首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dinitrophenylation of rabbit skeletal sarcoplasmic reticulum ATPase protein   总被引:1,自引:0,他引:1  
The ATPase (ATP phosphohydrolase (EC 3.6.1.3)) protein of rabbit skeletal sarcoplasmic reticulum rapidly incorporated three mol of 1-fluoro-2,4-dinitrobenzene per 10(5) g of protein with little change in the Ca2+-dependent ATPase activity. When 2 additional mol of the reagent were bound the Ca2+-dependent ATPase activity was inhibited. The dinitrophenyl group was located mainly in the ATPase protein and a small amount of the label was found in the proteolipid component of the ATPase preparation as judged by dissociation experiments in sodium dodecyl sulfate. Cysteine and tyrosine residues were dinitrophenylated in the modified ATPase protein. Thiolysis of the dinitrophenylated ATPase protein with 2-mercaptoethanol under various conditions did not restore the Ca2+-dependent ATPase activity. Solubilization of the ATPase protein with sodium deoxycholate increased the reactivity of the reagent and the Ca2+-dependent ATPase activity was inhibited to a greater extent. Dinitrophenylation of the ATPase protein was Ca2+-dependent; in the presence of high Ca2+ the incorporation increased by 50% and a large decrease in the Ca2+-ATPase activity was noted. The half-maximal changes for the incorporation of the reagent and the inhibition of the Ca2+-ATPase activity occurred at 3--4 microgram Ca2+-concentration, consistent with the binding of Ca2+ to high affinity sites on the ATPase protein. These results indicate that the ATPase protein as a Ca2+-free and a Ca2+-bound conformation. The reagent, 1-fluoro-2,4-dinitrobenzene reacts differentially and thus characterizes these two conformations.  相似文献   

2.
Transient-state kinetics of phosphorylation and dephosphorylation of the Ca2+-ATPase of sarcoplasmic reticulum vesicles from rabbit skeletal and dog cardiac muscles were studied in the presence of varying concentrations of monovalent and divalent cations. Monovalent cations affect the two types of sarcoplasmic reticulum differently. When the rabbit skeletal sarcoplasmic reticulum was Ca2+ deficient, preincubation with K+ (as compared with preincubation with choline chloride) did not affect initial phosphorylation at various concentrations of Ca2+, added with ATP to phosphorylate the enzyme. This is in contrast to preincubation with K+ of the Ca2+-deficient dog cardiac sarcoplasmic reticulum, which resulted in an increase in the phosphoenzyme level. When Ca2+ was bound to the rabbit skeletal sarcoplasmic reticulum, K+ inhibited E - P formation; but under the same conditions, E - P formation of dog cardiac sarcoplasmic reticulum was activated by K+ at 12 microM Ca2+ and inhibited at 0.33 and 1.3 microM Ca2+. Li+, Na+ and K+ also have different effects on E - P decomposition of skeletal and cardiac sarcoplasmic reticulum. The latter responded less to these cations than the former. Studies with ADP revealed differences between the two types of sarcoplasmic reticulum. For rabbit skeletal sarcoplasmic reticulum, 40% of the phosphoenzyme formed was 'ADP sensitive', and the decay of the remaining E - P was enhanced by K+ and ADP. Dog cardiac sarcoplasmic reticulum yielded about 40--48% ADP-sensitive E - P, but the decomposition rate of the remaining E - P was close to the rate measured in the absence of ADP. Thus, these studies showed certain qualitative differences in the transformation and decomposition of phosphoenzymes between skeletal and cardiac muscle which may have bearing on physiological differences between the two muscle types.  相似文献   

3.
Crystalline arrays of Ca2+ transport ATPase develop in sarcoplasmic reticulum membranes after treatment with Na3VO4 in a calcium-free medium [ Dux , L. and Martonosi , A. (1983) J. Biol. Chem. 258, 2599-2603]. The proportion of vesicles containing Ca2+-ATPase crystals in microsome preparations isolated from rat muscle of different fiber types (semimembranosus, levator ani, extensor digitorum longus, diaphragm, soleus, and heart) correlates well with the Ca2+-ATPase content and Ca2+-modulated ATPase activity. This implies that the concentration of Ca2+-ATPase in sarcoplasmic reticulum membranes of fast and slow skeletal or cardiac muscles differs only slightly, and the low Ca2+ transport activity of 'sarcoplasmic reticulum' preparations isolated from slow-twitch skeletal and cardiac muscles is due to the presence of large amount of non-sarcoplasmic-reticulum membrane elements. This is in accord with the relatively small differences in the density of 8.5-nm intramembranous particles seen by freeze-etch electron microscopy in sarcoplasmic reticulum of red and white muscles. The dimensions of the Ca2+-ATPase crystal lattice are similar in sarcoplasmic reticulum membranes of different fiber types; therefore if structural differences exist between 'isoenzymes' of Ca2+-ATPase, these are not reflected in the crystal-lattice.  相似文献   

4.
To define the mechanism responsible for the slow rate of calcium transport by cardiac sarcoplasmic reticulum, the kinetic properties of the Ca2+-dependent ATPase of canine cardiac microsomes were characterized and compared with those of a comparable preparation from rabbit fast skeletal muscle. A phosphoprotein intermediate (E approximately P), which has the stability characteristics of an acyl phosphate, is formed during ATP hydrolysis by cardiac microsomes. Ca2+ is required for the E approximately P formation, and Mg2+ accelerates its decomposition. The Ca2+ concentration required for half-maximal activation of the ATPase is 4.7 +/- 0.2 muM for cardiac microsomes and 1.3 +/- 0.1 muM for skeletal microsomes at pH 6.8 and 0 degrees. The ATPase activities at saturating concentrations of ionized Ca2+ and pH 6.8, expressed as ATP hydrolysis per mg of protein, are 3 to 6 times lower for cardiac microsomes than for skeletal microsomes under a variety of conditions tested. The apparent Km value for MgATP at high concentrations in the presence of saturating concentrations of ionized Ca2+ is 0.18 +/- 0.03 ms at pH 6.8 and 25 degrees. The maximum velocity of ATPase activity under these conditions is 0.45 +/- 0.05 mumol per mg per min for cardiac microsomes and 1.60 +/- 0.05 mumol per mg per min for skeletal microsomes. The maximum steady state level of E approximately P for cardiac microsomes, 1.3 +/- 0.1 nmol per mg, is significantly less than the value of 4.9 +/- 0.2 nmol per mg for skeletal microsomes, so that the turnover number of the Ca2+-dependent ATPase of cardiac microsomes, calculated as the ratio of ATPase activity to the E approximately P level is similar to that of the skeletal ATPase. These findings indicate that the relatively slow rate of calcium transport by cardiac microsomes, whem compared to that of skeletal microsomes, reflects a lower density of calcium pumping sites and lower Ca2+ affinity for these sites, rather than a lower turnover rate.  相似文献   

5.
The reactions of three bifunctional thiol-blocking reagents of differing cross-linking spans and two monofunctional thiol-blocking reagents with the Na+ + K+-stimulated ATPase of the electric-eel electric organ were examined. 1,5-Difluoro-2,4-dinitrobenzene with a cross-linking span of 0.3--0.5 nm (3--5 A) and high solubility in non-polar solvent was the most efficient inhibitor of enzyme activity; thus essential thiol groups exist in a non-polar environment and are approx. 0.3--0.5 nm (3--5 A) from their nearest thiol-group neighbours. Ligands promoting phosphorylation of the Na+ + K+-stimulated ATPase decreased the number of thiol groups bridged by 1,5-difluoro-2,4-dinitrobenzene and by 4,4'-difluoro-3,3'-dinitrodiphenyl sulphone [0.7--1.0 nm (7--10 A) span]. Phosphorylation is associated with a conformational change in the enzyme.  相似文献   

6.
In order to investigate the mechanism of skeletal muscle relaxation induced by dimethyl sulfoxide, 2-butoxyethanol and dimethyl sulfoxide were examined for their effects on 1) Ca2+ uptake into and efflux from sarcoplasmic reticulum vesicles prepared from rabbit fast skeletal muscle and crayfish tail muscle by the murexide method, 2) ATPase activities of rabbit reticulum vesicles, 3) the isolated phrenic nerve-diaphragm preparation of the rat and 4) crayfish opener muscle preparation. Ca2+ efflux rate from rabbit reticulum vesicles was markedly decreased with increasing concentrations (5-20% v/v) of dimethyl sulfoxide without affecting the maximum Ca2+ uptake by the reticulum. 2-Butoxyethanol showed quite contrary effects. Dimethyl sulfoxide strongly inhibited the activity of basal ATPase rather than of Ca2+-dependent ATPase. 2-Butoxyethanol did not significantly inhibit the activity of basal ATPase, but markedly increased Ca2+-dependent ATPase activity. Antagonisms between dimethyl sulfoxide and caffeine were demonstrated either in contractions of crayfish opener muscles or in the Ca2+ release from crayfish sarcoplasmic reticulum vesicles. These results indicate a possibility that dimethyl sulfoxide reversibly induces skeletal muscle relaxation mainly in the sarcoplasmic reticulum by means of decreasing the rate and the amount of Ca2+ release from the reticulum.  相似文献   

7.
We investigated the effect on the Ca2+-dependent ATPase activity of ADP-ribosylation of the enzyme from the rabbit skeletal muscle sarcoplasmic reticulum. A reconstituted ADP-ribosylation system of Ca2+-dependent ATPase in which the enzyme and ADP-ribosyltransferase, both were partially purified from the vesicles, and poly L-lysine were contained, was preincubated with 1 mM NAD, and the Ca2+-dependent ATPase activity was assayed. The NAD-dependent suppression of the enzyme activity depended on both the concentration of NAD and preincubation-time for the ADP-ribosylation, and was reversed by adding 20 mM arginine during the preincubation. These results taken together with the findings that Ca2+-dependent ATPase is a major acceptor protein for the modification in rabbit skeletal muscle sarcoplasmic reticulum [Hara et al. (1987) Biochem. Biophys. Res. Commun. 144; 856-862] suggest that Ca2+-transport in the sarcoplasmic reticulum may be regulated through changes in the rate of ADP-ribosylation of Ca2+-dependent ATPase.  相似文献   

8.
Sarcomplasmic reticulum from rabbit fast skeletal muscle contains intrinsic protein kinase activity (ATP:protein phosphotransferase, EC 2.7.1.37) and a substrate. The protein kinase activity was Mg2+ dependent and could also phosphorylate exogenous protein substrates. Autophosphorylation of sarcoplasmic reticulum vesicles was not stimulated by cyclic AMP, neither was it inhibited by the heat-stable protein kinase inhibitor protein. The phosphorylated membranes had the characteristics of a protein with a phosphoester bond. An average of 73 pmol Pi/mg protein were incorporated in 10 min at 30 degrees C. Addition of exogenous cyclic AMP-dependent protein kinase increased the endogenous level of phosphorylation by 25-100%. Sarcoplasmic reticulum membrane phosphorylation, mediated by either endogenous cyclic AMP-independent or exogenous cyclic AMP-dependent protein kinase, occurred on a 100 000 dalton protein and both enzyme activities resulted in enhanced calcium uptake and Ca2+-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3), in a manner similar to cardiac microsomal preparations. Regulation of Ca2+ transport in skeletal sarcoplasmic reticulum may be mediated by phosphorylation of a 100 000 dalton component of these membranes.  相似文献   

9.
The interaction between 3-acyl-2-(6-doxylpalmitoyl) phosphatidyl choline used as a hydrophobic spin probe and Ca2+-dependent ATPase from sarcoplasmic reticulum membranes of rabbit and carp white skeletal muscles was studied. The spin label incorporation into ATPase preparations was performed at initial steps of ATPase isolation by incubating reticulum membranes with the spin probe in the presence of cholic acid. A comparison of the molecular mobility of the probe incorporated into ATPase preparations and into liposomes formed from ATPase phospholipids demonstrated that the presence of the protein in the membrane produces the same effect on the probe mobility as does the decrease of temperature by 10-15 degrees C. The molecular mobility of the probe in the ATPase preparation is increased during protein thermal denaturation. The breaks on the Arrhenius plots for the probe molecular mobility are revealed at the same temperatures (25 degrees for rabbit reticulum and 16 degrees for carp reticulum) as those for the ATPase activity.  相似文献   

10.
It has been suggested that vesicles derived from the sarcoplasmic reticulum of skeletal muscle contain Ca2+ channels which can be opened by interaction with sulfhydryl reagents such as Ag+ or Hg2+. We show that, in reconstituted vesicles containing the (Ca2+-Mg2+)-ATPase purified from sarcoplasmic reticulum as the only protein, the ATPase can act as a pathway for Ca2+ efflux and that Ag+ induces a rapid release of Ca2+ from such reconstituted vesicles. We also show that Ag+ has a marked inhibitory effect on the ATPase activity of the purified ATPase. We suggest that the (Ca2+-Mg2+)-ATPase can act as a pathway for rapid Ca2+ release from sarcoplasmic reticulum.  相似文献   

11.
Ca2+-ATPase of the sarcoplasmic reticulum was localized in cryostat sections from three different adult canine skeletal muscles (gracilis, extensor carpi radialis, and superficial digitalis flexor) by immunofluorescence labeling with monoclonal antibodies to the Ca2+-ATPase. Type I (slow) myofibers were strongly labeled for the Ca2+-ATPase with a monoclonal antibody (II D8) to the Ca2+-ATPase of canine cardiac sarcoplasmic reticulum; the type II (fast) myofibers were labeled at the level of the background with monoclonal antibody II D8. By contrast, type II (fast) myofibers were strongly labeled for Ca2+-ATPase of rabbit skeletal sarcoplasmic reticulum. The subcellular distribution of the immunolabeling in type I (slow) myofibers with monoclonal antibody II D8 corresponded to that of the sarcoplasmic reticulum as previously determined by electron microscopy. The structural similarity between the canine cardiac Ca2+-ATPase present in the sarcoplasmic reticulum of the canine slow skeletal muscle fibers was demonstrated by immunoblotting. Monoclonal antibody (II D8) to the cardiac Ca2+-ATPase binds to only one protein band present in the extract from either cardiac or type I (slow) skeletal muscle tissue. By contrast, monoclonal antibody (II H11) to the skeletal type II (fast) Ca2+-ATPase binds only one protein band in the extract from type II (fast) skeletal muscle tissue. These immunopositive proteins coelectrophoresed with the Ca2+-ATPase of the canine cardiac sarcoplasmic reticulum and showed an apparent Mr of 115,000. It is concluded that the Ca2+-ATPase of cardiac and type I (slow) skeletal sarcoplasmic reticulum have at least one epitope in common, which is not present on the Ca2+-ATPase of sarcoplasmic reticulum in type II (fast) skeletal myofibers. It is possible that this site is related to the assumed necessity of the Ca2+-ATPase of the sarcoplasmic reticulum in cardiac and type I (slow) skeletal myofibers to interact with phosphorylated phospholamban and thereby enhance the accumulation of Ca2+ in the lumen of the sarcoplasmic reticulum following beta-adrenergic stimulation.  相似文献   

12.
ATP and the divalent cations Mg2+ and Ca2+ regulated K+ stimulation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum vesicles. Millimolar concentrations of total ATP increased the K+-stimulated ATPase activity of the Ca2+ pump by two mechanisms. First, ATP chelated free Mg2+ and, at low ionized Mg2+ concentrations, K+ was shown to be a potent activator of ATP hydrolysis. In the absence of K+ ionized Mg2+ activated the enzyme half-maximally at approximately 1 mM, whereas in the presence of K+ the concentration of ionized Mg2+ required for half-maximal activation was reduced at least 20-fold. Second MgATP apparently interacted directly with the enzyme at a low affinity nucleotide site to facilitate K+-stimulation. With a saturating concentration of ionized Mg2+, stimulation by K+ was 2-fold, but only when the MgATP concentration was greater than 2 mM. Hill plots showed that K+ increased the concentration of MgATP required for half-maximal enzymic activation approx. 3-fold. Activation of K+-stimulated ATPase activity by Ca2+ was maximal at an ionized Ca2+ concentration of approx. 1 microM. At very high concentrations of either Ca2+ or Mg2+, basal Ca2+-dependent ATPase activity persisted, but the enzymic response to K+ was completely inhibited. The results provide further evidence that the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum has distinct sites for monovalent cations, which in turn interact allosterically with other regulatory sites on the enzyme.  相似文献   

13.
14.
The calcium-ryanodine receptor complex of skeletal and cardiac muscle   总被引:14,自引:0,他引:14  
[3H]Ryanodine binds with high affinity to saturable and Ca2+-dependent sites in heavy sarcoplasmic reticulum (SR) preparations from rabbit skeletal and cardiac muscle. Ruthenium red, known to interfere with Ca2+-induced Ca2+ release from SR vesicles, inhibits [3H]ryanodine specific binding in both skeletal and cardiac preparations whereas Mg2+, Ba2+, Cd2+ and La3+ selectively inhibit the skeletal preparation. The toxicological relevance of the [3H]ryanodine binding site is established by the correlation of binding inhibition with toxicity for seven ryanoids including two botanical insecticides. These findings provide direct evidence for Ca2+-ryanodine receptor complexes that may play a role in excitation-contraction coupling.  相似文献   

15.
The electrogenicity and some molecular properties of the sarcoplasmic reticulum Ca2+ pump protein were studied by measuring steady-state Ca2+ pump currents. Ca2(+)-ATPase protein was solubilized from rabbit skeletal muscle sarcoplasmic reticulum membrane preparations and purified by liquid chromatography. The purified Ca(+)-ATPase molecules were reconstituted into proteoliposomes and then incorporated by fusion into a planar bilayer lipid membrane. Short circuit currents across the planar membrane were detected when the ATPase molecules were activated by addition of ATP under optimal ionic conditions. Thus, the electrogenicity of the Ca2+ pump molecules was directly demonstrated. The amplitude of the pump current was dependent on the ATP concentration, and the relation was described by a Michaelis-Menten-type equation. The Michaelis constant was calculated to be 0.69 +/- 0.16 mM, which agrees well with the dissociation constant for a low affinity ATP-binding site deduced previously from the kinetics of ATP hydrolysis and from ATP binding.  相似文献   

16.
Basal ATPase is readily separated from the Ca2+-ATPase of the sarcoplasmic reticulum. The median density distributions of cholesterol and basal ATPase activities are almost identical. Digitonin has been successfully employed in determining the association of cholesterol with specific vesicles in rat liver microsomal preparations. Treatment of rabbit skeletal muscle microsomal preparations with digitonin alters the density distribution patterns of basal ATPase activity and cholesterol in an identical fashion. Protein distribution displays a less marked change in median density. Enzymic activity associated with calcium transport, measured under differing conditions, is largely unaffected. It is concluded that cholesterol and basal ATPase activity are associated with a distinct group of rabbit skeletal muscle microsomal particles.  相似文献   

17.
When phosphorylase kinase from rabbit skeletal muscle was activated by phosphorylation and then cross-linked with 1,5-difluoro-2,4-dinitrobenzene at pH 6.8, dimers of beta subunits were formed that were not observed during cross-linking of nonphosphorylated enzyme under the same conditions. The ability to form these dimers was due to phosphorylation of the beta subunit because when enzyme phosphorylated in the alpha and beta subunits was incubated with a protein phosphatase relatively specific for the beta subunit (Ganapathi, M.K., Silberman, S.R., Paris, H., and Lee, E.Y.C. (1981) J. Biol. Chem. 256, 3213-3217), the ability to form the cross-linked beta dimers was lost. Significant amounts of two complexes also judged to be dimers of beta subunits were observed when nonphosphorylated phosphorylase kinase was cross-linked after preincubation with Ca2+ plus Mg2+ ions, after proteolysis by chymotrypsin, or when it was cross-linked at pH 8.2, three conditions known to stimulate the activity of the nonphosphorylated enzyme. From these results, we conclude that 1,5-difluoro-2,4-dinitrobenzene can serve as a structural probe for activated states of phosphorylase kinase. The activation is associated with a conformational change in which two beta subunits either move closer together or have a reactive group on one, or both, of them unmasked. Our results suggest that the diverse mechanisms listed above for stimulating phosphorylase kinase activity cause a common conformational change to occur.  相似文献   

18.
The bifunctional fluorinated nitrobenzenes, 1,5-difluoro-2,4-dinitrobenzene (DFDNB) and 4,4'-difluoro-3,3'-dinitrodiphenyl sulfone (DFDNDPS), and the monofunctional 1-fluoro-2,4-dinitrobenzene (FDNB) inhibit chemotaxis, phagocytosis, exocytosis and the respiratory burst of rabbit polymorphonuclear leukocytes. Inhibition occurs in the micromolar concentration range; the bifunctional compounds are stronger inhibitory than the monofunctional one. The inhibitory effect can be counteracted by sulfhydryl compounds and not with amino-group containing compounds. The results suggest that an interaction with vulnerable sulfhydryl groups, located in a hydrophobic surrounding, is the basis of the inhibitory effect of the fluorinated nitrobenzenes.  相似文献   

19.
The kinetics and extent of the fluorescence change induced by Ca2+ interaction with the Ca2+-ATPase from sarcoplasmic reticulum have been compared by stopped flow fluorimetry for three preparations: sarcoplasmic reticulum; purified ATPase in membrane vesicles; and solubilized, delipidated ATPase. The kinetics of Ca2+ release and binding for both purified preparations could be described by a single exponential as has been observed for sarcoplasmic reticulum. The rate and extent of the fluorescence change for the solubilized and membrane-associated preparations are shown to be quite similar to those of the sarcoplasmic reticulum. From these results, it is concluded that all of the Ca2+-induced fluoescence change in sarcoplasmic reticulum originates from the Ca2+-ATPase. In addition, since the change in fluorescence is probably result of a conformational change in the ATPase during the Ca2+ pumping cycle, the results provide additional evidence that monomeric Ca2+-ATPase may be capable of Ca2+ transport since the delipidated preparation is monomeric under the conditions used for these experiments. Finally, it is concluded that phospholipid bilayer is not essential for this conformational change.  相似文献   

20.
Smooth muscle expresses in its endoplasmic reticulum an isoform of the Ca2+-transport ATPase that is very similar to or identical with that of the cardiac-muscle/slow-twitch skeletal-muscle form. However, this enzyme differs from that found in fast-twitch skeletal muscle. This conclusion is based on two independent sets of observations, namely immunological observations and phosphorylation experiments. Immunoblot experiments show that two different antibody preparations against the Ca2+-transport ATPase of cardiac-muscle sarcoplasmic reticulum also recognize the endoplasmic-reticulum/sarcoplasmic-reticulum enzyme of the smooth muscle and the slow-twitch skeletal muscle whereas they bind very weakly or not at all to the sarcoplasmic-reticulum Ca2+-transport ATPase of the fast-twitch skeletal muscle. Conversely antibodies directed against the fast-twitch skeletal-muscle isoform of the sarcoplasmic-reticulum Ca2+-transport ATPase do not bind to the cardiac-muscle, smooth-muscle or slow-twitch skeletal-muscle enzymes. The phosphorylated tryptic fragments A and A1 of the sarcoplasmic-reticulum Ca2+-transport ATPases have the same apparent Mr values in cardiac muscle, slow-twitch skeletal muscle and smooth muscle, whereas the corresponding fragments in fast-twitch skeletal muscle have lower apparent Mr values. This analytical procedure is a new and easy technique for discrimination between the isoforms of endoplasmic-reticulum/sarcoplasmic-reticulum Ca2+-transport ATPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号