首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 126 毫秒
1.
In this paper, the effects of refuges used by prey on a predator-prey interaction with a class of functional responses are studied by using the analytical approach. The refuges are considered as two types: a constant proportion of prey and a fixed number of prey using refuges. We will evaluate the effects with regard to the local stability of the interior equilibrium point, the values of the equilibrium density and the long-term dynamics of the interacting populations. The results show that the effects of refuges used by prey increase the equilibrium density of prey population while decrease that of predators. It is also proved that the effects of refuges can stabilize the interior equilibrium point of the considered model, and destabilize it under a very restricted set of conditions which is disagreement with previous results in this field.  相似文献   

2.
This paper presents a resource-dependent viability selection differential equation model of continuously reproducing diploid population with two alleles at one locus for a single limiting resource. This model assumes that the genotypic fitness is only a function of the limiting resource. The conditions that the interior equilibrium point of the system exists are that the heterozygote fitness is positive and the homozygote fitness is negative, or the heterozygote fitness is negative and the homozygote fitness is positive at the point. The sufficient and necessary conditions of locally asymptotical stability of the interior equilibrium point are that the heterozygote fitness is positive at the point, or the locally asymptotically stable equilibrium corresponds to the point at which the level of the limiting resource is locally minimized on the zero mean fitness curve, f = 0.  相似文献   

3.
In this paper, we propose a general ratio-dependent prey-predator model with disease in predator subject to the strong Allee effect in prey. We obtain the complete dynamics of both models: (a) full model with Allee effect; (b) full model without Allee effect. Model (a) may have more than one interior equilibrium point, but model (b) has only one interior equilibrium point. Numerical results reveal that the coexistence of all the populations at the endemic state is possible for both the models. But for the model with Allee effect, the coexistence can be destroyed by an increased supply of alternative food for the predators. It can also be proved that for the full model with Allee effect, the disease can be suppressed under certain parametric conditions. Also by comparing models (a) and (b), we conclude that Allee effect can create or destroy the interior attractor. Finally, we have studied the disease free-submodel (prey and susceptible predator model) with and without Allee effect. The comparative study between these two submodels leads to the following conclusions: 1) In the presence of Allee effect, the number of interior equilibrium points can change from zero to two whereas the submodel without Allee effect has unique interior equilibrium point; 2) Both with and without Allee effect, initial conditions play an important role on the survival and extinction of prey as well as its corresponding predator; 3) In the presence of Allee effect, bi-stability occurs with stable or periodic coexistence of prey and susceptible predator and the extinction of prey and susceptible predator; 4) Allee effect can generate or destroy the interior equilibrium points.  相似文献   

4.
A two species predator-prey model is proposed incorporating the notions of mutual interference among predators as well as a density-dependent predator death rate. The latter leads to a curved predator isocline. Conditions for an interior equilibrium are given, and the stability of this equilibrium is analyzed. Certain critical cases, some of which cannot occur in the usual model are also discussed.  相似文献   

5.
A deterministic model for assessing the dynamics of mixed species malaria infections in a human population is presented to investigate the effects of dual infection with Plasmodium malariae and Plasmodium falciparum. Qualitative analysis of the model including positivity and boundedness is performed. In addition to the disease free equilibrium, we show that there exists a boundary equilibrium corresponding to each species. The isolation reproductive number of each species is computed as well as the reproductive number of the full model. Conditions for global stability of the disease free equilibrium as well as local stability of the boundary equilibria are derived. The model has an interior equilibrium which exists if at least one of the isolation reproductive numbers is greater than unity. Among the interesting dynamical behaviours of the model, the phenomenon of backward bifurcation where a stable boundary equilibrium coexists with a stable interior equilibrium, for a certain range of the associated invasion reproductive number less than unity is observed. Results from analysis of the model show that, when cross-immunity between the two species is weak, there is a high probability of coexistence of the two species and when cross-immunity is strong, competitive exclusion is high. Further, an increase in the reproductive number of species i increases the stability of its boundary equilibrium and its ability to invade an equilibrium of species j. Numerical simulations support our analytical conclusions and illustrate possible behaviour scenarios of the model.  相似文献   

6.
Abstract

A social selection model for deleterious genes has been studied by considering two alleles at one locus. The model allows for the fitness of an individual to be determined by parental phenotypes as well as by his/her own phenotype. We show that the equilibrium gene frequency depends on the loss of fitness of an individual due to the trait (γ) and due to affected parents (P), and the probability that the heterozygote develops the trait (h). We show that whenever an interior equilibrium point exists for given values of γ and β, it is unique and that the sufficient condition for the existence of the equilibrium point is given by  相似文献   

7.
Stability analysis of pathogen-immune interaction dynamics   总被引:2,自引:0,他引:2  
The paper considers models of dynamics of infectious disease in vivo from the standpoint of the mathematical analysis of stability. The models describe the interaction of the target cells, the pathogens, and the humoral immune response. The paper mainly focuses on the interior equilibrium, whose components are all positive. If the model ignores the absorption of the pathogens due to infection, the interior equilibrium is always asymptotically stable. On the other hand, if the model does consider it, the interior equilibrium can be unstable and a simple Hopf bifurcation can occur. A sufficient condition that the interior equilibrium is asymptotically stable is obtained. The condition explains that the interior equilibrium is asymptotically stable when experimental parameter values are used for the model. Moreover, the paper considers the models in which uninfected cells are involved in the immune response to pathogens, and are removed by the immune complexes. The effect of the involvement strongly affects the stability of the interior equilibria. The results are shown with the aid of symbolic calculation software.  相似文献   

8.
Dynamics of predator-prey systems under the influence of cooperative hunting among predators and the fear thus imposed on the prey population is of great importance from ecological point of view. The role of hunting cooperation and the fear effect in the predator-prey system is gaining considerable attention by the researchers recently. But the study on combined effect of hunting cooperation and fear in the predator-prey system is not yet studied. In the present paper, we investigate the impact of hunting cooperation among predators and predator induced fear in prey population by using the classical predator-prey model. We consider that predator populations cooperate during hunting. We also consider that hunting cooperation induces fear among prey, which has far richer and complex dynamics. We observe that without hunting cooperation, the unique coexistence equilibrium point is globally asymptotically stable. However, an increase in the hunting cooperation induced fear may destabilize the system and produce periodic solution via Hopf-bifurcation. The stability of the Hopf-bifurcating periodic solution is obtained by computing the Lyapunov coefficient. The limit cycles thus obtained may be supercritical or subcritical. We also observe that the system undergoes the Bogdanov-Takens bifurcation in two-parameter space. Further, we observe that the system exhibits backward bifurcation between predator-free equilibrium and coexisting equilibrium. The system also exhibits two different types of bi-stabilities due to subcritical Hopf-bifurcation (between interior equilibrium and stable limit cycle) and backward bifurcation (between predator-free and interior equilibrium points). Further, we observe strong demographic Allee phenomenon in the system. To visualize the dynamical behavior of the system, extensive numerical experiments are performed by using MATLAB and MATCONT softwares.  相似文献   

9.
In 1988, a multiple-group model for HIV transmission with preferred mixing was proposed by Jacquez and coworkers. In the present paper, the work done by Jacquez et al. is extended. It is shown that the stability modulus of the Jacobian matrix at the no-disease equilibrium is a threshold for this model. Furthermore, if the no-disease equilibrium is unstable, the number of infected individuals will remain above a certain positive level regardless of initial levels; that is, the disease will persist uniformly. The stability of the endemic equilibrium in the case of restricted mixing is also studied. A series of sufficient conditions for local and global asymptotic stability of the endemic equilibrium are stated.  相似文献   

10.
本文假设感染的食饵有恢复率和对捕食者有收获,研究了一个对部分食饵和全部捕食者具有寄生虫病感染的捕食模型.用定性理论证明了边界和正平衡点的稳定性.结论表明恢复率和收获率对正平衡点的稳定性有影响.  相似文献   

11.
A two-species genetic model of host-parasite interaction is used to study the dynamical consequences of varying the number of genotypes in each species, and the recombination rate in the host. With two genotypes in each species, the model's behaviour is very simple; there is either a stable interior equilibrium, a stable cycle or a smooth outward spiral toward the boundaries. But with three or more genotypes, complex cycles and apparently chaotic behaviour may arise over wide ranges of parameter values. Increasing the number of genotypes also tends to slow the rate of gene-frequency change. Recombination in the host does not affect the stability of the interior fixed point, but intermediate rates of recombination may give dynamic stability to an otherwise dynamically unstable pattern of cycling. Intermediate rates of recombination also tend to decrease the amplitudes of gene-frequency cycles in the host, which implies that they could promote the accumulation of genetic variation involved in complementary, antagonistic interactions with parasites.  相似文献   

12.
陈斯养  靳宝 《生态学报》2015,35(7):2339-2348
讨论了具时滞与分段常数变量的捕食-食饵生态模型的稳定性及Neimark-Sacker分支;通过计算得到连续模型对应的差分模型,基于特征值理论和Schur-Cohn判据得到正平衡态局部渐进稳定的充分条件;以食饵的内禀增长率为分支参数,运用分支理论和中心流形定理分析了Neimark-Sacker分支的存在性与稳定性条件;通过举例和数值模拟验证了理论的正确性。  相似文献   

13.
This paper analyses a bionomic model of two competitive species in the presence of toxicity with different harvesting efforts. An interesting dynamics in the first quadrant is analysed and two saddle-node bifurcations are detected for different bifurcation parameters. It is noted that under certain parametric restrictions, the model has a unique positive equilibrium point that is globally asymptotically stable whenever it is locally stable. It is also noted that the model can have zero, one or two feasible equilibria appearing through saddle-node bifurcations. The non-existence of a limit cycle in the interior of the first quadrant is also discussed using the Poincare–Dulac criteria. The saddle-node bifurcations are studied using Sotomayor's theorem. Numerical simulations are carried out to validate the analytical findings. The conditions for the existence of bionomic equilibria are discussed and an optimal harvesting policy is derived using Pontryagin's maximum principle.  相似文献   

14.
Stochastic fluctuations in a simple frequency-dependent selection model with one-locus, two-alleles and two-phenotypes are investigated. The steady-state statistics of allele frequencies for an interior stable phenotypic equilibrium are shown to be similar to the stochastic fluctuations in standard evolutionary game dynamics [Tao, Y., Cressman, R., 2007. Stochastic fluctuations through intrinsic noise in evolutionary game dynamics. Bull. Math. Biol. 69, 1377-1399]. On the other hand, for an interior stable phenotypic or genotypic equilibrium, our main results show that the deterministic model cannot be used to predict the expectation of phenotypic frequency. The variance of phenotypic frequency for an interior stable genotypic equilibrium is more sensitive to the expected population size than for an interior stable phenotypic equilibrium. Furthermore, the stochastic fluctuations of allele frequency and phenotypic frequency can be considered approximately independent of each other for these genotypic equilibria, but not for phenotypic.  相似文献   

15.
A Kolmogorov-type competition model featuring allocation profiles, gain functions, and cost parameters is examined. For plant species that compete for sunlight according to the canopy partitioning model [R.R. Vance and A.L. Nevai, Plant population growth and competition in a light gradient: a mathematical model of canopy partitioning, J. Theor. Biol. 245 (2007), pp. 210–219] the allocation profiles describe vertical leaf placement, the gain functions represent rates of leaf photosynthesis at different heights, and the cost parameters signify the energetic expense of maintaining tall stems necessary for gaining a competitive advantage in the light gradient. The allocation profiles studied here, being supported on three alternating intervals, determine “interior” and “exterior” species. When the allocation profile of the interior species is a delta function (a big leaf) then either competitive exclusion or coexistence at a single globally attracting equilibrium point occurs. However, if the allocation profile of the interior species is piecewise continuous or a weighted sum of delta functions (multiple big leaves) then multiple coexistence states may also occur.  相似文献   

16.
ABSTRACT

We investigate a discrete-time predator–prey system with cooperative hunting in the predators proposed by Chow et al. by determining local stability of the interior steady states analytically in certain parameter regimes. The system can have either zero, one or two interior steady states. We provide criteria for the stability of interior steady states when the system has either one or two interior steady states. Numerical examples are presented to confirm our analytical findings. It is concluded that cooperative hunting of the predators can promote predator persistence but may also drive the predator to a sudden extinction.  相似文献   

17.
The paper aims to express the spontaneous regression and progression of a malignant tumor system as a prey--predator like system. The model is a three dimensional deterministic system, consisting of tumor cells, hunting predator cells and resting predator cells. Local stability analysis is performed along with numerical simulations to support the analytical findings. Moreover, the deterministic model is extended to a stochastic one allowing random fluctuations around the positive interior equilibrium. The stochastic stability properties of the model are investigated both analytically and numerically. The thresholds obtained from our study may be helpful to control the malignant tumor growth.  相似文献   

18.
This paper analyses a bionomic model of two competitive species in the presence of toxicity with different harvesting efforts. An interesting dynamics in the first quadrant is analysed and two saddle-node bifurcations are detected for different bifurcation parameters. It is noted that under certain parametric restrictions, the model has a unique positive equilibrium point that is globally asymptotically stable whenever it is locally stable. It is also noted that the model can have zero, one or two feasible equilibria appearing through saddle-node bifurcations. The non-existence of a limit cycle in the interior of the first quadrant is also discussed using the Poincare-Dulac criteria. The saddle-node bifurcations are studied using Sotomayor's theorem. Numerical simulations are carried out to validate the analytical findings. The conditions for the existence of bionomic equilibria are discussed and an optimal harvesting policy is derived using Pontryagin's maximum principle.  相似文献   

19.
We study the equilibrium structure of a well-known two-locus model in which two diallelic loci contribute additively to a quantitative trait that is under Gaussian stabilizing selection. The population is assumed to be infinitely large, randomly mating, and having discrete generations. The two loci may have arbitrary effects on the trait, the strength of selection and the recombination rate may also be arbitrary. We find that 16 different equilibrium patterns exist, having up to 11 equilibria; up to seven interior equilibria may coexist, and up to four interior equilibria, three in negative and one in positive linkage disequilibrium, may be simultaneously stable. Also, two monomorphic and two fully polymorphic equilibria may be simultaneously stable. Therefore, the result of evolution may be highly sensitive to perturbations in the initial conditions or in the underlying genetic parameters. For the special case of equal effects, global stability results are proved. In the general case, we rely in part on numerical computations. The results are compared with previous analyses of the special case of extremely strong selection, of an approximate model that assumes linkage equilibrium, and of the much simpler quadratic optimum model.  相似文献   

20.
霍丽慧  赵惠燕  郑立飞  吴养会 《生态学报》2010,30(20):5702-5708
现有的具有年龄结构的捕食-食饵模型总是假设只有成年捕食者捕食猎物,这与实际情况不符。建立了一个幼年捕食者捕食食饵的具有年龄结构的食蚜蝇-蚜虫模型,应用微分方程定性理论,讨论了系统平衡点及其稳定性:其中平衡点E1(0,0,0)为不稳定的;满足一定条件时,边界平衡点E2(K,0,0)及正平衡点E3(x*,y1*,y2*)为局部渐近稳定的;且应用一致持续生存理论得到了系统永久持续生存的条件,为有害生物综合治理提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号