首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 707 毫秒
1.
2.
3.
In the adenovirus type 2 (Ad2)-transformed hamster cell line HE3, the integrated late E2A promoter of Ad2 DNA is inactive, is methylated at all three 5'-CCGG-3' sequences, and can be reactivated by growing the cells in the presence of 50 microM 5-azacytidine (5-azaC). The three 5'-CCGG-3' sequences then become demethylated. Demethylation and reactivation are stable over 30 passages even after the removal of 5-azaC. The dormant late E2A promoter in cell line HE3 can also be reactivated by transfecting the cells with recombinant plasmids that carry the left terminal E1A and part of the E1B region of Ad2 DNA or the E1A 13S cDNA, but not with plasmids containing the E1A 12S cDNA. The E1A 13S cDNA encodes the 289-amino-acid trans-activating protein of Ad2. The E1A-mediated reactivation of the late E2A promoter is not accompanied by its demethylation in both DNA complements. Cell line HE3 produces constitutively E1A-encoded mRNAs and reactivates the methylated late E2A promoter-chloramphenicol acetyltransferase gene construct after transfection into HE3 cells. Constitutive levels of the endogenous E1A gene products in HE3 cells are detectable but, paradoxically, appear insufficient to reactivate the endogenous, chromosomally integrated E2A gene.  相似文献   

4.
5.
CDX1 is a homeobox protein that inhibits proliferation of intestinal epithelial cells and regulates intestine-specific genes involved in differentiation. CDX1 expression is developmentally and spatially regulated, and its expression is aberrantly down-regulated in colorectal cancers and colon cancer-derived cell lines. However, very little is known about the molecular mechanism underlying the regulation of CDX1 gene expression. In this study, we characterized the CDX1 gene structure and identified that its gene promoter contained a typical CpG island with a CpG observed/expected ratio of 0.80, suggesting that the CDX1 gene is a target of aberrant methylation. Alterations of DNA methylation in the CDX1 gene promoter were investigated in a series of colorectal cancer cell lines. Combined Bisulfite Restriction Analysis (COBRA) and bisulfite sequencing analysis revealed that the CDX1 promoter is methylated in CDX1 non-expressing colorectal cancer cell lines but not in human normal colon tissue and T84 cells, which express CDX1. Treatment with 5'-aza-2'-deoxycytidine (5-azaC), a DNA methyltransferase inhibitor, induced CDX1 expression in the colorectal cancer cell lines. Furthermore, de novo methylation was determined by establishing stably transfected clones of the CDX1 promoter in SW480 cells and demethylation by 5-azaC-activated reporter gene expression. These results indicate that aberrant methylation of the CpG island in the CDX1 promoter is one of the mechanisms that mediate CDX1 down-regulation in colorectal cancer cell lines.  相似文献   

6.
The radioresistance of tumor cells remains a major cause of treatment failure in nasopharyngeal carcinoma (NPC). Recently, several reports have highlighted the importance of epigenetic changes in radiation-induced responses. Here, we investigated whether the demethylating agent 5-azacytidine (5-azaC) enhances the radiosensitivity of NPC cells. The NPC cell lines CNE2 and SUNE1 were treated with 1 μmol/L 5-azaC for 24 h before irradiation (IR); clonogenic survival was then assessed. Tumor growth was investigated in a mouse xenograft model in vivo. The apoptosis, cell cycle progression and DNA damage repair were examined using flow cytometry, immunofluorescent staining and western blotting. Promoter methylation and the expression of four genes epigenetically silenced during the development of NPC were evaluated by pyrosequencing and real-time PCR. We found that pretreatment with 5-azaC significantly decreased clonogenic survival after IR compared to IR alone; the sensitivity-enhancement ratio of 5-azaC was 1.4 and 1.2 for CNE2 and SUNE1 cells, respectively. The combined administration of 5-azaC and IR significantly inhibited tumor growth in the mouse xenograft model, and enhanced radiation-induced apoptosis in vitro compared to 5-azaC alone or IR alone. 5-AzaC also decreased promoter methylation and upregulated the expression of genes which are epigenetically silenced both in vitro and in vivo in NPC. Thus, 5-azaC enhance the radiosensitivity of both the CNE2 and SUNE1 cell lines, possibly by altering DNA methylation levels and increasing the ability of irradiated cells to undergo apoptosis. The use of 5-azaC combined with IR maybe represent an attractive strategy for the treatment of NPC.  相似文献   

7.
Mast cells synthesize and store histamine, a key immunomodulatory mediator. Polyamines are essential for every living cell. Previously, we detected an antagonistic relationship between the metabolisms of these amines in established mast cell and basophilic cell lines. Here, we used the IL‐3‐driven mouse bone marrow‐derived mast cell (BMMC) culture system to further investigate this antagonism in a mast cell model of deeper physiological significance. Polyamines and histamine levels followed opposite profiles along the bone marrow cell cultures leading to BMMCs. α‐Difluoromethylornithine (DFMO)‐induced polyamine depletion resulted in an upregulation of histidine decarboxylase (HDC, the histamine‐synthesizing enzyme) expression and activity, accompanied by increased histamine levels, specifically during early stages of these cell cultures, where an active histamine synthesis process occurs. In contrast, DFMO did not induce any effect in either HDC activity or histamine levels of differentiated BMMCs or C57.1 mast cells, that exhibit a nearly inactive histamine synthesis rate. Sequence‐specific DNA methylation analysis revealed that the DFMO‐induced HDC mRNA upregulation observed in early bone marrow cell cultures is not attributable to a demethylation of the gene promoter caused by the pharmacological polyamine depletion. Taken together, the results support an inverse relationship between histamine and polyamine metabolisms during the bone marrow cell cultures leading to BMMCs and, moreover, suggest that the regulation of the histamine synthesis occurring during the early stages of these cultures depends on the concentrations of polyamines. J. Cell. Biochem. 108: 261–271, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
The late E2A promoter of adenovirus type 2 (Ad2) DNA can be inactivated by in vitro methylation of three 5'-CCGG-3' sequences at positions +23, +5, and -215 relative to the cap site in this promoter. This inactivation has been documented in transient expression experiments both in Xenopus laevis oocytes and in mammalian cells (K.-D. Langner, L. Vardimon, D. Renz, and W. Doerfler, Proc. Natl. Acad. Sci. USA 81:2950-2954, 1984; K.-D. Langner, U. Weyer, and W. Doerfler, Proc. Natl. Acad. Sci. USA 83:1598-1602, 1986). In the present study, in vitro-methylated or unmethylated promoter-gene assemblies were permanently fixed by integration in the hamster genome. In individually established cell lines, the degree of promoter methylation was correlated to gene activity. The pAd2E2AL-CAT construct, in which the late E2A promoter controls expression of the procaryotic chloramphenicol acetyltransferase (cat) gene, was fixed in BHK21 hamster cells by cotransfection with and selection for the pSV2-neo construct (P. J. Southern and P. Berg, J. Mol. Appl. Genet. 1:327-341, 1982) in which the early simian virus 40 promoter controls the gene for neomycin phosphotransferase. The pAd2E2AL-CAT construct was transfected in the unmethylated or in the 5'-CCGG-3' methylated form. The pSV2-neo plasmid was cotransfected in the unmethylated form. The stability of in vitro-imposed methylation patterns and cat gene expression were followed and correlated in a number of established cell lines which contained the constructs integrated in a non-rearranged configuration. The foreign DNA did not persist in the episomal state but was integrated, frequently in multiple tandems of the plasmid DNA. Among 19 cell lines established after transfecting the unmethylated pAd2E2AL-CAT construct, the late E2A promoter remained unmethylated (examined in 10 cell lines), and the cat gene was expressed in 18 cell lines. On the other hand, among 14 cell lines which were generated by transfection with the methylated construct, 7 cell lines did not express the cat gene, and the three 5'-CCGG-3' sequences in the late E2A promoter remained almost completely methylated. In five cell lines, the E2A promoter sequences were partly demethylated and the cat gene was expressed at low levels. Last, in two cell lines, demethylations were found to be extensive and strong cat expression was observed. It remained a question of considerable interest what factors determined the stability of methylation patterns that had been preimposed by in vitro methylation on specific sequences in a promoter, after this promoter was fixed by integration in the mammalian genome.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
10.
11.
Stra 8基因的激活与精原干细胞的特异性分化研究   总被引:2,自引:0,他引:2  
视黄酸对维持正常的雄性睾丸结构和功能起着重要的作用。近来的研究发现,在雄性生殖腺发育过程中有一组基因,它们可以被视黄酸特异性的诱导活化,称为Stra(Stimulated by Retinoic Acid)基因。从鼠源分离得到的Stra8基因编码一种细胞质蛋白,该基因只特异性的在成熟雄性生殖细胞中表达,其功能被认为与精子形成有关。为研究Stra8基因的表达特性,我们从小鼠的基因组中克隆了Stra8基因的启动子序列(1.4kb)。将Stra8基因的1.4kb启动子序列克隆到pEGFP-1载体的EGFP基因之前,构建成由Stra8基因1.4kb启动子序列调控表达绿色荧光蛋白的pStra8-EGFP载体。将其分别转化到不同类型的细胞中,如小鼠ES-129细胞、人胎儿胰腺干细胞、小鼠骨髓间充质干细胞和小鼠精原干细胞等,通过荧光显微镜观察发现,绿色荧光蛋白只在小鼠精原干细胞中表达,表明Stra8基因是组织特异性表达的基因。将pStra8-EGFP转化小鼠骨髓间充质干细胞,经G418筛选2周后,用视黄酸诱导,12h培养后,有一部分转化pStra8-EGFP载体的细胞表达绿色荧光蛋白。RT-PCR证明这些细胞中有精原干细胞特异表达基因Stra8的转录,还有生殖细胞特异表达基因CyclinA8和Oct4的转录,这些结果说明小鼠骨髓间充质细胞经视黄酸的诱导可以向生殖细胞方向分化。  相似文献   

12.
We have shown previously that the heavy metal-induced metallothionein-I (MT-I) gene expression is specifically repressed in a rat fibroblast cell line (Ku-80) overexpressing the 80-kDa subunit of Ku autoantigen but not in cell lines overexpressing the 70-kDa subunit or Ku heterodimer. Here, we explored the molecular mechanism of silencing of MT-I gene in Ku-80 cells. Genomic footprinting analysis revealed both basal and heavy metal-inducible binding at specific cis elements in the parental cell line (Rat-1). By contrast, MT-I promoter in Ku-80 cells was refractory to any transactivating factors, implying alteration of chromatin structure. Treatment of two clonal lines of Ku-80 cells with 5-azacytidine, a potent DNA demethylating agent, rendered MT-I gene inducible by heavy metals, suggesting that the gene is methylated in these cells. Bisulfite genomic sequencing revealed that all 21 CpG dinucleotides in MT-I immediate promoter were methylated in Ku-80 cells, whereas only four CpG dinucleotides were methylated in Rat-1 cells. Almost all methylated CpG dinucleotides were demethylated in Ku-80 cells after 5-azacytidine treatment. To our knowledge, this is the first report that describes hypermethylation of a specific gene promoter and its resultant silencing in response to overexpression of a cellular protein.  相似文献   

13.
We have found that DNA methylation is inversely correlated with alpha-fetoprotein (AFP) gene expression in a series of isogenic rat hepatoma cell lines. The 5' end of the gene is extensively demethylated in AFP-producing cells and is highly methylated in cell lines which do not produce AFP. Glucocorticoid affects markedly the synthesis of AFP in the hepatoma cells. However, methylation patterns of cell lines which were treated with dexamethasone were not different from those of control cells, indicating that glucocorticoid action on AFP gene expression does not alter DNA methylation in this region of the gene.  相似文献   

14.
The Cre-loxP technology allows the introduction of somatic gene alterations in a tissue and/or cell type specific manner. The development of transgenes that target Cre expression to specific cell types is a critical component in this system. Here, we describe the generation and characterization of transgenic mouse lines expressing Cre recombinase under the control of the baboon alpha-chymase promoter, designated Chm:Cre, in order to direct Cre expression specifically to mouse mast cells. Chm:Cre expression was detected in mast cells in lung and colon tissue. Cre-mediated recombination in these mice identified a population of mature tissue resident mast cells using ROSA26R reporter mice. No Cre-expression and Cre-mediated recombination was induced in in vitro generated bone marrow derived mast cells or mast cells isolated from the peritoneal cavity indicating that Cre-expression under the control of the alpha-chymase promoter is solely activated in tissue resident mast cells. These Chm:Cre transgenic mice represent a useful tool to specifically inactivate genes of interest in mast cells of these tissues.  相似文献   

15.
16.
Although the proximal, 5′ 115 bp of the human carbonic anhydrase II (CA II) gene was sufficient for expression of a reporter gene in some transfected cell lines, we found previously that 1100 bp of this promoter (or 500 bp of the mouse CA II promoter) was not sufficient for expression in transgenic mice. We have now studied the expression of linked reporter genes in mice transgenic for either (1) 11 kb of the human 5′ promoter or (2) 8 kb of the human 5′ promoter with mouse sequences from the first exon, part of the first intron (since a CpG island spans this region), and the 3′ sequences of the gene. Expression was found in both cases, but the tissue specificity was not appropriate for CA II. Although there was a difference in the sensitivity of the assays used, the first construct led to expression in many tissues, while the second construct was expressed only in spleen. These findings indicate considerable complexity of DNA control regions for in vivo CA II expression.  相似文献   

17.
18.
19.
20.
Histamine is a potent biogenic amine that mediates numerous physiological processes throughout the body, including digestion, sleep, and immunity. It is synthesized by gastric enterochromaffin-like cells, a specific set of hypothalamic neurons, as well as a subset of white blood cells, including mast cells. Much remains to be learned about these varied histamine-producing cell populations. Here, we report the validation of a transgenic mouse line in which Cre recombinase expression has been targeted to cells expressing histidine decarboxylase (HDC), which catalyzes the rate-limiting step in the synthesis of histamine. This was achieved by crossing the HDC-Cre mouse line with Rosa26-tdTomato reporter mice, thus resulting in the expression of the fluorescent Tomato (Tmt) signal in cells containing Cre recombinase activity. As expected, the Tmt signal co-localized with HDC-immunoreactivity within the gastric mucosa and gastric submucosa and also within the tuberomamillary nucleus of the brain. HDC expression within Tmt-positive gastric cells was further confirmed by quantitative PCR analysis of mRNA isolated from highly purified populations of Tmt-positive cells obtained by fluorescent activated cell sorting (FACS). HDC expression within these FACS-separated cells was found to coincide with other markers of both ECL cells and mast cells. Gastrin expression was co-localized with HDC expression in a subset of histaminergic gastric mucosal cells. We suggest that these transgenic mice will facilitate future studies aimed at investigating the function of histamine-producing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号