首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
【目的】研究Acinetobacter sp.Y1的氨氮(NH_4~+-N)去除性能及其关键酶的提取与酶活性。【方法】以柠檬酸钠为碳源,硫酸铵为氮源,研究菌株Y1的NH_4~+-N去除性能;采用正交实验优化超声波破碎法提取粗酶的条件,SDS-PAGE分析比较渗透压休克法和超声波破碎法获得的粗酶;检测关键酶——羟胺氧化还原酶(HAO)、亚硝酸盐还原酶(NIR)、硝酸盐还原酶(NAR)的酶活性。【结果】24 h内菌株Y1的菌密度(OD600)可达1.280,对NH_4~+-N、总氮(TN)和COD的降解率分别达到98%、94%和92%,硝化过程中羟胺、亚硝酸盐氮、硝酸盐氮不积累,反硝化产生N2;超声波破碎法提取粗酶的最佳工作条件为:破碎功率50 W,工作与间歇时间分别为4 s和7 s,OD600为1.250,总工作时间20 min,关键酶HAO、NIR和NAR的比活力分别为0.011、0.002和0.018 U/mg;渗透压休克法得到的HAO比活力是0.067 U/mg。【结论】Acinetobacter sp.Y1能同时高效去除NH_4~+-N、TN和COD。优化超声波破碎法提取粗酶的条件,检测到HAO、NIR和NAR的酶活性,且渗透压休克法比超声波破碎法更适合用来提取HAO。  相似文献   

2.
一株海水异养硝化-好氧反硝化菌系统发育及脱氮特性   总被引:9,自引:0,他引:9  
【目的】确定一株分离自海水的异养硝化-好氧反硝化菌的系统发育地位并探索其脱氮特性和机理,以期为解释异养硝化-好氧反硝化机理以及改进海水养殖及废水的生物脱氮工艺提供理论依据。【方法】通过形态观察、生理生化实验和16S rRNA基因序列分析,鉴定该菌株;通过测定菌株在不同无机氮源降解测试液中的生长和脱氮效率,分析其异养硝化和好氧反硝化性能。【结果】经鉴定该菌株属于盐单胞菌属(Halomonas);最适生长条件为盐度3%、pH 8.5、温度28℃、碳氮比10:1,在盐度为15%的培养液中仍能生长;可以同时去除氨氮、亚硝酸氮和硝酸氮,24 h时对NH4+-N、NO2--N、和NO3--N的去除率可分别达到98.29%、99.07%、96.48%,3种形态无机氮同时存在时,会优先利用NH4+-N,且总无机氮去除率较单一存在时更高,说明该菌株可实现同步硝化反硝化。【结论】该分离自海水的异养硝化-好氧反硝化菌属于盐单胞菌属(Halomonas),在高盐环境中仍能生长,同时具有高效的异养硝化和好氧反硝化能力,能够独立完成脱氮的全部过程。  相似文献   

3.
辛玉峰  曲晓华 《微生物学报》2017,57(12):1898-1907
【目的】为了体现并突出亚硝酸盐还原酶在污水脱氮以及短程硝化中的重要性,对过表达亚硝酸盐还原酶的大肠杆菌进行了污水脱氮的研究。【方法】通过转化带有亚硝酸盐还原酶基因的重组质粒,将亚硝酸盐还原酶在大肠杆菌中过表达,通过分析重组大肠杆菌的产物研究了该酶的表达及还原亚硝酸盐的情况,通过将该重组菌与已报道的硝化-反硝化细菌或生活污水进行混合培养,研究重组菌用于辅助氨氮去除的短程硝化能力。【结果】重组大肠杆菌能正确表达亚硝酸盐还原酶,OD600=2.0的菌悬液在2 h内还原约1 mmol/L的亚硝酸盐,并产生几乎等量的一氧化氮;重组大肠杆菌与Acinetobacter sp.YF14菌株等比例混合时,12 h能够提高氨氮脱氮效率约(36.0±7.4)%,且在4 h时,最大亚硝酸盐的积累量减少37%;重组大肠杆菌(OD600=1.0)12 h内能够提高污水厂活性污泥的脱氮效率约(31.0±5.7)%,且未检测到亚硝酸盐和硝酸盐的积累;溶氧水平对于亚硝酸盐还原酶重组菌辅助脱氮具有明显的影响,中等溶氧量[(6.4?0.7)mg/L]时脱氮效果最好。【结论】过表达亚硝酸盐还原酶的大肠杆菌可以提高污水脱氮的短程硝化能力。  相似文献   

4.
金属离子对粪产碱杆菌C16的脱氮和亚硝酸盐积累的影响   总被引:2,自引:0,他引:2  
王瑶  刘玉香  安华  张浩 《微生物学通报》2014,41(11):2254-2263
【目的】研究不同金属离子对异养氨氧化细菌C16的生长和脱氮性能影响,探讨适于C16生长和脱氮的金属离子及其浓度。【方法】实验选用Mg2+、Mn2+、Fe2+、Cu2+、Zn2+5种金属离子,对C16的生长﹑脱氮性能﹑亚硝酸盐氮积累以及相关酶活性进行研究。【结果】Mg2+明显促进C16的生长和NH4+-N氧化速率;较高浓度Mn2+使得C16无法生长;原培养基中缺少Fe2+会抑制C16的生长和NH4+-N氧化速率;在原培养基中加入0.1 mmol/L的Cu2+对C16的生长和脱氮具有一定的促进作用,Cu2+使得培养基中基本无NO2--N和NH2OH的积累;不同浓度的Zn2+对C16的生长和氨氮去除有抑制作用。酶活实验结果显示,0.1 mmol/L Mg2+促进了羟胺氧化还原酶(HAO)的活性;0.1 mmol/L Cu2+促进了硝酸盐还原酶(Nar)和亚硝酸盐还原酶(Nir)的活性。【结论】Mg2+是C16生长和脱氮过程中的一种重要金属离子;加入Cu2+可避免过量亚硝酸盐积累。  相似文献   

5.
羟胺氧化还原酶(hydroxylamine oxidoreductase,HAO)属于多血红素蛋白酶家族,每个单体由7个电子转移血红素和1个催化血红素组成。HAO既可分别催化羟胺和肼的氧化反应,也可催化羟胺、一氧化氮及亚硝酸盐的还原反应。不同硝化细菌中,HAO的最适温度、p H、底物、产物特异性及酶抑制剂等存在差异。作为生物硝化过程的关键酶,HAO在提升生物脱氮速率及清除硝化中间产物(羟胺)对生物的毒害方面发挥重要作用。本文系统综述了HAO在脱氮微生物中的分布、蛋白结构、表达调控及其活性等,总结其在不同硝化细菌中的生物化学特性,最后对HAO进一步的研究方向进行展望,有助于深入理解生物脱氮过程和微生物体内羟胺代谢的机理,为优化废水处理工艺提供新的指导。  相似文献   

6.
基于响应面法对一株好氧反硝化菌脱氮效能优化   总被引:2,自引:1,他引:1  
【目的】水体富营养化是当今我国水环境面临的重大水域环境问题,氮素超标排放是主要的引发因素之一。好氧反硝化菌构建同步硝化反硝化工艺比传统脱氮工艺优势更大。获得高效的好氧反硝化菌株并通过生长因子优化使脱氮效率达到最高。【方法】经过序批式生物反应器(Sequencing batch reactor,SBR)的定向驯化,筛选获得高效好氧反硝化菌株,采用响应面法优化好氧反硝化过程影响总氮去除效率的关键因子(碳氮、溶解氧、pH、温度)。【结果】从运行稳定的SBR反应器中定向筛选高效好氧反硝化菌株Pseudomonas T13,采用响应面法对碳氮比、pH和溶解氧关键因子综合优化获得在18 h内最高硝酸盐去除率95%,总氮去除率90%。该菌株的高效反硝化效果的适宜温度范围为25?30 °C;最适pH为中性偏碱;适宜的COD/NO3?-N为4:1以上;最佳溶解氧浓度在2.5 mg/L。【结论】从长期稳定运行的SBR反应器中筛选获得一株高效好氧反硝化菌Pseudomonas T13,硝酸盐还原酶比例占脱氮酶基因的30%以上,通过运行条件优化获得硝氮去除率达到90%以上,对强化废水脱氮工艺具有良好应用价值。  相似文献   

7.
【目的】异养硝化-好氧反硝化(heterotrophic nitrification-aerobic denitrification,HN-AD)微生物在生物脱氮中具有重要作用,而能同时去除废水中多种无机氮尤其是羟胺的HN-AD微生物报道较少。本研究从菜地中分离筛选出一株能同时去除羟胺和亚硝酸盐的HN-AD菌株EN-F4,探究其脱氮特征以及羟胺对其脱氮过程的影响,为提高废水处理效率奠定基础。【方法】通过形态学和16S rRNA基因测序对该菌株进行鉴定,并利用批量试验研究该菌株的脱氮特征,结合氮平衡、酶活性和特异性酶抑制剂探索菌株的HN-AD机理,最后通过添加羟胺研究其对不同氮源转化的影响。【结果】菌株EN-F4经鉴定为栖稻假单胞菌(Pseudomonas oryzihabitans),该菌株在25℃条件下对铵盐、羟胺、亚硝酸盐和硝酸盐的去除效率分别为99.27%、99.13%、87.01%和85.20%,对应的最大去除速率分别为8.27、1.85、5.10和5.31 mg/(L·h)。更突出的是,外加羟胺后不会抑制该菌的反硝化能力,反而促进了亚硝酸盐和总氮的去除,其最大去除速率分别提升至7.80 mg/(L·h)和7.51 mg/(L·h)。结合酶活性的成功检测、氮平衡和HN-AD特异性酶抑制剂分析证实了菌株具有优异的HN-AD能力。【结论】菌株Pseudomonas oryzihabitans EN-F4可以在25℃条件下高效地进行HN-AD去除废水中的多种无机氮,且羟胺能显著促进亚硝酸盐和总氮的去除。  相似文献   

8.
【背景】深海海域具有高压、低温、无光等环境条件,蕴含着丰富而独特的微生物资源。【目的】从深海沉积物中定向分离、筛选脱氮效率高的好氧脱氮菌株资源,并揭示其脱氮特性,为开发水体脱氮微生物技术提供物质基础。【方法】以东太平洋、南大西洋、西南印度洋共10个站位的深海沉积物为研究材料,在28°C下使用无机氮源连续进行两轮富集培养,然后定性筛选可以脱除氨氮、亚硝态氮和硝态氮的菌株,并通过形态学和16S rRNA基因序列分析进行初步分类鉴定;对优选得到的功能菌株,分别采用以氨氮、亚硝态氮、硝态氮为唯一氮源的培养基定量研究其生长和脱氮性能。【结果】从10份大洋深海沉积物样品中共分离得到49株好氧反硝化菌,其中3株在有氧条件下反硝化效率较高,分别命名为Pseudomonassp.G111、Pseudomonassp.G112和Dietziamaris W023a,其中菌株G111和G112与模式菌株博岑假单胞菌Pseudomonas bauzanensis BZ93T的16S rRNA基因序列相似度为99.2%,菌株W023a与模式菌株海洋迪茨氏菌DietziamarisATCC35013T的16SrRNA基因序列相似度为99.9%。菌株G111、G112和W023a培养48h后,对氨氮的脱除率分别为98.0%、85.2%和97.6%;对亚硝态氮的脱除率分别为71.9%、67.5%和34.7%;对硝态氮的脱除率分别为66.0%、52.6%和56.3%。菌株G111、G112和W023a均为异养硝化-好氧反硝化菌,可通过好氧反硝化作用将亚硝态氮和硝态氮还原为含氮气体,也可通过异养硝化-好氧反硝化作用将氨氮转化为含氮气体。【结论】从深海沉积物中分离筛选得到3株高效好氧反硝化菌,所获得的菌株在水体净化、污水处理、生态系统修复等领域具有应用潜力。  相似文献   

9.
两株异养硝化细菌的分离鉴定及其脱氮特性   总被引:3,自引:0,他引:3  
潘丹  黄巧云  陈雯莉 《微生物学报》2011,51(10):1382-1389
【目的】利用异养硝化培养基,从华中农业大学实验猪场污水中筛选得到2株具有较高脱氮效率的细菌。【方法】通过形态学特征及16S rDNA序列的系统发育分析,对分离菌株进行了鉴定。且对菌株P2和P9降解氨氮的相关特性也作了研究。此外,将菌株单独或混合接种于猪场污水,检测其处理实际污水的脱氮效果。【结果】初步判断菌株P2为副球菌属(Paracoccus sp.),P9为申氏杆菌属(Shinella sp.)。2株细菌能在有机物存在下进行异养硝化作用,经24h培养,菌株P2和P9对氨氮的去除率可达80%左右,同时未发现亚硝酸盐、硝酸盐积累;但菌株P2,P9不能以NO 3-或NO 2-为唯一氮源发生好氧反硝化作用。菌株P2和P9异养硝化的最适碳源为丁二酸钠,最适C/N比为9,且脱氮过程中pH值从6.8到8.9一直呈上升趋势。菌株对小分子碳源具有较强的依赖性,在加入小分子碳源的情况下,其对污水具有较强的脱氮能力,且这两个菌株混合施用较单独作用氨氮去除效果更好。【结论】菌株P2和P9脱氮能力较强,其在污水处理行业具有重要的应用前景。  相似文献   

10.
异养硝化细菌脱氮特性及研究进展   总被引:2,自引:0,他引:2  
苟莎  黄钧 《微生物学通报》2009,36(2):0255-0260
异养硝化细菌能够在利用有机碳源生长的同时将含氮化合物硝化生成羟胺、亚硝酸盐、硝酸盐等产物, 多数还能同时进行好氧反硝化作用, 直接将硝化产物转化为含氮气体。因此, 这类细菌已成为废水处理中生物脱氮新工艺的重要研究对象。本文综述了目前所分离出的一些异养硝化菌的脱氮特性, 分析了各种环境条件如温度、pH、溶解氧、碳源类型、C/N以及抑制剂等对异养硝化菌的影响, 并介绍了异养硝化菌的应用现状及前景。  相似文献   

11.
【背景】低碳氮比生活污水很难达标处理,多级A/O工艺、生物强化技术及生物膜技术的有机结合可有效解决这一问题。【目的】开发出一种泥膜共生多级A/O工艺并进行中试研究,驯化出高效脱氮除磷菌剂并对系统进行生物强化。【方法】通过测定中试设备出水及污水处理厂出水化学需氧量(Chemical oxygen demand,COD)、氨氮(NH_4~+-N)、硝氮(NO_3~--N)、总氮(Total nitrogen,TN)、总磷(Total phosphorus,TP)对比分析两种工艺的污染物去除效能,利用高通量测序技术对比生物强化技术对系统微生物群落结构的影响。【结果】中试设备对COD、NH_4~+-N、NO_3~--N、TN、TP的去除效果均优于污水处理厂的处理工艺;驯化的低温好氧反硝化菌TN去除率最大值可达84.21%,驯化的低温反硝化聚磷菌群对磷的去除率最高可达85.75%;利用驯化菌群对中试设备进行生物强化后较好地改善了系统NH_4~+-N、NO_3~--N、TN、TP的去除效果;经生物强化后,具有好氧反硝化和反硝化聚磷功能的Pseudomonas菌群明显增多。【结论】泥膜共生多级A/O工艺对于低碳氮比生活污水的处理具有很好的效果,利用生物强化技术可有效提高低温条件下系统污染物去除效能。  相似文献   

12.
【目的】分离和鉴定一株高效降氨除臭芽孢杆菌,并研究其氮素迁移过程。【方法】采用自行设计的筛选平台,根据菌落形态、生理生化特征及16S rRNA基因序列的系统进化树分析进行菌株鉴定;在好氧和厌氧条件下,以NH4+-N为唯一氮源,通过检测NH4+-N、NO2?-N、NO3?-N和产生的气体浓度,明确菌株在降氨过程中氮素的迁移过程及特点。【结果】筛选出一株高效降氨除臭芽孢杆菌,经生化与分子鉴定为凝结芽孢杆菌;其在好氧条件下将NH4+-N降解为NO3?-N,降解率为98%;同时少量NO3?-N经好氧反硝化作用还原为N2;在厌氧条件下进行了硝化作用,但NH4+-N降解率仅为23.7%,且反硝化过程不明显。【结论】筛选得到的高效降氨除臭凝结芽孢杆菌在好氧和厌氧条件下皆具有异养硝化作用,但厌氧条件下反硝化作用不显著,好氧反硝化作用产生的含氮气体为氮气,其在农业和环保领域具有巨大的产业化潜力。  相似文献   

13.
【背景】好氧反硝化是指在有氧条件下进行反硝化作用,使得硝化和反硝化过程能够在同一反应器中同时发生,是废水脱氮最具竞争力的技术。红树林湿地中蕴藏着丰富的微生物资源,分布着大量好氧反硝化微生物。【目的】了解耐盐微生物的脱氮机制,为含盐废水生物脱氮的工程实践提供理论依据,对一株分离于红树林湿地中的耐盐好氧细菌A63的硝酸盐异化还原能力进行分析。【方法】利用形态学特征及16S rRNA基因序列测定分析,对其种属进行了鉴定,采用单因子实验测定该菌在不同环境因子下的硝酸盐还原能力,并对其反硝化脱氮条件进行了优化。【结果】初步判定该菌株为卓贝儿氏菌(Zobellellasp.),其能在盐度0%-10%、pH5.0-10.0、温度20-40°C范围内进行反硝化脱氮和硝酸盐异化还原为氨(dissimilatorynitratereductiontoammonium,DNRA)作用。菌株A63最适生长碳源为柠檬酸钠(1.2 g/L),适宜脱氮盐度为3%、pH 7.0-7.5、温度30-35°C,且C/N为10。在最适脱氮条件下,该菌株12h内能将培养基中208.8mg/L硝态氮降至0,且仅有少量铵态氮生成,无亚硝态氮积累,脱氮率高达99%。此外,该菌株在高盐度、低C/N比、弱酸性和低温等不利生境中DNRA作用显著。【结论】细菌A63生长范围宽,脱氮效率显著,适用于海水养殖废水处理。研究为今后开发高效含盐废水生物脱氮工艺奠定了基础,对于加深氮素转化规律的认识、丰富生物脱氮理论有着重要意义。  相似文献   

14.
Nitrosomonas europaea uses only NH(3), CO(2) and mineral salts for growth and as such it is an obligate chemo-lithoautotroph. The oxidation of NH(3) is a two-step process catalyzed by ammonia monooxygenase (AMO) and hydroxylamine oxidoreductase (HAO). AMO catalyzes the oxidation of NH(3) to NH(2)OH and HAO catalyzes the oxidation of NH(2)OH to NO(2)(-). AMO is a membrane-bound enzyme composed of three subunits. HAO is located in the periplasm and is a homotrimer with each subunit containing eight c-type hemes. The electron flow from HAO is channeled through cytochrome c(554) to cytochrome c(m552), where it is partitioned for further utilization. Among the ammonia-oxidizing bacteria, the genes for AMO, these cytochromes, and HAO are present in up to three highly similar copies. Mutants with mutations in the copies of amoCAB and hao in N. europaea have been isolated. All of the amoCAB and hao gene copies are functional. N. europaea was selected by the United States Department of Energy for a whole-genome sequencing project. In this article, we review recent research on the molecular biology and biochemistry of NH(3) oxidation in nitrifiers.  相似文献   

15.
Xu J  Zhu L  Ding W  Feng LJ  Xu XY 《应用生态学报》2011,22(4):1027-1032
针对寡营养生境下生物脱氮过程碳源不足等问题,开展不同间歇曝气方式对微污染源水生物接触氧化修复系统脱氮性能的影响研究,探究修复系统短程硝化反硝化的可行性与过程机理.结果表明:在停曝-曝气时间为8 h-16 h的间歇曝气方式(Ⅰ)下启动的生物接触氧化修复系统,其铵态氮(NH+4-N)、高锰酸盐指数(CODMn)、总氮(TN)的平均去除率分别稳定在93.0%、78.1%、19.4%;而在停曝-曝气时间为16 h-8 h的间歇曝气方式(Ⅱ)下运行修复系统,其NH+4-N、CODMn平均去除率仍能分别维持在81.2%、76.4%,体系内NO-2-N发生积累,TN去除率增至50%以上.对工况Ⅱ下修复系统周期内氮素转化特性分析发现,在确保出水NH+4-N、溶解氧(DO)浓度达标的前提下,缩短曝气时间可将体系DO长时间控制在0.5~1.5 mg·L-1,亚硝酸氧化菌(NOB)生长及其活性受到抑制,NO-2-N明显累积,最终实现了微污染源水生物接触氧化修复系统的短程生物脱氮.  相似文献   

16.
An anaerobic-aerobic process including a fresh refuse landfill reactor as denitrifying reactor, a well-decomposed refuse reactor as methanogenesis reactor and an aerobic activated sludge reactor as nitrifying reactor was operated by leachate recirculation to remove organic and nitrogen simultaneously. The results indicated that denitrification and methanogenesis were carried out successfully in the fresh refuse and well-decomposed landfill reactors, respectively, while the nitrification of NH(4)(+)-N was performed in the aerobic reactor. The maximum organic removal rate was 1.78 kg COD/m(3)d in the well-decomposed refuse landfill reactor while the NH(4)(+)-N removal rate was 0.18 kg NH(4)(+)-N/m(3)d in the aerobic reactor. The biogas from fresh refuse reactors and well-decomposed refuse landfill reactors were consisted of mainly carbon dioxide and methane, respectively. The volume fraction of N(2) increased with the increase of NO(3)(-)-N concentration and decreased with the drop of NO(3)(-)-N concentration. The denitrifying bacteria mustered mainly in middle layer and the denitrifying bacteria population had a good correlation with NO(3)(-)-N concentration.  相似文献   

17.
异养硝化-好氧反硝化的研究进展   总被引:2,自引:0,他引:2  
杨婷  杨娅  刘玉香 《微生物学通报》2017,44(9):2213-2222
近年来,异养硝化-好氧反硝化菌的发现打破了传统硝化反硝化理论,其在去除氮素和有机污染物的同时,能够实现同时硝化反硝化(SND),因此受到广泛关注。文章介绍了异养硝化-好氧反硝化菌的影响因素和一些已筛选菌的最佳脱氮效果,及其与传统硝化反硝化菌作用酶系的不同,列出了一些已筛选菌的氮代谢途径,并对中间产物NO2--N积累和复合菌方面的研究进展进行了综述,最后提出了异养硝化-好氧反硝化在生物强化应用中的研究现状和面临的挑战。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号