首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Arsenic is one of the most toxic pollutants at contaminated sites, yet little is known about the mechanisms by which certain plants survive exposure to high arsenic levels. To gain insight into the mechanisms of arsenic tolerance in plants, we developed a genetic screen to isolate Arabidopsis thaliana mutants with altered tolerance to arsenic. We report here on the isolation of a mutant arsenic resisant 1 (ars1) with increased tolerance to arsenate. ars1 germinates and develops under conditions that completely inhibit growth of wild-type plants and shows a semi-dominant arsenic resistance phenotype. ars1 accumulates levels of arsenic similar to that accumulated by wild-type plants, suggesting that ars1 plants have an increased ability to detoxify arsenate. However, ars1 plants produce phytochelatin levels similar to levels produced by the wild type, and the enhanced resistance of ars1 is not abolished by the gamma-glutamylcysteine synthetase inhibitor l-buthionine sulfoxime (BSO). Furthermore, ars1 plants do not show resistance to arsenite or other toxic metals such as cadmium and chromium. However, ars1 plants do show a higher rate of phosphate uptake than that shown by wild-type plants, and wild-type plants grown with an excess of phosphate show increased tolerance to arsenate. Traditional models of arsenate tolerance in plants are based on the suppression of phosphate uptake pathways and consequently on the reduced uptake of arsenate. Our data suggest that arsenate tolerance in ars1 could be due to a new mechanism mediated by increased phosphate uptake in ars1. Models discussing how increased phosphate uptake could contribute to arsenate tolerance are discussed.  相似文献   

2.
3.
Arsenic hazards: strategies for tolerance and remediation by plants   总被引:7,自引:0,他引:7  
Arsenic toxicity has become a global concern owing to the ever-increasing contamination of water, soil and crops in many regions of the world. To limit the detrimental impact of arsenic compounds, efficient strategies such as phytoremediation are required. Suitable plants include arsenic hyperaccumulating ferns and aquatic plants that are capable of completing their life cycle in the presence of high levels of arsenic through the concerted action of arsenate reduction to arsenite, arsenite complexation, and vacuolar compartmentalization of complexed or inorganic arsenic. Tolerance can also be conferred by lowering arsenic uptake by suppression of phosphate transport activity, a major pathway for arsenate entry. In many unicellular organisms, arsenic tolerance is based on the active removal of cytosolic arsenite while limiting the uptake of arsenate. Recent molecular studies have revealed many of the gene products involved in these processes, providing the tools to improve crop species and to optimize phytoremediation; however, so far only single genes have been manipulated, which has limited progress. We will discuss recent advances and their potential applications, particularly in the context of multigenic engineering approaches.  相似文献   

4.

Arsenic (As), the toxic metalloid, is taken up by plant roots and transported to different parts of the plant through transporters of the essential elements due to the structural analogy. The analogy of arsenate (AsV) with phosphate enables As (V) to enter plant through phosphate transporter, while, arsenite (AsIII) which is analogous to silicic acid, is taken up by plants through aquaporins. After the uptake, the different forms of As are translocated to shoot via xylem, imposing toxicity to plants that affect their growth and yield, however this depends on the effective concentration of free As anion at particular cellular organelle /site. To this end, the role of transporters becomes crucial as the central and prime regulator of As movement throughout the plant and in various cellular compartments. It is essential to understand the precise roles of different transporters involved in As uptake and transportation to avoid As accumulation and stress in plant. Therefore, this review discusses the transporters namely, phosphate transporters, nodulin 26-like intrinsic proteins, plasma membrane intrinsic proteins, tonoplast intrinsic proteins, C-type ATP binding cassette transporters, arsenical resistance 3 transporter, inositol transporters, multidrug and toxic compound extrusion transporters, and natural resistance-associated macrophage protein transporters, which are involved in As uptake, sequestration, translocation and efflux in plants, with an emphasis on As stress tolerance through the regulation of expression of the different transporters.

  相似文献   

5.
Groundwater arsenic contamination, a grave threat in Bangladesh and parts of West Bengal (India), causes biochemical and physiological disorders in plants. Arsenic and phosphorus (plant macronutrient) have similar electronic configurations, resulting in their competitive interaction for the same uptake system in plant roots. Arsenic exposure initiates production of reactive oxygen species. Hence, the contents of proline, hydrogen peroxide, glutathione, ascorbate, and activities of ascorbate peroxidase, catalase were investigated in 21-day-old rice seedlings (cv. Khitish and cv. Nayanmani). Additionally, impact of arsenate together with phosphate on growth, total glutathione contents and activity of its regulatory enzymes were altered in the test cultivars to varying extents. Inductively coupled plasma-optical emission spectroscopic study of arsenic content in the root and shoot also showed variable uptake of arsenic by the two cultivars. Arsenate reductase enzyme activity primarily observed in the root, also differed from one cultivar to the other. Different phytochelatin (PCs) levels were recorded in the shoot and root of the cultivars under arsenate and phosphate treatment by reverse phase-high performance liquid chromatography. PC content increased with increasing arsenate concentrations, whereas phosphate and arsenate co-application resulted in reduced PC levels. The degree of elevation in PC contents varied significantly in the cultivars. Based on the above-mentioned parameters, cv. Khitish appeared to be more susceptible to arsenic toxicity than cv. Nayanmani which showed selective tolerance to the said metal stress.  相似文献   

6.
The response of arsenate and non-tolerant Holcus lanatus L. phenotypes, where tolerance is achieved through suppression of high affinity phosphate/arsenate root uptake, was investigated under different growth regimes to investigate why there is a polymorphism in tolerance found in populations growing on uncontaminated soil. Tolerant plants screened from an arsenic uncontaminated population differed, when grown on the soil from the populations origin, from non-tolerants, in their biomass allocation under phosphate fertilization: non-tolerants put more resources into tiller production and down regulated investment in root production under phosphate fertilization while tolerants tillered less effectively and did not alter resource allocation to shoot biomass under phosphate fertilization. The two phenotypes also differed in their shoot mineral status having higher concentrations of copper, cadmium, lead and manganese, but phosphorus status differed little, suggesting tight homeostasis. The polymorphism was also widely present (40%) in other wild grass species suggesting an important ecological role for this gene that can be screened through plant root response to arsenate.  相似文献   

7.
An arsenic hyperaccumulator, Pteris vittata L., is common in nature and could occur either on As-contaminated soils or on uncontaminated soils. However, it is not clear whether phosphate transporter play similar roles in As uptake and translocation in nonmetallicolous and metallicolous populations of P. vittata. Five populations were used to investigate effects of phosphate on arsenate uptake and translocation in the plants growing in 1.2 L 20% modified Hoagland's nutrient solution containing either 100 μM phosphate or no phosphate and 10 μM arsenate for 1, 2, 6, 12, 24 h, respectively. The results showed that the nonmetallicolous populations accumulated apparently more As in their fronds and roots than the metallicolous populations at both P supply levels. Phosphate significantly (P < 0.01) decreased frond and root concentrations of As during short time solution culture. In addition, the effects of phosphate on As translocation in P. vittata varied among different time-points during time-course hydroponics (1–24 h). The present results indicated that the inhibitory effect of phosphate on arsenate uptake was larger in the three nonmetallicolous populations than those in the two metallicolous populations of P. vittata.  相似文献   

8.
Arsenate resistance has been used for screening for photosynthetic mutants of Chlamydomonas, since photosynthetic mutants, such as CC981 defective in phosphoribulokinase, were shown to have arsenate resistance. Also, another type of arsenate-resistant mutants, including AR3 that lacks a homolog of a phosphate (Pi) transporter, PTB1, has been isolated. We investigated the uptake of Pi and arsenate, and the gene expression of Pi transporters, which are involved in both Pi and arsenate transport, in mutants CC981 and AR3. In the wild type, both Pi and arsenate uptake were initially high, but were inactivated in the presence of arsenate with time, especially in the dark. In contrast, both mutants were shown to exhibit higher Pi uptake, but lower arsenate uptake than the wild type, regardless of the presence or absence of light. Then, the gene expression of Pi transporters in the cells used for the uptake measurements was investigated and compared between the mutants and the wild type. In CC981, the mRNA levels of PTA2 and PTA4 were higher, while those of PTB3 and PTB5 were lower, as compared with in the wild type. In AR3, those of PTA2 and PTB2 were higher, but that of PTB5 was lower than in the wild type. These findings suggest that the arsenate resistance shown by the mutants in light is due to reduction of arsenate uptake probably through the down-regulation of some Pi transporter expression, while the Pi uptake maintained even in the dark is possibly related to higher expression of other Pi transporter(s) than in the wild type.  相似文献   

9.
Tu  Cong  Ma  Lena Q. 《Plant and Soil》2003,249(2):373-382
Arsenate and phosphate interactions are important for better understanding their uptake and accumulation by plant due to their similarities in chemical behaviors. The present study examined the effects of arsenate and phosphate on plant biomass and uptake of arsenate and phosphate by Chinese brake (Pteris vittata L.), a newly-discovered arsenic hyperaccumulator. The plants were grown for 20 weeks in a soil, which received the combinations of 670, 2670, or 5340 mol kg–1 arsenate and 800, 1600, or 3200 mol kg–1 phosphate, respectively. Interactions between arsenate and phosphate influenced their availability in the soil, and thus plant growth and uptake of arsenate and phosphate. At low and medium arsenate levels (670 and 2670 mol kg–1), phosphate had slight effects on arsenate uptake by and growth of Chinese brake. However, phosphate substantially increased plant biomass and arsenate accumulation by alleviating arsenate phytotoxicity at high arsenate levels (5340 mol kg–1). Moderate doses of arsenate increased plant phosphate uptake, but decreased phosphate concentrations at high doses because of its phytotoxicity. Based on our results, the minimum P/As molar ratios should be at least 1.2 in soil solution or 1.0 in fern fronds for the growth of Chinese brake. Our findings suggest that phosphate application may be an important strategy for efficient use of Chinese brake to phytoremediate arsenic contaminated soils. Further study is needed on the mechanisms of interactive effects of arsenate and phosphate on Chinese brake in hydroponic systems.  相似文献   

10.
Arsenate tolerance is conferred by suppression of the high-affinity phosphate/arsenate uptake system, which greatly reduces arsenate influx in a number of higher plant species. Despite this suppressed uptake, arsenate-tolerant plants can still accumulate high levels of As over their lifetime, suggesting that constitutive detoxification mechanisms may be required. Phytochelatins are thiol-rich peptides, whose production is induced by a range of metals and metalloids including arsenate. This study provides evidence for the role of phytochelatins in the detoxification of arsenate in arsenate-tolerant Holcus lanatus. Elevated levels of phytochelatin were measured in plants with a range of tolerance to arsenate at equivalent levels of arsenate stress, measured as inhibition of root growth. The results suggest that arsenate tolerance in H. lanatus requires both adaptive suppression of the high-affinity phosphate uptake system and constitutive phytochelatin production.  相似文献   

11.
The influx of arsenate, arsenite and dimethyl arsinic acid (DMA) were studied in 7-day-old excised maize roots (Zea mays L.), and then related to arsenate, arsenite and DMA toxicity. Arsenate, arsenite and DMA influx was all found concentration dependent with significant genotypic differences for arsenite and DMA. Arsenate influx in phosphate starved plants best fitted the four-parameter Michaelis–Menten model corresponding to an additive high and low affinity uptake system, while the uptake of phosphate replete plants followed the two parameter model of Michaelis–Menten kinetics. Arsenite influx was well described by the two parameter model of ‘Michaelis–Menten’ kinetics. DMA influx was comprised of linear phase and a hyperbolic phase. DMA influx was much lower than that for arsenite and arsenate. Arsenate and DMA influx decreased when phosphate was given as a pre-treatment as opposed to phosphate starved plants. The +P treatment tended to decrease influx by 50% for arsenate while this figure was 90% for DMA. Arsenite influx increasing slightly at higher arsenite concentrations in P starved plants but at lower arsenite concentrations, there was little or no difference in arsenite uptake. Low toxicity was found for DMA on maize compared with arsenate and arsenite and the relative toxicity of arsenic species was As(V) > As(III) >> DMA.  相似文献   

12.
13.
14.
Arsenate is a major toxic constituent in arsenic-contaminated water supplies. Saccharomyces cerevisiae was engineered as a potential biosorbent for enhanced arsenate accumulation. The phosphate transporter, Pho84p, known to import arsenate, was overexpressed using a 2μ-based vector carrying PHO84 under the control of the late-phase ADH2 promoter. Arsenate uptake was then evaluated using a resting cell system. In buffer solutions containing high arsenate concentrations (12,000 and 30,000 ppb), the engineered strains internalized up to 750 μg of arsenate per gram of cells, a 50% improvement over control strains. Increasing the cell mass 2.5-fold yielded a proportional increase in the volumetric arsenate uptake, while maintaining the same level of specific uptake. At high levels of arsenate, loss from the intact cells to the medium was observed with time; knockouts of two known arsenic extrusion genes, ACR3 and FPS1, did not prevent this loss. At trace level concentrations (120 ppb), rapid and total arsenate removal was observed. The presence of 50 μM phosphate reduced uptake by approximately 15% in buffer containing 80 μM (6,000 ppb) arsenate. At trace levels of arsenate (70 ppb), the phosphate reduced the initial rate of uptake, but not the total amount removed. PHO84 mRNA levels were nearly 30 times higher in the engineered strains relative to the control strains. Uptake may no longer be a limiting factor in the engineered system and further increases should be possible by upregulating the downstream reduction and sequestration pathways.  相似文献   

15.
16.
? The activation of high-affinity root transport systems is the best-conserved strategy employed by plants to cope with low inorganic phosphate (Pi) availability, a role traditionally assigned to Pi transporters of the Pht1 family, whose respective contributions to Pi acquisition remain unclear. ? To characterize the Arabidopsis thaliana Pht1;9 transporter, we combined heterologous functional expression in yeast with expression/subcellular localization studies and reverse genetics approaches in planta. Double Pht1;9/Pht1;8 silencing lines were also generated to gain insight into the role of the closest Pht1;9 homolog. ? Pht1;9 encodes a functional plasma membrane-localized transporter that mediates high-affinity Pi/H? symport activity in yeast and is highly induced in Pi-starved Arabidopsis roots. Null pht1;9 alleles exhibit exacerbated responses to prolonged Pi limitation and enhanced tolerance to arsenate exposure, whereas Pht1;9 overexpression induces the opposite phenotypes. Strikingly, Pht1;9/Pht1;8 silencing lines display more pronounced defects than the pht1;9 mutants. ? Pi and arsenic plant content analyses confirmed a role of Pht1;9 in Pi acquisition during Pi starvation and arsenate uptake at the root-soil interface. Although not affecting plant internal Pi repartition, Pht1;9 activity influences the overall Arabidopsis Pi status. Finally, our results indicate that both the Pht1;9 and Pht1;8 transporters function in sustaining plant Pi supply on environmental Pi depletion.  相似文献   

17.
Abstract

Arsenic contamination of groundwater is a significant problem in countries like Mexico, where San Luis Potosi is among the regions registering severe levels of it. Bioremediation with microalgae capable to absorb and metabolize metals or metalloids like arsenic reduces their toxicity and is a cost-effective approach compared to physical–chemical processes. We evaluated the capability of Chlamydomonas reinhardtii to remove arsenate and compared it with an acr3-modified recombinant strain, which we produced by transforming the wild-type strain with Agrobacterium tumefaciens using the construct pARR1 including a synthetic, optimized acr3 gene from Pteris vittata, a hyper-accumulator of arsenic. We monitored the growth of both strains in media with arsenate, containing a standard or a 10-fold decreased amount of phosphate. Comparing both strains in media initially with 0.5, 1, and 1.5?mg/L of arsenate, the acr3-modified strain removed 1.5 to 3 times more arsenic than the wild-type strain. Moreover, the arsenic uptake rate increased 1.2 to 2.3 times when growing the acr3-modified strain in media with decreased phosphate, while the uptake rate for the wild-type strain scarcely changed under the same conditions. These results confirm the expression of the acr3 gene in C. reinhardtii and its potential application to remove arsenic.  相似文献   

18.
? Arsenic contamination has a negative impact on crop cultivation and on human health. As yet, no proteins have been identified in plants that mediate the extrusion of arsenic. Here, we heterologously expressed the yeast (Saccharomyces cerevisiae) arsenite efflux transporter ACR3 into Arabidopsis to evaluate how this affects plant tolerance and tissue arsenic contents. ? ACR3 was cloned from yeast and transformed into wild-type and nip7;1 Arabidopsis. Arsenic tolerance was determined at the cellular level using vitality stains in protoplasts, in intact seedlings grown on agar plates and in mature plants grown hydroponically. Arsenic efflux was measured from protoplasts and from intact plants, and arsenic levels were measured in roots and shoots of plants exposed to arsenate. ? At the cellular level, all transgenic lines showed increased tolerance to arsenite and arsenate and a greater capacity for arsenate efflux. With intact plants, three of four stably transformed lines showed improved growth, whereas only transgenic lines in the wild-type background showed increased efflux of arsenite into the external medium. The presence of ACR3 hardly affected tissue arsenic levels, but increased arsenic translocation to the shoot. ? Heterologous expression of yeast ACR3 endows plants with greater arsenic resistance, but does not lower significantly arsenic tissue levels.  相似文献   

19.
Due to similarities in their chemical behaviors, studies examining interactions between arsenic (As)—in special arsenate—and phosphorus (P) are important for better understanding arsenate uptake, toxicity, and accumulation in plants. We evaluated the effects of phosphate addition on plant biomass and on arsenate and phosphate uptake by Anadenanthera peregrina, an important Brazilian savanna legume. Plants were grown for 35 days in substrates that received combinations of 0, 10, 50, and 100 mg kg?1 arsenate and 0, 200, and 400 mg kg?1 phosphate. The addition of P increased the arsenic-phytoremediation capacity of A. peregrina by increasing As accumulation, while also alleviating As-induced oxidative stress. Arsenate phytotoxicity in A. peregrina is due to lipid peroxidation, but not hydrogen peroxide accumulation. Added P also increased the activity of important reactive oxygen species-scavenging enzymes (catalase and ascorbate peroxidase) that help prevent lipid peroxidation in leaves. Our findings suggest that applying P represents a feasible strategy for more efficient As phytoremediation using A. peregrina.  相似文献   

20.
The uptake and degradation of atrazine (ATR) by rice seedlings (Oryza sativa L.) was investigated with and without arsenate and phosphate nutrient in the cultured solution over a period of 48 h. The hydrogen peroxide (H2O2) contents in plants under different treatments were measured to evaluate the oxidative stress of the plant cell and its influence on the plant uptake and degradation of ATR. Results indicated that the ATR levels and main degradation products, deethylatrazine (DEA) and deisopropylatrazine (DIA), in plants varied significantly in different treatments. Added arsenate in solution increased the level of DEA and the ratios of DEA to the total (ATR, DEA, and DIA) in roots, while it either increased or decreased the H2O2 content in roots. Added arsenate increased the ratios of degradation products to the total in shoots, which corresponded to the 110%–285% increase of the H2O2 content. In phosphate-deficient systems, the H2O2 contents in shoots increased significantly, especially when exposed to a low level of ATR while the ratios of DIA and DEA to the total in shoots increased. The oxidative stress in rice seedlings induced by arsenic coexisting with ATR and by phosphate deficiency affected the plant uptake and degradation of ATR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号