首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 816 毫秒
1.
Evolutionary developmental biology and niche-construction theory have much in common, despite independent intellectual origins. Both place emphasis on the role of ontogenetic processes in evolution. The same historical events shaped them, and similar philosophical and sociological barriers hindered their respective advances. Both perspectives maintain that neo-Darwinism needs a theory of macroevolutionary variation and that such a theory can now be adduced from developmental biology. Some proponents of both EvoDevo and niche construction propose additional evolutionary mechanisms, and specify a key role for stable extra-genetic forms of inheritance. Similarly, proponents of each lay emphasis on "reciprocal causation" in the relationship between organism and environment. We illustrate here how EvoDevo and niche construction could gain "added value" from each other, and demonstrate how the niche-construction perspective potentially provides a useful conduit to integrate evolutionary and developmental biology.  相似文献   

2.
The introduction of novel phenotypic structures is one of the most significant aspects of organismal evolution. Yet the concept of evolutionary novelty is used with drastically different connotations in various fields of research, and debate exists about whether novelties represent features that are distinct from standard forms of phenotypic variation. This article contrasts four separate uses for novelty in genetics, population genetics, morphology, and behavioral science, before establishing how novelties are used in evolutionary developmental biology (EvoDevo). In particular, it is detailed how an EvoDevo-specific research approach to novelty produces insight distinct from other fields, gives the concept explanatory power with predictive capacities, and brings new consequences to evolutionary theory. This includes the outlining of research strategies that draw attention to productive areas of inquiry, such as threshold dynamics in development. It is argued that an EvoDevo-based approach to novelty is inherently mechanistic, treats the phenotype as an agent with generative potential, and prompts a distinction between continuous and discontinuous variation in evolutionary theory.  相似文献   

3.
Developmental biology, like many other areas of biology, has undergone a dramatic shift in the perspective from which developmental processes are viewed. Instead of focusing on the actions of a handful of genes or functional RNAs, we now consider the interactions of large functional gene networks and study how these complex systems orchestrate the unfolding of an organism, from gametes to adult. Developmental biologists are beginning to realize that understanding ontogeny on this scale requires the utilization of computational methods to capture, store and represent the knowledge we have about the underlying processes. Here we review the use of the Gene Ontology (GO) to study developmental biology. We describe the organization and structure of the GO and illustrate some of the ways we use it to capture the current understanding of many common developmental processes. We also discuss ways in which gene product annotations using the GO have been used to ask and answer developmental questions in a variety of model developmental systems. We provide suggestions as to how the GO might be used in more powerful ways to address questions about development. Our goal is to provide developmental biologists with enough background about the GO that they can begin to think about how they might use the ontology efficiently and in the most powerful ways possible. Mol. Reprod. Dev. 77: 314–329, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
This article introduces a special issue on evolutionary innovation and morphological novelty, two interrelated themes that have received a remarkable increase of attention over the past few years. We begin with a discussion of the question of whether innovation and novelty represent distinct evolutionary problems that require a distinct conceptualization. We argue that the mechanisms of innovation and their phenotypic results--novelty--can only be properly addressed if they are distinguished from the standard evolutionary themes of variation and adaptation, and we present arguments for making such a distinction. We propose that origination, the first formation of biological structures, is another distinct problem of morphological evolution, and that together with innovation and novelty it constitutes a conceptual complex we call the innovation triad. We define a problem agenda of the triad, which separates the analysis of the initiating conditions from the mechanistic realization of innovation, and we discuss the theoretical problems that arise from treating innovation as distinct from variation. Further, we categorize the empirical approaches that address themes of the innovation triad in recognizing four major strands of research: the morphology and systematics program, the gene regulation program, the epigenetic program, and the theoretical biology program. We provide examples of each program, giving priority to contributions in the present issue. In conclusion, we observe that the innovation triad is one of the defining topics of EvoDevo research and may represent its most pertinent contribution to evolutionary theory. We point out that an inclusion of developmental systems properties into evolutionary theory represents a shift of explanatory emphasis from the external factors of natural selection to the internal dynamics of developmental systems, complementing adaptation with emergence, and contingency with inherency.  相似文献   

5.
This article suggests that apparent disagreements between the concept of developmental constraints and neo-Darwinian views on morphological evolution can disappear by using a different conceptualization of the interplay between development and selection. A theoretical framework based on current evolutionary and developmental biology and the concepts of variational properties, developmental patterns and developmental mechanisms is presented. In contrast with existing paradigms, the approach in this article is specifically developed to compare developmental mechanisms by the morphological variation they produce and the way in which their functioning can change due to genetic variation. A developmental mechanism is a gene network, which is able to produce patterns in space though the regulation of some cell behaviour (like signalling, mitosis, apoptosis, adhesion, etc.). The variational properties of a developmental mechanism are all the pattern transformations produced under different initial and environmental conditions or IS-mutations. IS-mutations are DNA changes that affect how two genes in a network interact, while T-mutations are mutations that affect the topology of the network itself. This article explains how this new framework allows predictions not only about how pattern formation affects variation, and thus phenotypic evolution, but also about how development evolves by replacement between pattern formation mechanisms. This article presents testable inferences about the evolution of the structure of development and the phenotype under different selective pressures. That is what kind of pattern formation mechanisms, in which relative temporal order, and which kind of phenotypic changes, are expected to be found in development.  相似文献   

6.
Variation in development mediates phenotypic differences observed in evolution and disease. Although the mechanisms underlying phenotypic variation are still largely unknown, recent research suggests that variation in developmental processes may play a key role. Developmental processes mediate genotype–phenotype relationships and consequently play an important role regulating phenotypes. In this review, we provide an example of how shared and interacting developmental processes may explain convergence of phenotypes in spliceosomopathies and ribosomopathies. These data also suggest a shared pathway to disease treatment. We then discuss three major mechanisms that contribute to variation in developmental processes: genetic background (gene–gene interactions), gene–environment interactions, and developmental stochasticity. Finally, we comment on evolutionary alterations to developmental processes, and the evolution of disease buffering mechanisms.  相似文献   

7.
The tetrapod limb, which has served as a paradigm for the study of development and morphological evolution, is becoming a paradigm for developmental evolution as well. In its origin and diversification, the tetrapod limb has undergone a great deal of remodeling. These morphological changes and other evolutionary phenomena have produced variation in mechanisms of tetrapod limb development. Here, we review that variation in the four major clades of limbed tetrapods. Comparisons in a phylogenetic context reveal details of development and evolution that otherwise may have been unclear. Such details include apparent differences in the mechanisms of dorsal-ventral patterning and limb identity specification between mouse and chick and mechanistic novelties in amniotes, anurans, and urodeles. As we gain a better understanding of the details of limb development, further differences among taxa will be revealed. The use of appropriate comparative techniques in a phylogenetic context thus sheds light on evolutionary transitions in limb morphology and the generality of developmental models across species and is therefore important to both evolutionary and developmental biologists.  相似文献   

8.
Approaches to macroevolution require integration of its two fundamental components, i.e. the origin and the sorting of variation, in a hierarchical framework. Macroevolution occurs in multiple currencies that are only loosely correlated, notably taxonomic diversity, morphological disparity, and functional variety. The origin of variation within this conceptual framework is increasingly understood in developmental terms, with the semi-hierarchical structure of gene regulatory networks (GRNs, used here in a broad sense incorporating not just the genetic circuitry per se but the factors controlling the timing and location of gene expression and repression), the non-linear relation between magnitude of genetic change and the phenotypic results, the evolutionary potential of co-opting existing GRNs, and developmental responsiveness to nongenetic signals (i.e. epigenetics and plasticity), all requiring modification of standard microevolutionary models, and rendering difficult any simple definition of evolutionary novelty. The developmental factors underlying macroevolution create anisotropic probabilities—i.e., an uneven density distribution—of evolutionary change around any given phenotypic starting point, and the potential for coordinated changes among traits that can accommodate change via epigenetic mechanisms. From this standpoint, “punctuated equilibrium” and “phyletic gradualism” simply represent two cells in a matrix of evolutionary models of phenotypic change, and the origin of trends and evolutionary novelty are not simply functions of ecological opportunity. Over long timescales, contingency becomes especially important, and can be viewed in terms of macroevolutionary lags (the temporal separation between the origin of a trait or clade and subsequent diversification); such lags can arise by several mechanisms: as geological or phylogenetic artifacts, or when diversifications require synergistic interactions among traits, or between traits and external events. The temporal and spatial patterns of the origins of evolutionary novelties are a challenge to macroevolutionary theory; individual events can be described retrospectively, but a general model relating development, genetics, and ecology is needed. An accompanying paper (Jablonski in Evol Biol 2017) reviews diversity dynamics and the sorting of variation, with some general conclusions.  相似文献   

9.
10.
Evolutionary developmental biology (Evo-Devo) as a discipline is concerned, among other things, with discovering and understanding the role of changes in developmental mechanisms in the evolutionary origin of aspects of the phenotype. In a very real sense, Evo-Devo opens the black box between genotype and phenotype, or more properly, phenotypes as multiple life history stages arise in many organisms from a single genotype. Changes in the timing or positioning of an aspect of development in a descendant relative to an ancestor (heterochrony and heterotopy) were two evolutionary developmental mechanisms identified by Ernst Haeckel in the 1870s. Many more have since been identified, in large part because of our enhanced understanding of development and because new mechanisms emerge as development proceeds: the transfer from maternal to zygotic genomic control; cell-to-cell interactions; cell differentiation and cell migration; embryonic inductions; functional interactions at the tissue and organ levels; growth. Within these emergent processes, gene networks and gene cascades (genetic modules) link the genotype with morphogenetic units (cellular modules, namely germ layers, embryonic fields or cellular condensations), while epigenetic processes such as embryonic inductions, tissue interactions and functional integration, link morphogenetic units to the phenotype. Evolutionary developmental mechanisms also include interactions between individuals of the same species, individuals of different species, and species and their biotic and/or abiotic environment. Such interactions link ecological communities. Importantly, there is little to distinguish the causality that underlies these interactions from that which underlies inductive interactions within embryos.  相似文献   

11.
The generation of variation is paramount for the action of natural selection. Although biologists are now moving beyond the idea that random mutation provides the sole source of variation for adaptive evolution, we still assume that variation occurs randomly. In this review, we discuss an alternative view for how phenotypic plasticity, which has become well accepted as a source of phenotypic variation within evolutionary biology, can generate nonrandom variation. Although phenotypic plasticity is often defined as a property of a genotype, we argue that it needs to be considered more explicitly as a property of developmental systems involving more than the genotype. We provide examples of where plasticity could be initiating developmental bias, either through direct active responses to similar stimuli across populations or as the result of programmed variation within developmental systems. Such biased variation can echo past adaptations that reflect the evolutionary history of a lineage but can also serve to initiate evolution when environments change. Such adaptive programs can remain latent for millions of years and allow development to harbor an array of complex adaptations that can initiate new bouts of evolution. Specifically, we address how ideas such as the flexible stem hypothesis and cryptic genetic variation overlap, how modularity among traits can direct the outcomes of plasticity, and how the structure of developmental signaling pathways is limited to a few outcomes. We highlight key questions throughout and conclude by providing suggestions for future research that can address how plasticity initiates and harbors developmental bias.  相似文献   

12.
Plant development gives rise to a staggering complexity of morphological structures with different shapes, colors, and functions. Understanding the evolution of control mechanisms that underlie developmental processes provides insights into causes of morphological diversity and, therefore, is of great interest to biologists. New genomic resources and techniques enable biologists to assess for the first time the evolution of developmental regulatory networks at a global scale. Here, we address the question of how comparative regulatory genomics can be used to reveal the evolutionary dynamics of control networks linked to morphological evolution in plants.  相似文献   

13.
Microarrays in ecology and evolution: a preview   总被引:23,自引:0,他引:23  
  相似文献   

14.
This article critically reviews some widespread views about the overall functioning of development. Special attention is devoted to views in developmental genetics about the superstructure of developmental gene networks. According to these views gene networks are hierarchic and multilayered. The highest layers partition the embryo in large coarse areas and control downstream genes that subsequently subdivide the embryo into smaller and smaller areas. These views are criticized on the bases of developmental and evolutionary arguments. First, these views, although detailed at the level of gene identities, do not incorporate morphogenetic mechanisms nor do they try to explain how morphology changes during development. Often, they assume that morphogenetic mechanisms are subordinate to cell signaling events. This is in contradiction to the evidence reviewed herein. Experimental evidence on pattern formation also contradicts the view that developmental gene networks are hierarchically multilayered and that their functioning is decodable from promoter analysis. Simple evolutionary arguments suggest that, indeed, developmental gene networks tend to be non-hierarchic. Re-use leads to extensive modularity in gene networks while developmental drift blurs this modularity. Evolutionary opportunism makes developmental gene networks very dependent on epigenetic factors.  相似文献   

15.
The generation of mutants in model organisms by geneticists and developmental biologists over the last century has occasionally produced phenotypes that are startlingly reminiscent of those seen in other species. Such extreme mutations have generally been dismissed by evolutionary geneticists since the "modern synthesis" as irrelevant to adaptation and speciation. But only in recent years has information on the molecular bases of mutant phenotypes become widely available, and thus work on testing the relevance of such extreme mutations to the generation of phylogenetic diversity has just begun. Here we evaluate whether evolutionary mimics are, in fact, useful for pinpointing the genetic differences that distinguish morphological variants generated during evolution. Examples come from both plants and animals, and range from intraspecific to interordinal taxonomic ranges. The use of mutationally defined candidate genes to predict evolutionary mechanisms has so far been most fruitful in explaining intraspecific variants, where it has been effective in both plants and animals. In several cases these efforts were facilitated or supported by parallel results from quantitative trait loci studies, in which natural alleles controlling continuous variation in developmental model organisms were mapped to mutationally defined genes. However, despite these successes the approach's utility seems to rapidly decay as a function of phylogenetic distance. This suggests that the divergence of developmental genetic systems is great even in closely related organisms and may become intractable at larger distances. We discuss this result in the context of what it teaches us about development, the future prospects of the candidate gene approach, and the historical debate over process in micro- and macroevolution.  相似文献   

16.
The concept of homology continues to attract more and more commentary. In systematic and evolutionary biology the meaning of homology as synapomorphic similarity inherited from a common ancestor has gained wide acceptance over the last three or four decades. In recent years, however, developmental biologists, in particular, have argued for a new approach to, and new definition for, homology that revolves around the desire to make it more process-oriented and more mechanistic. These efforts raise questions about the relationship between developmental and evolutionary biology as well as how the evolution of development is to be studied. It is argued in this paper that this new approach to homology seemingly decouples developmental biology from the study of the evolution of development rather than to facilitate that study. In contrast, applying the notion of historical, phylogenetic homology to developmental data is inherently comparative and therefore evolutionary.  相似文献   

17.
Vertebrate developmental biologists typically rely on a limited number of model organisms to understand the evolutionary bases of morphological change. Unfortunately, a typical model system for squamates (lizards and snakes) has not yet been developed leaving many fundamental questions about morphological evolution unaddressed. New model systems would ideally include clades, rather than single species, that are amenable to both laboratory studies of development and field-based analyses of ecology and evolution. Combining an understanding of development with an understanding of ecology and evolution within and between closely related species has the potential to create a seamless understanding of how genetic variation underlies ecologically and evolutionarily relevant variation within populations and between species. Here we briefly introduce a new model system for the integration of development, evolution, and ecology, the lizard genus Anolis, a diverse group of lizards whose ecology and evolution is well understood, and whose genome has recently been sequenced. We present a developmental staging series for Anolis lizards that can act as a baseline for later comparative and experimental studies within this genus.  相似文献   

18.
Classic hypotheses of vertebrate morphology are being informed by new data and new methods. Long nascent issues, such as the origin of tetrapod limbs, are being explored by paleontologists, molecular biologists, and functional anatomists. Progress in this arena will ultimately come down to knowing how macroevolutionary differences between taxa emerge from the genetic and phenotypic variation that arises within populations. The assembly of limbs over developmental and evolutionary time offers examples of the major processes at work in the origin of novelties. Recent comparative developmental analyses demonstrate that many of the mechanisms used to pattern limbs are ancient. One of the major consequences of this phenomenon is parallelism in the evolution of anatomical structures. Studies of both the fossil record and intrapopulational variation of extant populations reveal regularities in the origin of variation. These examples reveal processes acting at the level of populations that directly affect the patterns of diversity observed at higher taxonomic levels.  相似文献   

19.
Studies integrating evolutionary and developmental analyses of morphological variation are of growing interest to biologists as they promise to shed fresh light on the mechanisms of morphological diversification. Sexually dimorphic traits tend to be incredibly divergent across taxa. Such diversification must arise through evolutionary modifications to sex differences during development. Nevertheless, few studies of dimorphism have attempted to synthesize evolutionary and developmental perspectives. Using geometric morphometric analysis of head shape for 50 Anolis species, we show that two clades have converged on extreme levels of sexual dimorphism through similar, male‐specific changes in facial morphology. In both clades, males have evolved highly elongate faces whereas females retain faces of more moderate proportion. This convergence is accomplished using distinct developmental mechanisms; one clade evolved extreme dimorphism through the exaggeration of a widely shared, potentially ancestral, developmental strategy whereas the other clade evolved a novel developmental strategy not observed elsewhere in the genus. Together, our analyses indicate that both shared and derived features of development contribute to macroevolutionary patterns of morphological diversity among Anolis lizards.  相似文献   

20.
Developmental capacitance, genetic accommodation, and adaptive evolution   总被引:2,自引:0,他引:2  
The concept of genetic accommodation remains controversial, in part because it remains unclear whether evolution by genetic accommodation forces a revolution, or merely a shift in emphasis, in our understanding of how evolution produces adaptive new traits. Here I outline a perspective that largely favors the latter view. I argue that evolution by genetic accommodation can easily be integrated into traditional evolutionary concepts. At the same time, evolution by genetic accommodation invites novel empirical and theoretical approaches that may allow biologists to push the boundaries of our current understanding of the process of evolution and to solve some long-standing controversies. Specifically, I discuss the role of developmental mechanisms as natural, and likely ubiquitous, capacitors of cryptic genetic variation, and the role of environmental perturbations as mechanisms by which such variation can become visible to selection on an individual to population-wide scale. I argue that in combination, developmental capacitance and large-scale environmental perturbations have the potential to facilitate rapid evolution including the origin of novel adaptive features while circumventing otherwise powerful genetic and population-biological constraints on adaptive evolution. I end by highlighting several promising avenues for future empirical research to explore the mechanisms and significance of evolution by genetic accommodation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号