首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
奶牛脂肪细胞体积和数目的不断增加会导致脂肪组织脂代谢的紊乱,引起一系列相关慢性疾病如Ⅱ型糖尿病、酮病、脂肪肝、高脂血症等的发生,LKB1-AMPKα-SIRT1信号通路在奶牛脂肪组织脂代谢中起着重要的调控作用。单磷酸腺苷活化蛋白激酶(AMPK)是比较保守的丝氨酸/苏氨酸激酶,在调节能量代谢中起着枢纽作用。肝激酶B1(LKB1)属于一种丝氨酸激酶,是AMPKα的上游激酶,可参与细胞内能量代谢等多种生物活动。沉默信息调节因子1(SIRT1)是一种NAD+依赖的组蛋白去乙酰化酶,可通过去乙酰化LKB1增加AMPKα的活性。就LKB1-AMPKα-SIRT1信号转导通路在奶牛脂肪组织脂代谢紊乱中的调控机制作一综述,旨在为下一步研究奶牛脂代谢相关信号通路调控机理提供依据。  相似文献   

2.
肝脏脂代谢紊乱与2型糖尿病、肥胖症、心血管疾病等多种慢性病密切相关。运动与二甲双胍均可通过作用于不同组织器官调节机体脂代谢,是防治脂代谢异常相关疾病的有效手段。运动可减少肝脏脂质摄入与分泌、降低脂质合成、促进脂肪酸分解,二甲双胍可抑制肝脏糖异生及脂质合成,达到控糖减脂的作用。两者在激活AMPK信号通路、促进肝脏因子分泌方面表现为协同效应,而对线粒体复合物I活性的调节却表现为拮抗效应,两者联合作用于肝脏脂代谢的分子机制有待进一步研究。该文基于运动与二甲双胍调控肝脏脂代谢的生物学机制进行综述,为慢病预防和治疗提供新的思路与策略。  相似文献   

3.
糖尿病是一种以高血糖为主要特点的慢性代谢疾病。长期患有1型和2型糖尿病的患者可能会出现骨骼并发症或"糖尿病性骨病",包括骨质减少、骨质疏松、骨关节病变和低应力骨折的发生率增加。腺苷酸活化蛋白激酶(AMPK)、哺乳动物雷帕霉素靶蛋白(mTOR)和叉头转录基因(FoxO)在糖脂代谢及骨代谢中具有重要调节作用。AMPK是mTOR和FoxO的上游调控因子,AMPK和PI3K/Akt都可以调节mTOR和FoxO1,而能量消耗是激活PI3K/Akt的因素之一,即AMP/ATP的值改变可以激活PI3K/Akt。运动能够介导上述三条通路调控糖尿病骨病,但不同形式不同负荷的运动对糖尿病骨病相关信号通路作用不一,其中运动强度是关键因素。该文查阅国内外大量文献,总结了此三者在糖尿病骨病中的调节机制,通过探讨运动介导此三者对糖尿病骨病的影响,试图为糖尿病骨病的预防和治疗提供新的理论依据。  相似文献   

4.
AMPK在机体糖脂代谢中的作用   总被引:1,自引:0,他引:1  
AMP激活的蛋白激酶(AMPK)是一种广泛参与调节细胞代谢的激酶,被称为"能量感受器".一旦胞浆中AMP/ATP比例升高,或其它因素激活AMPK时,AMPK可增强葡萄糖摄取和利用,以及脂肪酸氧化,产生更多能量;同时抑制葡萄糖异生、脂质合成及糖原合成等通路,减少能量消耗,从而使细胞能量代谢保持平衡.AMPK参与调节包括胰岛β细胞、肝脏、骨骼肌和脂肪在内的多种外周组织的糖脂代谢过程.本文旨在总结并讨论AMPK在机体主要糖脂代谢器官中的作用,并重点分析其在治疗胰岛素抵抗和2型糖尿病中的潜在作用.  相似文献   

5.
腺苷-磷酸激活的蛋白激酶(AMP-activated protein kinase,AMPK)是公认的重要能量感受酶。其作用与多个代谢途径有关,尤其在脂类营养代谢过程中发挥着关键的调控作用。AMPK对脂质代谢的调控通过多个信号通路进行,涉及到骨骼肌、肝脏、乳腺等多个组织。对AMPK调控脂类营养代谢机理的研究为2型糖尿病、脂肪肝、肥胖症、癌症等多种疾病的治疗提供了靶点,但AMPK在奶牛乳腺组织的研究较少,其在提高奶牛生产性能方面潜能巨大。  相似文献   

6.
酒精性脂肪肝(alcoholic fatty liver,AFL)是由于长期大量饮酒而引发的一种慢性肝病,严重危害人们身体健康并增加社会经济负担。AFL的发病机制复杂多样,涉及众多信号通路的调控,其中脂代谢紊乱、氧化应激、炎症反应等均不同程度地参与了AFL的发生发展。AMPK属于真核细胞Ser/Thr蛋白激酶家族的一员,在协调细胞糖脂代谢方面起着重要作用。大量研究表明,乙醇会抑制肝脏AMPK活性而诱导AFL的发生,而激活AMPK通路可有效缓解AFL。该文着重就目前AMPK介导的脂代谢信号通路在AFL中的研究进展进行综述,以期为该病的防治提供新的思路。  相似文献   

7.
5’单磷酸腺苷活化蛋白激酶(AMP—activated protein kinase,AMPK)是细胞的能量感受器,调节细胞能量代谢,在正常细胞和癌细胞中均发挥重要的生物功能,它的激活有助于纠正代谢紊乱,使细胞代谢趋向生理平衡。在细胞应急反应中,细胞感受到能量危机,ATP浓度下降,AMP浓度上升,细胞内AMP/ATP比例上升,AMPK被激活:而在病理状态下,如代谢综合征、肿瘤等,常伴随能量代谢紊乱和AMPK激活抑制,因此,AMPK被视为治疗代谢性疾病与肿瘤的潜在作用靶点。然而,AMPK对能量代谢的调节与线粒体的功能密不可分,线粒体作为细胞的能量工厂,在健康与疾病中也发挥着重要的作用。越来越多的研究表明,线粒体能影响AMPK的活性,同时AMPK也通过多方面对线粒体进行调节,线粒体相关疾病与AMPK的调节有着密切的关系。该文主要针对AMPK是如何对线粒体的合成、线粒体自噬、内源性凋亡及线粒体相关疾病等方面进行综述。  相似文献   

8.
单磷酸腺苷激活的蛋白质激酶(AMP-activated protein kinase,AMPK)作为真核细胞内重要的能量感受器,是一种进化上高度保守的丝氨酸/苏氨酸蛋白质激酶,能够维持和调控细胞能量动态平衡,在糖脂代谢调控的生理状态以及癌症和糖尿病等病理状态中均发挥着不可或缺的作用。随着对AMPK调控网络研究的进一步深入,发现在不同肿瘤细胞及特定发展阶段中,AMPK可能通过不同的信号通路发挥其促进和抑制肿瘤发生发展的双重功能。深入理解AMPK复杂的调控网络与癌细胞不同代谢需求之间相互作用的方式具有重要指导意义。AMPK激活剂二甲双胍(metformin)作为经典的抗糖尿病药物如今备受肿瘤界关注,但其是否依赖于AMPK发挥作用仍存在很多争议,其能否用于临床肿瘤治疗还有待进一步研究讨论。本文通过对AMPK的功能结构及其与肿瘤生长(能量代谢、自噬、死亡方式)、肿瘤转移、血管生成之间的关系进行系统阐述,并着重讨论AMPK激活剂二甲双胍与肿瘤的相关研究,旨在为靶向AMPK抑制肿瘤发生发展提供理论基础。  相似文献   

9.
线粒体是哺乳动物细胞内重要细胞器,通过生物合成、分裂/融合及线粒体自噬过程之间的平衡来维持线粒体质量,其功能异常将导致多种疾病的发生。腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)是感受细胞能量变化的关键分子,细胞能量胁迫条件下激活AMPK调控了线粒体的功能,并影响细胞能量代谢和机体的健康,提示AMPK是调控线粒体质量的重要因子。基于此,该文综述了AMPK的结构和激活因素,围绕线粒体生物合成、分裂/融合的动力学和自噬讨论AMPK对哺乳动物细胞线粒体质量的调控作用,为通过激活AMPK而调控线粒体质量,从而为维持机体健康、降低疾病发生提供理论依据。  相似文献   

10.
齐美玲  赵越 《生命科学》2012,(10):1151-1156
代谢综合征包括脂代谢异常、向心性肥胖、胰岛素抵抗和2型糖尿病等多种代谢异常疾病,严重威胁着人们的健康和生活质量。PPARγ的辅调节因子通过调控PPARγ介导的基因转录参与脂代谢调节,其中PGC-10c通过调控PPARγ介导的下游靶基因的转录等环节,参与调节多种脂代谢通路;SMRT、TRAP和JHDM2a也通过不同的机制调节PPARγ介导的基因转录,参与脂代谢调节。  相似文献   

11.
腺苷酸活化蛋白激酶(AMPactivated proteinkinase,AMPK)是真核细胞中高度保守的丝氨酸/苏氨酸蛋白激酶,以异源三聚体的形式广泛存在于真核生物体内,是细胞的能量感受器,在能量代谢调控中起极其重要的作用。肝激酶B1(LKB1)、Ca2+/CaM-依赖蛋白激酶激酶β(CaMKKβ)、AMP/ATP或ADP/ATP比值升高以及诸如运动肌肉收缩等生理刺激均可以激活AMPK,进而调节细胞的能量代谢网络,提高其应对内外环境变化的能力,从而维持细胞水平乃至整个机体的稳定状态。活化的AMPK可以增强分解代谢,抑制合成代谢,上调ATP水平,参与细胞糖代谢、脂肪代谢、蛋白质代谢等能量代谢过程,增加细胞能量储备,应对能量缺乏。同时活化的AMPK参与细胞的生长、增殖、凋亡、自噬等基本生物学过程。AMPK是研究肥胖,糖尿病等能量代谢性疾病的核心。肿瘤细胞存在特殊的能量代谢方式,其发生,生长,转移与能量代谢失衡密切相关。AMPK与肿瘤细胞异常的能量代谢相关,为肿瘤发生、发展机制研究提供新的策略。本文主要探讨AMPK的结构、激活机制、参与的物质能量代谢和细胞的基本生物学过程以及与肿瘤发生的关联。  相似文献   

12.
AMPK:细胞能量中枢   总被引:1,自引:0,他引:1  
腺苷酸活化蛋白激酶(AMP activated protein kinase,AMPK)是真核细胞中高度保守的丝氨酸/苏氨酸蛋白激酶,以异源三聚体的形式广泛存在于真核生物体内,是细胞的能量感受器,在能量代谢调控中起极其重要的作用。肝激酶B1(LKB1)、Ca^2+/CaM-依赖蛋白激酶激酶β(CaMKKβ)、AMP/ATP或ADP/ATP比值升高以及诸如运动肌肉收缩等生理刺激均可以激活AMPK,进而调节细胞的能量代谢网络,提高其应对内外环境变化的能力,从而维持细胞水平乃至整个机体的稳定状态。活化的AMPK可以增强分解代谢,抑制合成代谢,上调ATP水平,参与细胞糖代谢、脂肪代谢、蛋白质代谢等能量代谢过程,增加细胞能量储备,应对能量缺乏。同时活化的AMPK参与细胞的生长、增殖、凋亡、自噬等基本生物学过程。AMPK是研究肥胖,糖尿病等能量代谢性疾病的核心。肿瘤细胞存在特殊的能量代谢方式,其发生,生长,转移与能量代谢失衡密切相关。AMPK与肿瘤细胞异常的能量代谢相关,为肿瘤发生、发展机制研究提供新的策略。本文主要探讨AMPK的结构、激活机制、参与的物质能量代谢和细胞的基本生物学过程以及与肿瘤发生的关联。  相似文献   

13.
The AMP-activated protein kinase cascade--a unifying system for energy control   总被引:23,自引:0,他引:23  
AMP-activated protein kinase (AMPK) is the downstream component of a protein kinase cascade that acts as an intracellular energy sensor maintaining the energy balance within the cell. This pivotal role of AMPK places it in an ideal position for regulating whole-body energy metabolism, and AMPK might play a part in protecting the body from metabolic diseases such as type 2 diabetes and obesity. Mutations in AMPK cause cardiac hypertrophy and arrhythmia. Recent findings have identified LKB1--a protein kinase that is mutated in a hereditary form of cancer--as a candidate for the upstream kinase in the AMPK cascade. AMPK could provide a link in human diseases of which the underlying cause is due to defects in energy metabolism.  相似文献   

14.
Bioenergy homeostasis constitutes one of the most crucial foundations upon which other cellular and organismal processes may be executed. AMP-activated protein kinase (AMPK) has been shown to be the key player in the regulation of energy metabolism, and thus is becoming the focus of research on obesity, diabetes and other metabolic disorders. However, its role in the brain, the most energy-consuming organ in our body, has only recently been studied and appreciated. Widely expressed in the brain, AMPK activity is tightly coupled to the energy status at both neuronal and whole-body levels. Importantly, AMPK signaling is intimately implicated in multiple aspects of brain development and function including neuronal proliferation, migration, morphogenesis and synaptic communication, as well as in pathological conditions such as neuronal cell death, energy depletion and neurodegenerative disorders.  相似文献   

15.
Glycolipid metabolism disorder is one of the causes of type 2 diabetes (T2D). Alternate-day fasting (ADF) is an effective dietary intervention to counteract T2D. The present study is aimed to determine the underlying mechanisms of the benefits of ADF metabolic on diabetes-induced glycolipid metabolism disorders in db/db mice. Here, leptin receptor knock-out diabetic mice were subjected to 28 days of isocaloric ADF. We found that ADF prevented insulin resistance and bodyweight gain in diabetic mice. ADF promoted glycogen synthesis in both liver and muscle. ADF also activated recombinant insulin receptor substrate-1 (IRS-1)/protein kinase B (AKT/PKB) signaling,inactivated inflammation related AMP-activated protein kinase (AMPK) and the inflammation-regulating nuclear factor kappa-B (NF-κB) signaling in the liver. ADF also suppressed lipid accumulation by inactivating the expression of peroxisome proliferator–activated receptor gamma (PPAR-γ) and sterol regulatory element-binding protein-1c (SREBP-1c). Furthermore, ADF elevated the expression of fibroblast growth factor 21 (FGF21) and down-stream signaling AMPK/silent mating type information regulation 2 homolog 1 (SIRT1)/peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) in the liver of diabetic mice. The mitochondrial biogenesis and autophagy were also stimulated by ADF. Interestingly, ADF also enhanced the bile acids (BAs) metabolism by generating more cholic acid (CA), deoxycholic acid (DCA) and tauroursodeoxycholic acid (TUDCA) in db/db mice. In conclusion, ADF could significantly inhibit T2D induced insulin resistance and obesity, promote insulin signaling,reduce inflammation, as well as promote glycogen synthesis and lipid metabolism. It possibly depends on FGF21 and BA metabolism to enhance mitochondrial biosynthesis and energy metabolism.  相似文献   

16.
The membrane glycolipid glucosylceramide (GlcCer) plays a critical role in cellular homeostasis. Its intracellular levels are thought to be tightly regulated. How cells regulate GlcCer levels remains to be clarified. AMP-activated protein kinase (AMPK), which is a crucial cellular energy sensor, regulates glucose and lipid metabolism to maintain energy homeostasis. Here, we investigated whether AMPK affects GlcCer metabolism. AMPK activators (5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside and metformin) decreased intracellular GlcCer levels and synthase activity in mouse fibroblasts. AMPK inhibitors or AMPK siRNA reversed these effects, suggesting that GlcCer synthesis is negatively regulated by an AMPK-dependent mechanism. Although AMPK did not affect the phosphorylation or expression of GlcCer synthase, the amount of UDP-glucose, an activated form of glucose required for GlcCer synthesis, decreased under AMPK-activating conditions. Importantly, the UDP-glucose pyrophosphatase Nudt14, which degrades UDP-glucose, generating UMP and glucose 1-phosphate, was phosphorylated and activated by AMPK. On the other hand, suppression of Nudt14 by siRNA had little effect on UDP-glucose levels, indicating that mammalian cells have an alternative UDP-glucose pyrophosphatase that mainly contributes to the reduction of UDP-glucose under AMPK-activating conditions. Because AMPK activators are capable of reducing GlcCer levels in cells from Gaucher disease patients, our findings suggest that reducing GlcCer through AMPK activation may lead to a new strategy for treating diseases caused by abnormal accumulation of GlcCer.  相似文献   

17.
18.
AMP-activated protein kinase (AMPK) is the downstream component of a protein kinase cascade that is a key regulator of energy balance at both the cellular and whole-body level. AMPK acts to stimulate ATP production and reduce ATP consumption when cellular ATP levels fall, thereby normalizing energy balance. Given the central role of AMPK in cellular carbohydrate and lipid metabolism, AMPK activation has been proposed to be a therapeutic target for conditions associated with dysfunctional nutrient metabolism including obesity, type 2 diabetes, hepatic steatosis, cardiovascular diseases and cancer. One way by which increased ATP production can be achieved is by increasing the supply of nutrient substrates. In the 1990s, AMPK activation was demonstrated to stimulate glucose uptake in striated muscle, thereby improving substrate supply for ATP production. Subsequently AMPK activation was postulated to underlie the increase in glucose uptake that occurs during muscle contraction. More recently, however, several lines of evidence have demonstrated that AMPK activation is unlikely to be required for contraction-mediated glucose uptake. Furthermore, despite the importance of AMPK in cellular and whole-body metabolism, far fewer studies have investigated either the role of AMPK in glucose uptake by non-muscle tissues or whether AMPK regulates the uptake of fatty acids. In the present review, we discuss the role of AMPK in nutrient uptake by tissues, focusing on glucose uptake out with muscle and fatty acid uptake.  相似文献   

19.
Irisin is a newly identified myokine that promotes the browning of white adipose tissue, enhances glucose uptake in skeletal muscle and modulates hepatic metabolism. However, the signaling pathways involved in the effects on hepatic glucose and lipid metabolism have not been resolved. This study aimed to examine the role of irisin in the regulation of hepatic glucose/lipid metabolism and cell survival, and whether adenosine monophosphate-activated protein kinase (AMPK), a master metabolic regulator in the liver, is involved in irisin’s actions. Human liver-derived HepG2 cells were cultured in normal glucose-normal insulin (NGNI) or high glucose-high insulin (HGHI/insulin-resistant) condition. Hepatic glucose and lipid metabolism was evaluated by glucose output and glycogen content or triglyceride accumulation assays, respectively. Our results showed that irisin stimulated phosphorylation of AMPK and acetyl-CoA-carboxylase (ACC) via liver kinase B1 (LKB1) rather than Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) in HepG2 cells. Irisin ameliorated hepatic insulin resistance induced by HGHI condition. Irisin reduced hepatic triglyceride content and glucose output, but increased glycogen content, with those effects reversed by dorsomorphin, an AMPK inhibitor. Furthermore, irisin also stimulated extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and promoted cell survival in an AMPK-dependent manner. In conclusion, our data indicate that irisin ameliorates dysregulation of hepatic glucose/lipid metabolism and cell death in insulin-resistant states via AMPK activation. These findings reveal a novel irisin-mediated protective mechanism in hepatic metabolism which provides a scientific basis for irisin as a potential therapeutic target for the treatment of insulin resistance and type 2 diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号