy, iridium sources move stepwise through the implant and deliver pulses at a high dose rate locally. These high-dose-rate pulses produce greater biological effectiveness compared to continuous low dose rate; this should be taken into account.  相似文献   

18.
Feasibility of using laser ion accelerators in proton therapy   总被引:4,自引:0,他引:4  
The feasibility of using laser plasma as a source of high-energy ions for the purposes of proton therapy is discussed. The proposal is based on the efficient ion acceleration observed in recent laboratory and numerical experiments on the interaction of high-power laser radiation with gaseous and solid targets. The specific dependence of proton energy losses in biological tissues (the Bragg peak) promotes the solution of one of the main problems of radiation therapy, namely, the irradiation of a malignant tumor with a sufficiently strong and homogeneous dose, ensuring that the irradiation of the surrounding healthy tissues and organs is minimal. In the scheme proposed, a beam of fast ions accelerated by a laser pulse can be integrated in the installations intended for proton therapy.  相似文献   

19.
A fast perturbation in proton concentration can be induced in aqueous solution using a pulsed ultraviolet laser and suitable photolabile compounds which, upon photoexcitation, irreversibly release protons. The volume change and the rate constant for the reaction of the photodetached protons with proton-accepting groups in solution can be monitored using time resolved photoacoustics. A typical proton concentration jump of 1 microM can be obtained with a 200-microJ laser pulse at 308 nm. Reaction dynamics from 20 ns to 5 micros can be easily followed. The methodology we establish represents a direct, time-resolved measurement of the reaction volume in proton transfer processes and an extension to the nanosecond-microsecond range of traditional relaxation techniques, such as stopped-flow. We report example applications to reactions involving simple molecules and polypeptides.  相似文献   

20.
PurposeThis study aims at investigating the dosimetric characteristics of a Varian aS1000 EPID, focusing on its continuous acquisition mode under the challenging conditions that can be met in stereotactic radiotherapy verification.MethodsAn aS1000 EPID installed on a Varian TrueBeamSTx was irradiated with 6 and 10 MV unflattened and flattened photon beams. In order to avoid detector saturation, the source-to-detector distance (SDD) was set to 150 or 180 cm depending on the dose rate. EPID image sets were acquired in continuous mode (CM) and also in the commonly used integrated mode (IM) for comparison, to evaluate dose linearity (including dose rate dependence), repeatability, reproducibility, stability, ghosting effect and field size dependence.ResultsCM response linearity was found to be within 0.8% of IM and independent of dose rate. Response repeatability was slightly better for IM and FF beams, being in all cases within 0.9%. Reproducibility was within 0.6% for both modes and all beam qualities. Response stability between continuous frames varied within 1% for dynamic and static irradiations and for all the beam qualities, showing its independence from these parameters. Ghosting effect was not significant, being comparable to signal variations between continuous frames (±1%). Field size dependence in both modes agreed within 1%.ConclusionsThe dosimetric response of the aS1000 EPID in CM with FFF beams and high dose rates is comparable to that in IM and for flattened beams provided that the appropriate SDD is used. aS1000 EPID in continuous acquisition mode is therefore suitable for stereotactic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号