首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

The capability of CT perfusion (CTP) Alberta Stroke Program Early CT Score (ASPECTS) to predict outcome and identify ischemia severity in acute ischemic stroke (AIS) patients is still questioned.

Methods

62 patients with AIS were imaged within 8 hours of symptom onset by non-contrast CT, CT angiography and CTP scans at admission and 24 hours. CTP ASPECTS was calculated on the affected hemisphere using cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) maps by subtracting 1 point for any abnormalities visually detected or measured within multiple cortical circular regions of interest according to previously established thresholds. MTT-CBV ASPECTS was considered as CTP ASPECTS mismatch. Hemorrhagic transformation (HT), recanalization status and reperfusion grade at 24 hours, final infarct volume at 7 days and modified Rankin scale (mRS) at 3 months after onset were recorded.

Results

Semi-quantitative and quantitative CTP ASPECTS were highly correlated (p<0.00001). CBF, CBV and MTT ASPECTS were higher in patients with no HT and mRS≤2 and inversely associated with final infarct volume and mRS (p values: from p<0.05 to p<0.00001). CTP ASPECTS mismatch was slightly associated with radiological and clinical outcomes (p values: from p<0.05 to p<0.02) only if evaluated quantitatively. A CBV ASPECTS of 9 was the optimal semi-quantitative value for predicting outcome.

Conclusions

Our findings suggest that visual inspection of CTP ASPECTS recognizes infarct and ischemic absolute values. Semi-quantitative CBV ASPECTS, but not CTP ASPECTS mismatch, represents a strong prognostic indicator, implying that core extent is the main determinant of outcome, irrespective of penumbra size.  相似文献   

2.

Background And Purpose

While penumbra assessment has become an important part of the clinical decision making for acute stroke patients, there is a lack of studies measuring the reliability and reproducibility of defined assessment techniques in the clinical setting. Our aim was to determine reliability and reproducibility of different types of three-dimensional penumbra assessment methods in stroke patients who underwent whole brain CT perfusion imaging (WB-CTP).

Materials And Methods

We included 29 patients with a confirmed MCA infarction who underwent initial WB-CTP with a scan coverage of 100 mm in the z-axis. Two blinded and experienced readers assessed the flow-volume-mismatch twice and in two quantitative ways: Performing a volumetric mismatch analysis using OsiriX imaging software (MMVOL) and visual estimation of mismatch (MMEST). Complementarily, the semiquantitative Alberta Stroke Programme Early CT Score for CT perfusion was used to define mismatch (MMASPECTS). A favorable penumbral pattern was defined by a mismatch of ≥30% in combination with a cerebral blood flow deficit of ≤90 ml and an MMASPECTS score of ≥1, respectively. Inter- and intrareader agreement was determined by Kappa-values and ICCs.

Results

Overall, MMVOL showed considerably higher inter-/intrareader agreement (ICCs: 0.751/0.843) compared to MMEST (0.292/0.749). In the subgroup of large (≥50 mL) perfusion deficits, inter- and intrareader agreement of MMVOL was excellent (ICCs: 0.961/0.942), while MMEST interreader agreement was poor (0.415) and intrareader agreement was good (0.919). With respect to penumbra classification, MMVOL showed the highest agreement (interreader agreement: 25 agreements/4 non-agreements/κ: 0.595; intrareader agreement 27/2/0.833), followed by MMEST (22/7/0.471; 23/6/0.577), and MMASPECTS (18/11/0.133; 21/8/0.340).

Conclusion

The evaluated approach of volumetric mismatch assessment is superior to pure visual and ASPECTS penumbra pattern assessment in WB-CTP and helps to precisely judge the extent of 3-dimensional mismatch in acute stroke patients.  相似文献   

3.

Purpose

To improve ischemic stroke outcome prediction using imaging information from a prospective cohort who received admission CT angiography (CTA).

Methods

In a prospectively designed study, 649 stroke patients diagnosed with acute ischemic stroke had admission NIH stroke scale scores, noncontrast CT (NCCT), CTA, and 6-month outcome assessed using the modified Rankin scale (mRS) scores. Poor outcome was defined as mRS>2. Strokes were classified as “major” by the (1) Alberta Stroke Program Early CT Score (ASPECTS+) if NCCT ASPECTS was≤7; (2) Boston Acute Stroke Imaging Scale (BASIS+) if they were ASPECTS+ or CTA showed occlusion of the distal internal carotid, proximal middle cerebral, or basilar arteries; and (3) NIHSS for scores>10.

Results

Of 649 patients, 253 (39.0%) had poor outcomes. NIHSS, BASIS, and age, but not ASPECTS, were independent predictors of outcome. BASIS and NIHSS had similar sensitivities, both superior to ASPECTS (p<0.0001). Combining NIHSS with BASIS was highly predictive: 77.6% (114/147) classified as NIHSS>10/BASIS+ had poor outcomes, versus 21.5% (77/358) with NIHSS≤10/BASIS− (p<0.0001), regardless of treatment. The odds ratios for poor outcome is 12.6 (95% CI: 7.9 to 20.0) in patients who are NIHSS>10/BASIS+ compared to patients who are NIHSS≤10/BASIS−; the odds ratio is 5.4 (95% CI: 3.5 to 8.5) when compared to patients who are only NIHSS>10 or BASIS+.

Conclusions

BASIS and NIHSS are independent outcome predictors. Their combination is stronger than either instrument alone in predicting outcomes. The findings suggest that CTA is a significant clinical tool in routine acute stroke assessment.  相似文献   

4.

Background and Purpose

Thrombus characterization is increasingly considered important in predicting treatment success for patients with acute ischemic stroke. The lack of intensity contrast between thrombus and surrounding tissue in CT images makes manual delineation a difficult and time consuming task. Our aim was to develop an automated method for thrombus measurement on CT angiography and validate it against manual delineation.

Materials and Methods

Automated thrombus segmentation was achieved using image intensity and a vascular shape prior derived from the segmentation of the contralateral artery. In 53 patients with acute ischemic stroke due to proximal intracranial arterial occlusion, automated length and volume measurements were performed. Accuracy was assessed by comparison with inter-observer variation of manual delineations using intraclass correlation coefficients and Bland–Altman analyses.

Results

The automated method successfully segmented the thrombus for all 53 patients. The intraclass correlation of automated and manual length and volume measurements were 0.89 and 0.84. Bland-Altman analyses yielded a bias (limits of agreement) of −0.4 (−8.8, 7.7) mm and 8 (−126, 141) mm3 for length and volume, respectively. This was comparable to the best interobserver agreement, with an intraclass correlation coefficients of 0.90 and 0.85 and a bias (limits of agreement) of −0.1 (−11.2, 10.9) mm and −17 (−216, 185) mm3.

Conclusions

The method facilitates automated thrombus segmentation for accurate length and volume measurements, is relatively fast and requires minimal user input, while being insensitive to high hematocrit levels and vascular calcifications. Furthermore, it has the potential to assess thrombus characteristics of low-density thrombi.  相似文献   

5.

Purpose

To evaluate the intra- and inter-observer variability of the North American Symptomatic Carotid Endarterectomy Trial (NASCET) and Warfarin-Aspirin Symptomatic Intracranial Disease (WASID) criteria for the evaluation of middle cerebral artery (MCA) stenosis using digital subtraction angiography (DSA).

Materials and Methods

DSA images of 114 cases with 131 stenotic MCAs were retrospectively analyzed. Two radiologists and a researcher measured the degree of MCA stenosis independently using both NASCET and WASID methods. To determine intra-observer agreement, all the observers reevaluated the degree of MCA stenosis 4 weeks later. The linear relation and coefficient of variation (CV) between the measurements made by the two methods were assessed by correlation coefficient and multi-factor analysis of variance (ANOVA), respectively. Intra- and inter-observer variability of the two methods was evaluated by intraclass correlation coefficient (ICC), Spearman’s R value, Pearson correlation coefficient and Bland-Altman plots.

Results

Despite the fact that the degree of MCA stenosis measured by NASCET was lower than measured using the WASID method, there was good linear correlation between the measurements made by the two methods (for the mean measurements of the 3 observers, NASCET% = 0.891 × WASID% - 1.89%; ICC, Spearman’s R value and Pearson correlation were 0.874, 0.855, and 0.874, respectively). The CVs of both intra- and inter-observer measurements of MCA stenosis using WASID were significantly lower than that using NASCET confirmed by the multi-factor ANOVA results, which showed only the measurement methods of MCA stenosis had significant effects on the CVs both in intra- and inter-observer measurements (both P values < 0.001). Intra-observer measurements showed good or excellent agreement with respect to WASID and NASCET evaluation (ICC, 0.656 to 0.817 and 0.635 to 0.761, respectively). Good agreement for the WASID evaluation (ICC, 0.592 to 0.628) and for the NASCET evaluation (ICC, 0.529 to 0.568) was observed for inter-observer measurements. Bland-Altman plots demonstrated that the WASID method had better reproducibility and intra-observer agreement than NASCET method for evaluating MCA stenosis.

Conclusion

Both NASCET and WASID methods have an acceptable level of agreement; however, the WASID method had better reproducibility for the evaluation of MCA stenosis, and thus the WASID method may serve as a standard for measuring the degree of MCA stenosis.  相似文献   

6.

Purpose

Ischemic brain edema is subtle and hard to detect by computed tomography within the first hours of stroke onset. We hypothesize that non-enhanced CT (NECT) post-processing with frequency-selective non-linear blending (“best contrast”/BC) increases its accuracy in detecting edema and irreversible tissue damage (infarction).

Methods

We retrospectively analyzed the NECT scans of 76 consecutive patients with ischemic stroke (exclusively middle cerebral artery territory—MCA) before and after post-processing with BC both at baseline before reperfusion therapy and at follow-up (5.73±12.74 days after stroke onset) using the Alberta Stroke Program Early CT Score (ASPECTS). We assessed the differences in ASPECTS between unprocessed and post-processed images and calculated sensitivity, specificity, and predictive values of baseline NECT using follow-up CT serving as reference standard for brain infarction.

Results

NECT detected brain tissue hypoattenuation in 35 of 76 patients (46.1%). This number increased to 71 patients (93.4%) after post-processing with BC. Follow-up NECT confirmed brain infarctions in 65 patients (85.5%; p = 0.012). Post-processing increased the sensitivity of NECT for brain infarction from 35/65 (54%) to 65/65 (100%), decreased its specificity from 11/11 (100%) to 7/11 (64%), its positive predictive value (PPV) from 35/35 (100%) to 65/69 (94%) and increased its accuracy 46/76 (61%) to 72/76 (95%).

Conclusions

This post-hoc analysis suggests that post-processing of NECT with BC may increase its sensitivity for ischemic brain damage significantly.  相似文献   

7.

Background and Purpose

Predicting the risk of further infarct growth in stroke patients is critical to therapeutic decision making. We aimed to predict early infarct growth and clinical outcome from prominent vessel sign (PVS) identified on the first susceptibility-weighted image (SWI) after acute stroke.

Materials and Methods

Twenty-two patients with middle cerebral artery (MCA) infarction had diffusion-weighted imaging, SWI, MR angiography, and clinical evaluation using the National Institutes of Health Stroke Scale at 7–60 hours and 5–14 days after stroke onset. Late-stage clinical evaluation at 1 and 3 months used the modified Rankin Scale. The infarct area and growth were scored from 10 (none) to 0 (infarct or growth in all 10 zones) using the Alberta Stroke Program Early CT Score (ASPECTS) system.

Results

Infarct growth on the second MRI occurred in 13 of 15 patients with PVS on the first MRI and not in any patient without PVS (n=7; r=0.86, P<0.001). The extent of PVS was significantly correlated with infarct growth (r=0.82, P<0.001) and early-stage outcome (P=0.02). No between-group difference in late-stage clinical outcome was found.

Conclusion

PVS on the first SWI after acute MCA territory stroke is a useful predictor of early infarct growth. Extensive PVS within the large MCA territory is related to poor early-stage outcome and could be useful for clinical assessment of stroke.  相似文献   

8.

Background

Variability in intracoronary computed tomography (CT) number may influence vessel quantification. We confirmed the feasibility of a novel method for measuring vessel diameter and area using coronary CT angiography (CCTA) with an optimized intracoronary CT number, 350 HU.

Methods

We performed intravascular ultrasound (IVUS) imaging in 52 patients with significant stenosis detected by coronary CT angiography targeting 350 HU using a CT number-controlling system. We measured 0-to-0 HU distances in the cross-sectional coronary images of 32 patients. We analyzed the ratio of 0-to-0 HU distances in CT images to media-to-media distances in IVUS images (C:I ratio). The area of ≥0 HU for 103 representative points in the remaining 20 patients was compared to the area of the traced external elastic membrane (EEM) in IVUS images.

Results

There was a strong correlation between 0-to-0 HU distance in CT images and media-to-media diameter in IVUS images (r = 0.97, p<0.001). The C:I ratio was 1.1. EEM area was estimated by dividing the area of ≥0 HU by the square of C:I. There was also a strong correlation between the estimated EEM area and the EEM area in IVUS images (r = 0.95, p<0.001).

Conclusions

Media-to-media diameter and EEM area can be estimated by CCTA targeting the optimized intracoronary CT number when blood vessel borders are defined at 0 HU.  相似文献   

9.

Background

Incidental CT findings may provide an opportunity for early detection of chronic obstructive pulmonary disease (COPD), which may prove important in CT-based lung cancer screening setting. We aimed to determine the diagnostic performance of human observers to visually evaluate COPD presence on CT images, in comparison to automated evaluation using quantitative CT measures.

Methods

This study was approved by the Dutch Ministry of Health and the institutional review board. All participants provided written informed consent. We studied 266 heavy smokers enrolled in a lung cancer screening trial. All subjects underwent volumetric inspiratory and expiratory chest computed tomography (CT). Pulmonary function testing was used as the reference standard for COPD. We evaluated the diagnostic performance of eight observers and one automated model based on quantitative CT measures.

Results

The prevalence of COPD in the study population was 44% (118/266), of whom 62% (73/118) had mild disease. The diagnostic accuracy was 74.1% in the automated evaluation, and ranged between 58.3% and 74.3% for the visual evaluation of CT images. The positive predictive value was 74.3% in the automated evaluation, and ranged between 52.9% and 74.7% for the visual evaluation. Interobserver variation was substantial, even within the subgroup of experienced observers. Agreement within observers yielded kappa values between 0.28 and 0.68, regardless of the level of expertise. The agreement between the observers and the automated CT model showed kappa values of 0.12–0.35.

Conclusions

Visual evaluation of COPD presence on chest CT images provides at best modest accuracy and is associated with substantial interobserver variation. Automated evaluation of COPD subjects using quantitative CT measures appears superior to visual evaluation by human observers.  相似文献   

10.

Background and Purpose

The presence of good collaterals on CT angiography (CTA) is a well-known predictor for favorable outcome in acute ischemic stroke. Recently, multiphase CT has been introduced as a more accurate method in assessing collaterals. The aim of this study was to assess the ability of dual-phase CT to evaluate collateral status and predict clinical outcome.

Methods

Forty-three patients who underwent both dual-phase CT and transfemoral cerebral angiography (TFCA) for occluded intracranial internal carotid artery (ICA) and/or middle cerebral artery (M1 segment) were recruited from a prospectively collected database. The collateral status on dual-phase CT was graded by using a 4-point scale: grade 0 = no collaterals; 1 = some collaterals with persistence of some defects; 2 = slow but complete collaterals; and 3 = fast and complete collaterals. Univariate and multivariate analysis were performed to define the independent predictors for favorable outcome at 3 months.

Results

Dual-phase CT collateral status (ρ = 0.744) showed higher correlation with TFCA collateral status than CTA collateral status (ρ = 0.596) and substantial interobserver agreement (weighted κ = 0.776). In the univariate analysis, age, history of hypertension, collateral scores on CTA, dual-phase CT, and TFCA, occlusion in intracranial ICA, final infarct volume, and symptomatic hemorrhage were significantly associated with outcome. Among them, only the dual-phase CT collateral score was an independent predictor for favorable outcome (OR = 26.342 (2.788–248.864); P = 0.004) in the multivariate analysis.

Conclusions

The collateral status on dual-phase CT can be a useful predictor for clinical outcome in acute stroke patients, especially when advanced CT techniques are not available in emergent situations.  相似文献   

11.

Objective

To improve image and diagnostic quality in dynamic CT myocardial perfusion imaging (MPI) by using motion compensation and a spatio-temporal filter.

Methods

Dynamic CT MPI was performed using a 256-slice multidetector computed tomography scanner (MDCT). Data from two different patients–with and without myocardial perfusion defects–were evaluated to illustrate potential improvements for MPI (institutional review board approved). Three datasets for each patient were generated: (i) original data (ii) motion compensated data and (iii) motion compensated data with spatio-temporal filtering performed. In addition to the visual assessment of the tomographic slices, noise and contrast-to-noise-ratio (CNR) were measured for all data. Perfusion analysis was performed using time-density curves with regions-of-interest (ROI) placed in normal and hypoperfused myocardium. Precision in definition of normal and hypoperfused areas was determined in corresponding coloured perfusion maps.

Results

The use of motion compensation followed by spatio-temporal filtering resulted in better alignment of the cardiac volumes over time leading to a more consistent perfusion quantification and improved detection of the extend of perfusion defects. Additionally image noise was reduced by 78.5%, with CNR improvements by a factor of 4.7. The average effective radiation dose estimate was 7.1±1.1 mSv.

Conclusion

The use of motion compensation and spatio-temporal smoothing will result in improved quantification of dynamic CT MPI using a latest generation CT scanner.  相似文献   

12.

Background

Early signs of ischaemic stroke on computerised tomography (CT) scanning are subtle but CT is the most widely available diagnostic test for stroke. Scoring methods that code for the extent of brain ischaemia may improve stroke diagnosis and quantification of the impact of ischaemia.

Methodology and Principal Findings

We showed CT scans from patients with acute ischaemic stroke (n = 32, with different patient characteristics and ischaemia signs) to doctors in stroke-related specialties world-wide over the web. CT scans were shown twice, randomly and blindly. Observers entered their scan readings, including early ischaemic signs by three scoring methods, into the web database. We compared observers'' scorings to a reference standard neuroradiologist using area under receiver operator characteristic curve (AUC) analysis, Cronbach''s alpha and logistic regression to determine the effect of scales, patient, scan and observer variables on detection of early ischaemic changes. Amongst 258 readers representing 33 nationalities and six specialties, the AUCs comparing readers with the reference standard detection of ischaemic signs were similar for all scales and both occasions. Being a neuroradiologist, slower scan reading, more pronounced ischaemic signs and later time to CT all improved detection of early ischaemic signs and agreement on the rating scales. Scan quality, stroke severity and number of years of training did not affect agreement.

Conclusions

Large-scale observer reliability studies are possible using web-based tools and inform routine practice. Slower scan reading and use of CT infarct rating scales improve detection of acute ischaemic signs and should be encouraged to improve stroke diagnosis.  相似文献   

13.

Objectives

To evaluate the accuracy of advanced non-linear registration of serial lung Computed Tomography (CT) images using Large Deformation Diffeomorphic Metric Mapping (LDDMM).

Methods

Fifteen cases of lung cancer with serial lung CT images (interval: 62.2±26.9 days) were used. After affine transformation, three dimensional, non-linear volume registration was conducted using LDDMM with or without cascading elasticity control. Registration accuracy was evaluated by measuring the displacement of landmarks placed on vessel bifurcations for each lung segment. Subtraction images and Jacobian color maps, calculated from the transformation matrix derived from image warping, were generated, which were used to evaluate time-course changes of the tumors.

Results

The average displacement of landmarks was 0.02±0.16 mm and 0.12±0.60 mm for proximal and distal landmarks after LDDMM transformation with cascading elasticity control, which was significantly smaller than 3.11±2.47 mm and 3.99±3.05 mm, respectively, after affine transformation. Emerged or vanished nodules were visualized on subtraction images, and enlarging or shrinking nodules were displayed on Jacobian maps enabled by highly accurate registration of the nodules using LDDMM. However, some residual misalignments were observed, even with non-linear transformation when substantial changes existed between the image pairs.

Conclusions

LDDMM provides accurate registration of serial lung CT images, and temporal subtraction images with Jacobian maps help radiologists to find changes in pulmonary nodules.  相似文献   

14.

Background

Animal models are essential to study the pathophysiological changes associated with focal occlusive stroke and to investigate novel therapies. Currently used rodent models have yielded little clinical success, however large animal models may provide a more suitable alternative to improve clinical translation. We sought to develop a model of acute proximal middle cerebral artery (MCA) ischemic stroke in sheep, including both permanent occlusion and transient occlusion with reperfusion.

Materials and Methods

18 adult male and female Merino sheep were randomly allocated to one of three groups (n = 6/gp): 1) sham surgery; 2) permanent proximal MCA occlusion (MCAO); or 3) temporary MCAO with aneurysm clip. All animals had invasive arterial blood pressure, intracranial pressure and brain tissue oxygen monitoring. At 4 h following vessel occlusion or sham surgery animals were killed by perfusion fixation. Brains were processed for histopathological examination and infarct area determination. 6 further animals were randomized to either permanent (n = 3) or temporary MCAO (n = 3) and then had magnetic resonance imaging (MRI) at 4 h after MCAO.

Results

Evidence of ischemic injury in an MCA distribution was seen in all stroke animals. The ischemic lesion area was significantly larger after permanent (28.8%) compared with temporary MCAO (14.6%). Sham animals demonstrated no evidence of ischemic injury. There was a significant reduction in brain tissue oxygen partial pressure after permanent vessel occlusion between 30 and 210 mins after MCAO. MRI at 4 h demonstrated complete proximal MCA occlusion in the permanent MCAO animals with a diffusion deficit involving the whole right MCA territory, whereas temporary MCAO animals demonstrated MRA evidence of flow within the right MCA and smaller predominantly cortical diffusion deficits.

Conclusions

Proximal MCAO can be achieved in an ovine model of stroke via a surgical approach. Permanent occlusion creates larger infarct volumes, however aneurysm clip application allows for reperfusion.  相似文献   

15.

Objective

To evaluate the clinical value of using monochromatic images in spectral CT pulmonary angiography to improve image quality of bronchial arteries.

Methods

We retrospectively analyzed the chest CT images of 38 patients who underwent contrast-enhanced spectral CT. These images included a set of 140kVp polychromatic images and the default 70keV monochromatic images. Using the standard Gemstone Spectral Imaging (GSI) viewer on an advanced workstation (AW4.6,GE Healthcare), an optimal energy level (in keV) for obtaining the best contrast-to-noise ratio (CNR) for the artery could be automatically obtained. The signal-to-noise ratio (SNR), CNR and objective image quality score (1–5) for these 3 image sets (140kVp, 70keV and optimal energy level) were obtained and, statistically compared. The image quality score consistency between the two observers was also evaluated using Kappa test.

Results

The optimal energy levels for obtaining the best CNR were 62.58±2.74keV.SNR and CNR from the 140kVp polychromatic, 70keV and optimal keV monochromatic images were (16.44±5.85, 13.24±5.52), (20.79±7.45, 16.69±6.27) and (24.9±9.91, 20.53±8.46), respectively. The corresponding subjective image quality scores were 1.97±0.82, 3.24±0.75, and 4.47±0.60. SNR, CNR and subjective scores had significant difference among groups (all p<0.001). The optimal keV monochromatic images were superior to the 70keV monochromatic and 140kVp polychromatic images, and there was high agreement between the two observers on image quality score (kappa>0.80).

Conclusions

Virtual monochromatic images at approximately 63keV in dual-energy spectral CT pulmonary angiography yielded the best CNR and highest diagnostic confidence for imaging bronchial arteries.  相似文献   

16.

Purpose

To investigate the value of prospective ECG-gated high-pitch 128-slice dual-source CT (DSCT) angiography in the diagnosis of congenital extracardiac vascular anomalies in infants and children in comparison with transthoracic echocardiography (TTE).

Methods

Eighty consecutive infants or children clinically diagnosed of congenital heart disease and suspected with extracardiac vascular anomaly were enrolled, and 75 patients were finally included in this prospective study. All patients underwent prospective ECG-gated high-pitch DSCT angiography after TTE with an interval of 1–7 days. The diagnostic accuracy and sensitivity of high-pitch DSCT angiography and TTE were compared according to the surgical/CCA findings. The image quality of DSCT was assessed using a five-point scale. The effective radiation dose (ED) was calculated.

Results

A total of 17 congenital heart diseases and 162 separate extracardiac vascular anomalies were confirmed by surgical/CCA findings in 75 patients. The diagnostic accuracy of high-pitch DSCT angiography and TTE was 99.67% and 97.89%, respectively. The sensitivity of high-pitch DSCT angiography and TTE was 97.53% and 79.62%, respectively. There was significant difference regarding to the diagnostic accuracy and the sensitivity between high-pitch DSCT angiography and TTE (χ2 = 23.561 and 28.013, P<0.05). The agreement on the image quality scoring of DSCT between the two observers was excellent (κ = 0.81), and the mean score of image quality was 4.1±0.7. The mean ED of DSCT was 0.29±0.08 mSv.

Conclusions

Prospective ECG-gated high-pitch 128-slice DSCT angiography with low radiation dose and high diagnostic accuracy has higher sensitivity compared to TTE in the detection of congenital extracardiac vascular anomalies in infants and children.  相似文献   

17.

Background

In past reports, researchers have seldom attached importance to achievements in transforming digital anatomy to radiological diagnosis. However, investigators have been able to illustrate communication relationships in the retroperitoneal space by drawing potential routes in computerized tomography (CT) images or a virtual anatomical atlas. We established a new imaging anatomy research method for comparisons of the communication relationships of the retroperitoneal space in combination with the Visible Human Project and CT images. Specifically, the anatomic pathways of peripancreatic fluid extension to the mediastinum that may potentially transform into fistulas were studied.

Methods

We explored potential pathways to the mediastinum based on American and Chinese Visible Human Project datasets. These drainage pathways to the mediastinum were confirmed or corrected in CT images of 51 patients with recurrent acute pancreatitis in 2011. We also investigated whether additional routes to the mediastinum were displayed in CT images that were not in Visible Human Project images.

Principal Findings

All hypothesized routes to the mediastinum displayed in Visible Human Project images, except for routes from the retromesenteric plane to the bilateral retrorenal plane across the bilateral fascial trifurcation and further to the retrocrural space via the aortic hiatus, were confirmed in CT images. In addition, route 13 via the narrow space between the left costal and crural diaphragm into the retrocrural space was demonstrated for the first time in CT images.

Conclusion

This type of exploration model related to imaging anatomy may be used to support research on the communication relationships of abdominal spaces, mediastinal spaces, cervical fascial spaces and other areas of the body.  相似文献   

18.

Background

Identifying the ischemic penumbra in acute stroke subjects is important for the clinical decision making process. The aim of this study was to use resting-state functional magnetic resonance singal (fMRI) to investigate the change in the amplitude of low-frequency fluctuations (ALFF) of these subjects in three different subsections of acute stroke regions: the infarct core tissue, the penumbra tissue, and the normal brain tissue. Another aim of this study was to test the feasilbility of consistently detecting the penumbra region of the brain through ALFF analysis.

Methods

Sixteen subjects with first-ever acute ischemic stroke were scanned within 27 hours of the onset of stroke using magnetic resonance imaging. The core of infarct regions and penumbra regions were determined by diffusion and perfusion-weighted imaging respectively. The ALFF were measured from resting-state blood oxygen level dependent (BOLD) fMRI scans. The averaged relative ALFF value of each regions were correlated with the time after the onset of stroke.

Results

Relative ALFF values were significantly different in the infarct core tissue, penumbra tissue and normal brain tissue. The locations of lesions in the ALFF maps did not match perfectly with diffusion and perfusion-weighted imagings; however, these maps provide a contrast that can be used to differentiate between penumbra brain tissue and normal brain tissue. Significant correlations between time after stroke onset and the relative ALFF values were present in the penumbra tissue but not in the infarct core and normal brain tissue.

Conclusion

Preliminary results from this study suggest that the ALFF reflects the underlying neurovascular activity and has a great potential to estimate the brain tissue viability after ischemia. Results also show that the ALFF may contribute to acute stroke imaging for thrombolytic or neuroprotective therapies.  相似文献   

19.

Objectives

To compare the true non-enhanced (TNE) and virtual non-enhanced (VNE) data sets in patients who underwent gastric preoperative dual-energy CT (DECT) and to evaluate potential radiation dose reduction by omitting a TNE scan.

Methods

A total of 74 patients underwent gastric DECT. The mean CT values, length, image quality and effective radiation doses for VNE and TNE images were compared.

Results

There was no statistical difference in maximal thickness of gastric tumors and maximal diameter of enlarged lymph nodes among the TNE and VNE images (P>0.05). The mean CT value differences between TNE and VNE were statistically significant for all tissue types, except for aorta attenuation measurements (P<0.05), but the absolute differences were under 10 HU. Lower noise was found for VNE images than TNE images (P<0.01). Image quality of VNE was diagnostic but lower than that of TNE (P<0.01). The dose reduction achieved by omitting the TNE acquisition was 21.40±4.44%.

Conclusion

VNE scan may potentially replace TNE as part of a multi-phase gastric preoperative staging imaging protocol with consequent saving in radiation dose.  相似文献   

20.

Objective

It may be possible to thrombolyse ischaemic stroke (IS) patients up to 6 h by using penumbral imaging. We investigated whether a perfusion CT (CTP) mismatch can help to select patients for thrombolysis up to 6 h.

Methods

A cohort of 254 thrombolysed IS patients was studied. 174 (69%) were thrombolysed at 0–3 h by using non-contrast CT (NCCT), and 80 (31%) at 3–6 h (35 at 3–4.5 h and 45 at 4.5–6 h) by using CTP mismatch criteria. Symptomatic intracerebral haemorrhage (SICH), the mortality and the modified Rankin Score (mRS) were assessed at 3 months. Independent determinants of outcome in patients thrombolysed between 3 and 6 h were identified.

Results

The baseline characteristics were comparable in the two groups. There were no differences in SICH (3% v 4%, p = 0.71), any ICH (7% v 9%, p = 0.61), or mortality (16% v 9%, p = 0.15) or mRS 0–2 at 3 months (55% v 54%, p = 0.96) between patients thrombolysed at 0–3 h (NCCT only) or at 3–6 h (CTP mismatch). There were no significant differences in outcome between patients thrombolysed at 3–4.5 h or 4.5–6 h. The NIHSS score was the only independent determinant of a mRS of 0–2 at 3 months (OR 0.89, 95% CI 0.82–0.97, p = 0.007) in patients treated using CTP mismatch criteria beyond 3 h.

Conclusions

The use of a CTP mismatch model may help to guide thrombolysis decisions up to 6 h after IS onset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号