首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functions of Sertoli cells, which structurally and functionally support ongoing spermatogenesis, are effectively modulated by thyroid hormones, amongst other molecules. We investigated the mechanism of action of rT3 on calcium (45Ca2+) uptake in Sertoli cells by means of in vitro acute incubation. In addition, we performed electrophysiological recordings of potassium efflux in order to understand the cell repolarization, coupled to the calcium uptake triggered by rT3. Our results indicate that rT3 induces nongenomic responses, as a rapid activation of whole-cell potassium currents in response to rT3 occurred in <5 min in Sertoli cells. In addition, the rT3 metabolite, T2, also exerted a rapid effect on calcium uptake in immature rat testis and in Sertoli cells. rT3 also modulated calcium uptake, which occurred within seconds via the action of selective ionic channels and the Na+/K+ ATPase pump. The rapid response of rT3 is essentially triggered by calcium uptake and cell repolarization, which appear to mediate the secretory functions of Sertoli cells.  相似文献   

2.
The aim of this study was to see whether the inhibitory effect of propylthiouracil on thyroidal secretion of 3,5,3′-triiodothyronine (T3) and 3,3′,5′-triiodothyronine (rT3) could be reproduced in intensively stimulated thyroids, and to elucidate whether an increase in the fractional deiodination of thyroxine (T4) to T3 and rT3 during iodothyronine secretion might be responsible for the transient fall in the T4/T3 and T4/rT3 ratios in thyroid secretion seen in the early phase after stimulation of thyroid secretion.For this purpose T4, T3 and rT3 were measured in effluent from isolated dog thyroid lobes perfused in a non-recirculation system using a synthetic hormone free medium. 1 mmol/l propylthiouracil induced a significant reduction in thyroid-stimulating hormone (TSH) stimulated T3 and rT3 release while the release of T4 was unaffected. This supports our previous conclusion that T4 is partially monodeiodinated to T3 and rT3 during thyroid secretion. Infusion of 1 mmol/l propylthiouracil for 30 min or 3 mmol/l propylthiouracil for 120 min did not abolish the transient fall in effluent T4/T3 and T4/rT3 induced by TSH stimulation. Thus, this phenomenon seems not to depend on intrathyroidal iodothyromine deiodinating processes.  相似文献   

3.
When platelets are strongly stimulated, a procoagulant platelet subpopulation is formed that is characterized by phosphatidylserine (PS) exposure and epitope modulation of integrin αIIbβ3 or a loss of binding of activation-dependent antibodies. Mitochondrial permeability transition pore (mPTP) formation, which is essential for the formation of procoagulant platelets, is impaired in the absence of cyclophilin D (CypD). Here we investigate the mechanisms responsible for these procoagulant platelet-associated changes in integrin αIIbβ3 and the physiologic role of procoagulant platelet formation in the regulation of platelet aggregation. Among strongly stimulated adherent platelets, integrin αIIbβ3 epitope changes, mPTP formation, PS exposure, and platelet rounding were closely associated. Furthermore, platelet mPTP formation resulted in a decreased ability to recruit additional platelets. In the absence of CypD, integrin αIIbβ3 function was accentuated in both static and flow conditions, and, in vivo, a prothrombotic phenotype occurred in mice with a platelet-specific deficiency of CypD. CypD-dependent proteolytic events, including cleavage of the integrin β3 cytoplasmic domain, coincided closely with integrin αIIbβ3 inactivation. Calpain inhibition blocked integrin β3 cleavage and inactivation but not mPTP formation or PS exposure, indicating that integrin inactivation and PS exposure are mediated by distinct pathways subsequent to mPTP formation. mPTP-dependent alkalinization occurred in procoagulant platelets, suggesting a possible alternative mechanism for enhancement of calpain activity in procoagulant platelets. Together, these results indicate that, in strongly stimulated platelets, mPTP formation initiates the calpain-dependent cleavage of integrin β3 and associated regulatory proteins, resulting in integrin αIIbβ3 inactivation, and demonstrate a novel CypD-dependent negative feedback mechanism that limits platelet aggregation and thrombotic occlusion.  相似文献   

4.
The mechanisms of glucagon secretion and its suppression by glucose are presently unknown. This study investigates the relationship between intracellular calcium levels ([Ca2+]i) and hormone secretion under low and high glucose conditions. We examined the effects of modulating ion channel activities on [Ca2+]i and hormone secretion from ex vivo mouse pancreatic islets. Glucagon-secreting α-cells were unambiguously identified by cell specific expression of fluorescent proteins. We found that activation of L-type voltage-gated calcium channels is critical for α-cell calcium oscillations and glucagon secretion at low glucose levels. Calcium channel activation depends on KATP channel activity but not on tetrodotoxin-sensitive Na+ channels. The use of glucagon secretagogues reveals a positive correlation between α-cell [Ca2+]i and secretion at low glucose levels. Glucose elevation suppresses glucagon secretion even after treatment with secretagogues. Importantly, this inhibition is not mediated by KATP channel activity or reduction in α-cell [Ca2+]i. Our results demonstrate that glucose uncouples the positive relationship between [Ca2+]i and secretory activity. We conclude that glucose suppression of glucagon secretion is not mediated by inactivation of calcium channels, but instead, it requires a calcium-independent inhibitory pathway.  相似文献   

5.
Angiogenesis is dependent on the coordinated action of numerous cell types. A key adhesion molecule expressed by these cells is the αvβ3 integrin. Here, we show that although this receptor is present on most vascular and blood cells, the key regulatory function in tumor and wound angiogenesis is performed by β3 integrin on bone marrow–derived cells (BMDCs) recruited to sites of neovascularization. Using knockin mice expressing functionally stunted β3 integrin, we show that bone marrow transplantation rescues impaired angiogenesis in these mice by normalizing BMDC recruitment. We demonstrate that αvβ3 integrin enhances BMDC recruitment and retention at angiogenic sites by mediating cellular adhesion and transmigration of BMDCs through the endothelial monolayer but not their release from the bone niche. Thus, β3 integrin has the potential to control processes such as tumor growth and wound healing by regulating BMDC recruitment to sites undergoing pathological and adaptive angiogenesis.  相似文献   

6.
The Dok proteins are a family of adaptor molecules that have a well defined role in regulating cellular migration, immune responses, and tumor progression. Previous studies have demonstrated that Doks-1 to 3 are expressed in platelets and that Dok-2 is tyrosine-phosphorylated downstream of integrin αIIbβ3, raising the possibility that it participates in integrin αIIbβ3 outside-in signaling. We demonstrate that Dok-2 in platelets is primarily phosphorylated by Lyn kinase. Moreover, deficiency of Dok-2 leads to dysregulated integrin αIIbβ3-dependent cytosolic calcium flux and phosphatidylinositol(3,4)P2 accumulation. Although agonist-induced integrin αIIbβ3 affinity regulation was unaltered in Dok-2−/− platelets, Dok-2 deficiency was associated with a shear-dependent increase in integrin αIIbβ3 adhesive function, resulting in enhanced platelet-fibrinogen and platelet-platelet adhesive interactions under flow. This increase in adhesion was restricted to discoid platelets and involved the shear-dependent regulation of membrane tethers. Dok-2 deficiency was associated with an increased rate of platelet aggregate formation on thrombogenic surfaces, leading to accelerated thrombus growth in vivo. Overall, this study defines an important role for Dok-2 in regulating biomechanical adhesive function of discoid platelets. Moreover, they define a previously unrecognized prothrombotic mechanism that is not detected by conventional platelet function assays.  相似文献   

7.
Integrins are heterodimeric transmembrane receptors that physically link the extracellular matrix (ECM) to the intracellular actin cytoskeleton, and are also signaling molecules that transduce signals bi-directionally across the plasma membrane. Integrin regulation is essential for tumor cell migration in response to growth factors. c-Abl kinase is a nonreceptor tyrosine kinase and is critical for signaling transduction from various receptors. Here we show that c-Abl kinase is involved in A375 cell migration mediated by αvβ3 integrin in response to PDGF stimulation. c-Abl kinase colocalizes with αvβ3 integrin dynamically and affects αvβ3 integrin affinity by regulating its cluster. The interaction between c-Abl kinase and αvβ3 integrin was dependent on the activity of c-Abl kinase induced by PDGF stimulation, but was not dependent on the binding of αvβ3 integrin with its ligands, suggesting that c-Abl kinase is not involved in the outside-in signaling of αvβ3 integrin. Talin head domain was required for the interaction between c-Abl kinase and αvβ3 integrin, and the SH3 domain of c-Abl kinase was involved in its interaction with talin and αvβ3 integrin. Taken together, we have uncovered a novel and critical role of c-Abl kinase in αvβ3 integrin mediated melanoma cell migration.  相似文献   

8.
The contributions of integrins to cellular responses depend upon their activation, which is regulated by binding of proteins to their cytoplasmic tails. Kindlins are integrin cytoplasmic tail binding partners and are essential for optimal integrin activation, and kindlin-3 fulfills this role in hematopoietic cells. Here, we used human platelets and human erythroleukemia (HEL) cells, which express integrin αIIbβ3, to investigate whether phosphorylation of kindlin-3 regulates integrin activation. When HEL cells were stimulated with thrombopoietin or phorbol 12-myristate 13-acetate (PMA), αIIbβ3 became activated as evidenced by binding of an activation-specific monoclonal antibody and soluble fibrinogen, adherence and spreading on fibrinogen, colocalization of β3 integrin and kindlin-3 in focal adhesions, and enhanced β3 integrin-kindlin-3 association in immunoprecipitates. Kindlin-3 knockdown impaired adhesion and spreading on fibrinogen. Stimulation of HEL cells with agonists significantly increased kindlin-3 phosphorylation as detected by mass spectrometric sequencing. Thr482 or Ser484 was identified as a phosphorylation site, which resides in a sequence not conserved in kindlin-1 or kindlin-2. These same residues were phosphorylated in kindlin-3 when platelets were stimulated with thrombin. When expressed in HEL cells, T482A/S484A kindlin-3 decreased soluble ligand binding and cell spreading on fibrinogen compared with wild-type kindlin-3. A membrane-permeable peptide containing residues 476–485 of kindlin-3 was introduced into HEL cells and platelets; adhesion and spreading of both cell types were blunted compared with a scrambled control peptide. These data identify a role of kindlin-3 phosphorylation in integrin β3 activation and provide a basis for functional differences between kindlin-3 and the two other kindlin paralogs.  相似文献   

9.

Background

The secretory activity of Sertoli cells (SC) is dependent on ion channel functions and protein synthesis and is critical to ongoing spermatogenesis. The aim of this study was to investigate the mechanism of action associated with a non-metabolizable amino acid [14C]-MeAIB (α-(methyl-amino)isobutyric acid) accumulation stimulated by T4 and the role of the integrin receptor in this event, and also to clarify whether the T4 effect on MeAIB accumulation and on Ca2+ influx culminates in cell secretion.

Methods

We have studied the rapid and plasma membrane initiated effects of T4 by using 45Ca2+ uptake and [45C]-MeAIB accumulation assays, respectively. Thymidine incorporation into DNA was used to monitor nuclear activity and quinacrine to analyze the secretory activity on SC.

Results

The stimulation of MeAIB accumulation by T4 appears to be mediated by the integrin receptor in the plasma membrane since tetrac and RGD peptide were able to nullify the effect of this hormone. In addition, T4 increases extracellular Ca2+ uptake and Ca2+ from intracellular stocks to enhance nuclear activity, but this genomic action seems not to influence SC secretion mediated by T4. Also, the cytoskeleton and ClC-3 chloride channel contribute to the membrane-associated responses of SC.

Conclusions

T4 integrin receptor activation ultimately determines the plasma membrane responses on amino acid transport in SC, but it is not involved in calcium influx, cell secretion or the nuclear effect of the hormone.

General significance

The integrin receptor activation by T4 may take a role in plasma membrane processes involved in the male reproductive system.  相似文献   

10.
Abstract: The uptake of 45Ca2+ and secretion of catecholamines by primary cultures of adrenal medulla cells were studied. Nicotine, veratridine, potassium, and Ionomycin stimulate both the accumulation of 45Ca2+ and the secretion of catecholamines. Nicotinic antagonists block 45Ca2+ uptake induced by nicotine, tetrodotoxin blocks 45Ca2+ uptake induced by veratridine, and D600 blocks uptake induced by K+, nicotine, and veratridine, but not 45Ca2+ uptake or secretion induced by Ionomycin. The EC50 for nicotine is 3 μm for catecholamine secretion and 10 μm for 45Ca2+ uptake, while the EC50S for veratridinestimulated uptake and secretion are approximately the same (75 μm ). Kinetic studies show that the uptake of Ca2+ is rapid and appears to precede the secretion of catecholamines, and that the rate of uptake declines rapidly. The uptake of 45Ca2+ and secretion of catecholamines stimulated by veratridine and 50 mm -K+ show saturation kinetics with respect to external calcium concentrations at about 2 mm . On the other hand, the uptake of 45 Ca2+ stimulated by nicotine does not become saturated at external calcium concentrations of 10 mm although the secretion of catecholamines reaches a maximum at external calcium concentrations of 2 mm . The data suggest that depolarizing agents such as veratridine and 50 mm -K+ stimulate 45Ca2+ entry through voltage-sensitive calcium channels, while nicotinic agonists stimulate calcium entry through the acetylcholine receptor ion channels as well as through voltage-sensitive calcium channels.  相似文献   

11.
Integrin αIIbβ3 mediated bidirectional signaling plays a critical role in thrombosis and haemostasis. Signaling mediated by the β3 subunit has been extensively studied, but αIIb mediated signaling has not been characterized. Previously, we reported that platelet granule secretion and TxA2 production induced by αIIb mediated outside-in signaling is negatively regulated by the β3 cytoplasmic domain residues R724KEFAKFEEER734. In this study, we identified part of the signaling pathway utilized by αIIb mediated outside-in signaling. Platelets from humans and gene deficient mice, and genetically modified CHO cells as well as a variety of kinase inhibitors were used for this work. We found that aggregation of TxA2 production and granule secretion by β3Δ724 human platelets initiated by αIIb mediated outside-in signaling was inhibited by the Src family kinase inhibitor PP2 and the PI3K inhibitor wortmannin, respectively, but not by the MAPK inhibitor U0126. Also, PP2 and wortmannin, and the palmitoylated β3 peptide R724KEFAKFEEER734, each inhibited the phosphorylation of Akt residue Ser473 and prevented TxA2 production and storage granule secretion. Similarly, Akt phosphorylation in mouse platelets stimulated by the PAR4 agonist peptide AYPGKF was αIIbβ3-dependent, and blocked by PP2, wortmannin and the palmitoylated peptide p-RKEFAKFEEER. Akt was also phosphorylated in response to mAb D3 plus Fg treatment of CHO cells in suspension expressing αIIbβ3-Δ724 or αIIbβ3E724AERKFERKFE734, but not in cells expressing wild type αIIbβ3. In summary, SFK(s) and PI3K/Akt signaling is utilized by αIIb-mediated outside-in signaling to activate platelets even in the absence of all but 8 membrane proximal residues of the β3 cytoplasmic domain. Our results provide new insight into the signaling pathway used by αIIb-mediated outside-in signaling in platelets.  相似文献   

12.
Voltage-dependent L-type calcium channels that permit cellular calcium influx are essential in calcium-mediated modulation of cellular signaling. Although the regulation of voltage-dependent L-type calcium channels is linked to many factors including cAMP-dependent protein kinase A (PKA) activity and actin cytoskeleton, little is known about the detailed mechanisms underlying the regulation in osteoblasts. Our present study investigated the modulation of L-type calcium channel activities through the effects of forskolin on actin reorganization and on its functional interaction with actin binding protein actinin 4. The results showed that forskolin did not significantly affect the trafficking of pore forming α1c subunit and its interaction with actin binding protein actinin 4, whereas it significantly increased the expression of β3 subunit and its interaction with actinin 4 in osteoblast cells as assessed by co-immunoprecipitation, pull-down assay, and immunostaining. Further mapping showed that the ABD and EF domains of actinin 4 were interaction sites. This interaction is independent of PKA phosphorylation. Knockdown of actinin 4 significantly decreased the activities of L-type calcium channels. Our study revealed a new aspect of the mechanisms by which the forskolin activation of adenylyl cyclase - cAMP cascade regulates the L-type calcium channel in osteoblast cells, besides the PKA mediated phosphorylation of the channel subunits. These data provide insight into the important role of interconnection among adenylyl cyclase, cAMP, PKA, the actin cytoskeleton, and the channel proteins in the regulation of voltage-dependent L-type calcium channels in osteoblast cells.  相似文献   

13.

Background

PKCθ is a novel protein kinase C isozyme, predominately expressed in T cells and platelets. PKCθ−/− T cells exhibit reduced activation and PKCθ−/− mice are resistant to autoimmune disease, making PKCθ an attractive therapeutic target for immune modulation. Collagen is a major agonist for platelets, operating through an immunoreceptor-like signalling pathway from its receptor GPVI. Although it has recently been shown that PKCθ positively regulates outside-in signalling through integrin αIIbβ3 in platelets, the role of PKCθ in GPVI-dependent signalling and functional activation of platelets has not been assessed.

Methodology/Principal Findings

In the present study we assessed static adhesion, cell spreading, granule secretion, integrin αIIbβ3 activation and platelet aggregation in washed mouse platelets lacking PKCθ. Thrombus formation on a collagen-coated surface was assessed in vitro under flow. PKCθ−/− platelets exhibited reduced static adhesion and filopodia generation on fibrinogen, suggesting that PKCθ positively regulates outside-in signalling, in agreement with a previous report. In contrast, PKCθ−/− platelets also exhibited markedly enhanced GPVI-dependent α-granule secretion, although dense granule secretion was unaffected, suggesting that PKCθ differentially regulates these two granules. Inside-out regulation of αIIbβ3 activation was also enhanced downstream of GPVI stimulation. Although this did not result in increased aggregation, importantly thrombus formation on collagen under high shear (1000 s−1) was enhanced.

Conclusions/Significance

These data suggest that PKCθ is an important negative regulator of thrombus formation on collagen, potentially mediated by α-granule secretion and αIIbβ3 activation. PKCθ therefore may act to restrict thrombus growth, a finding that has important implications for the development and safe clinical use of PKCθ inhibitors.  相似文献   

14.
Glucagon, secreted from pancreatic islet α cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring β cells, or to an intrinsic glucose sensing by the α cells themselves. We examined hormone secretion and Ca2+ responses of α and β cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn2+ signalling was blocked, but was reversed by low concentrations (1–20 μM) of the ATP-sensitive K+ (KATP) channel opener diazoxide, which had no effect on insulin release or β cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 μM). Higher diazoxide concentrations (≥30 μM) decreased glucagon and insulin secretion, and α- and β-cell Ca2+ responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (<1 μM) stimulated glucagon secretion, whereas high concentrations (>10 μM) were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM), glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na+ (TTX) and N-type Ca2+ channels (ω-conotoxin), but not L-type Ca2+ channels (nifedipine), prevented glucagon secretion. Both the N-type Ca2+ channels and α-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an α-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion.  相似文献   

15.
In pancreatic β-cells, voltage-gated potassium 2.1 (Kv2.1) channels are the dominant delayed rectifier potassium channels responsible for action potential repolarization. Here, we report that leptin, a hormone secreted by adipocytes known to inhibit insulin secretion, causes a transient increase in surface expression of Kv2.1 channels in rodent and human β-cells. The effect of leptin on Kv2.1 surface expression is mediated by the AMP-activated protein kinase (AMPK). Activation of AMPK mimics whereas inhibition of AMPK occludes the effect of leptin. Inhibition of Ca2+/calmodulin-dependent protein kinase kinase β, a known upstream kinase of AMPK, also blocks the effect of leptin. In addition, the cAMP-dependent protein kinase (PKA) is involved in Kv2.1 channel trafficking regulation. Inhibition of PKA prevents leptin or AMPK activators from increasing Kv2.1 channel density, whereas stimulation of PKA is sufficient to promote Kv2.1 channel surface expression. The increased Kv2.1 surface expression by leptin is dependent on actin depolymerization, and pharmacologically induced actin depolymerization is sufficient to enhance Kv2.1 surface expression. The signaling and cellular mechanisms underlying Kv2.1 channel trafficking regulation by leptin mirror those reported recently for ATP-sensitive potassium (KATP) channels, which are critical for coupling glucose stimulation with membrane depolarization. We show that the leptin-induced increase in surface KATP channels results in more hyperpolarized membrane potentials than control cells at stimulating glucose concentrations, and the increase in Kv2.1 channels leads to a more rapid repolarization of membrane potential in cells firing action potentials. This study supports a model in which leptin exerts concerted trafficking regulation of KATP and Kv2.1 channels to coordinately inhibit insulin secretion.  相似文献   

16.
Many marine planktonic dinoflagellates emit flashes of light in response to either laminar or turbulent flows as well as direct mechanical stimulation. The production of a flash of light is known to be mediated by a proton‐mediated action potential across the vacuolar membrane; the mechanotransduction process initiating this action potential is unknown. Here we report on an investigation into the role of Ca+2 in the mechanotransduction process regulating bioluminescence in the red tide dinoflagellate Lingulodinium polyedrum. Calcium ionophores and low concentrations of the membrane‐disrupting agent digitonin stimulated bioluminescence only when calcium was present in the media or added with the agent, indicating that the flash‐triggering vacuolar action potential is specifically stimulated by a calcium influx. A variety of known calcium channel blockers or antagonists inhibited mechanically stimulated bioluminescence but did not affect cellular bioluminescent capacity. In many cases the inhibitory affect occurred after only a brief exposure. In addition, gadolinium (Gd+3), a blocker of many stretch‐activated ion channels, caused potent inhibition of mechanically stimulated bioluminescence. The order of potency of the transition metals tested was La+3 > Gd+3 > Co+2 > Mn+2 > Ni+2, similar to their potency as blockers of known calcium channels. Experiments with a quantified shear flow demonstrated that flow‐stimulated bioluminescence depended on the level of extracellular calcium. Future work will elucidate the signaling pathway involving calcium‐mediated flow‐stimulated mechanotransduction. Our goal is to use bioluminescence as a proxy for the initial cellular mechanotransduction events triggered by fluid flow.  相似文献   

17.

Background

Hemostasis and thrombosis are regulated by agonist-induced activation of platelet integrin αIIbβ3. Integrin activation, in turn is mediated by cellular signaling via protein kinases and protein phosphatases. Although the catalytic subunit of protein phosphatase 1 (PP1c) interacts with αIIbβ3, the role of PP1c in platelet reactivity is unclear.

Methodology/Principal Findings

Using γ isoform of PP1c deficient mice (PP1cγ−/−), we show that the platelets have moderately decreased soluble fibrinogen binding and aggregation to low concentrations of thrombin or protease-activated receptor 4 (PAR4)-activating peptide but not to adenosine diphosphate (ADP), collagen or collagen-related peptide (CRP). Thrombin-stimulated PP1cγ−/− platelets showed decreased αIIbβ3 activation despite comparable levels of αIIbβ3, PAR3, PAR4 expression and normal granule secretion. Functions regulated by outside-in integrin αIIbβ3 signaling like adhesion to immobilized fibrinogen and clot retraction were not altered in PP1cγ−/− platelets. Thrombus formation induced by a light/dye injury in the cremaster muscle venules was significantly delayed in PP1cγ−/− mice. Phosphorylation of glycogen synthase kinase (GSK3)β-serine 9 that promotes platelet function, was reduced in thrombin-stimulated PP1cγ−/− platelets by an AKT independent mechanism. Inhibition of GSK3β partially abolished the difference in fibrinogen binding between thrombin-stimulated wild type and PP1cγ−/− platelets.

Conclusions/Significance

These studies illustrate a role for PP1cγ in maintaining GSK3β-serine9 phosphorylation downstream of thrombin signaling and promoting thrombus formation via fibrinogen binding and platelet aggregation.  相似文献   

18.
Expression of the β-subunit (CaVβ) is required for normal function of cardiac L-type calcium channels, and its up-regulation is associated with heart failure. CaVβ binds to the α1 pore-forming subunit of L-type channels and augments calcium current density by facilitating channel opening and increasing the number of channels in the plasma membrane, by a poorly understood mechanism. Actin, a key component of the intracellular trafficking machinery, interacts with Src homology 3 domains in different proteins. Although CaVβ encompasses a highly conserved Src homology 3 domain, association with actin has not yet been explored. Here, using co-sedimentation assays and FRET experiments, we uncover a direct interaction between CaVβ and actin filaments. Consistently, single-molecule localization analysis reveals streaklike structures composed by CaVβ2 that distribute over several micrometers along actin filaments in HL-1 cardiomyocytes. Overexpression of CaVβ2-N3 in HL-1 cells induces an increase in L-type current without altering voltage-dependent activation, thus reflecting an increased number of channels in the plasma membrane. CaVβ mediated L-type up-regulation, and CaVβ-actin association is prevented by disruption of the actin cytoskeleton with cytochalasin D. Our study reveals for the first time an interacting partner of CaVβ that is directly involved in vesicular trafficking. We propose a model in which CaVβ promotes anterograde trafficking of the L-type channels by anchoring them to actin filaments in their itinerary to the plasma membrane.  相似文献   

19.
Plasma reverse triiodothyronine (rT3) concentration was measured by radio immunoassay (RIA) in a group of 15 dogs. The mean rT3 concentration was 187 ng/100 ml which was 3 times higher than radioimmunoassayable triiodothyronine (T3) concentration. rT3 measurement in thyroid and peripheral venous plasma in 3 dogs showed that the unusually high circulating rT3 levels in this species could not be explained on the basis of augmented thyroidal rT3 secretion. Study of rT3-protein binding by equilibrium dialysis also failed to show any evidence of unusual rT3-protein interaction (rT3 free fraction was 2 — 3 times greater than in normal human serum). Among all the species examined so far (man, monkey, sheep, dog and rat), only in the dog are the circulating rT3 levels significantly higher than T3 suggesting that in this species the 5-deiodination, in marked contrast to the 5'-deiodination noted in several other species, is a major pathway normally involved in the initial monodeiodination of T4.  相似文献   

20.
Loss of neuronal protein stargazin (γ2) is associated with recurrent epileptic seizures and ataxia in mice. Initially, due to homology to the skeletal muscle calcium channel γ1 subunit, stargazin and other family members (γ3–8) were classified as γ subunits of neuronal voltage-gated calcium channels (such as CaV2.1-CaV2.3). Here, we report that stargazin interferes with G protein modulation of CaV2.2 (N-type) channels expressed in Xenopus oocytes. Stargazin counteracted the Gβγ-induced inhibition of CaV2.2 channel currents, caused either by coexpression of the Gβγ dimer or by activation of a G protein-coupled receptor. Expression of high doses of Gβγ overcame the effects of stargazin. High affinity Gβγ scavenger proteins m-cβARK and m-phosducin produced effects similar to stargazin. The effects of stargazin and m-cβARK were not additive, suggesting a common mechanism of action, and generally independent of the presence of the CaVβ3 subunit. However, in some cases, coexpression of CaVβ3 blunted the modulation by stargazin. Finally, the Gβγ-opposing action of stargazin was not unique to CaV2.2, as stargazin also inhibited the Gβγ-mediated activation of the G protein-activated K+ channel. Purified cytosolic C-terminal part of stargazin bound Gβγ in vitro. Our results suggest that the regulation by stargazin of biophysical properties of CaV2.2 are not exerted by direct modulation of the channel but via a Gβγ-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号