首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
The genus Streptocarpus comprises species with diverse body plans. Caulescent species produce leaves from a conventional shoot apical meristem (SAM), whereas acaulescent species lack a conventional SAM and produce only a single leaf (the unifoliate form) or clusters of leaves from the base of more mature leaves (the rosulate form). These distinct morphologies reflect fundamental differences in the role of the SAM and the process of leaf specification. A subfamily of KNOTTED-like homeobox (KNOX) genes are known to be important in regulating meristem function and leaf development in model species with conventional morphologies. To test the involvement of KNOX genes in Streptocarpus evolution, two parologous KNOX genes (SSTM1 and SSTM2) were isolated from species with different growth forms. Their phylogenetic analysis suggested a gene duplication before the subgeneric split of Streptocarpus and resolved species relationships, supporting multiple evolutionary origins of the rosulate and unifoliate morphologies. In S. saxorum, a caulescent species with a conventional SAM, KNOX proteins were expressed in the SAM and transiently downregulated in incipient leaf primordia. The ability of acaulescent species to initiate leaves from existing leaves was found to correlate with SSTM1 expression and KNOX protein accumulation in leaves and to reflect genetic differences at two loci. Neither locus corresponded to SSTM1, suggesting that cis-acting differences in SSTM1 regulation were not responsible for evolution of the rosulate and unifoliate forms. However, the involvement of KNOX proteins in leaf formation in rosulate species suggests that they have played an indirect role in the development of morphological diversity in Streptocarpus.  相似文献   

3.
Class I KNOTTED1-LIKE HOMEOBOX (KNOX1) genes are expressed in the shoot apical meristem (SAM) to effect its formation and maintenance. KNOX1 genes are also involved in leaf shape control throughout angiosperm evolution. Leaves can be classified as either simple or compound, and KNOX1 expression patterns in leaf primordia are highly correlated with leaf shape; in most simple-leafed species, KNOX1 genes are expressed only in the SAM but not in leaf primordia, while in compound-leafed species they are expressed both in the SAM and leaf primordia. How can KNOX1 expression be maintained to a high degree in the SAM, but simultaneously be so variable in leaves? This dichotomy suggests that the processes of leaf and SAM development have been compartmentalized during evolution. Here, we introduce our findings regarding the regulation of expression of SHOOT MERISTEMLESS, a KNOX1 gene, together with a brief review of KNOX1 genes from an evolutionary viewpoint. We also present our findings regarding another aspect of KNOX1 regulation via a protein–protein interaction network involved in the natural variation in leaf shape. Both aspects of KNOX1 regulation could be utilized for fine-tuning leaf morphology during evolution without affecting the essential function of KNOX genes in the shoot.  相似文献   

4.
5.
Itoh J  Hibara K  Sato Y  Nagato Y 《Plant physiology》2008,147(4):1960-1975
Members of the Class III homeodomain leucine zipper (Class III HD-Zip) gene family are central regulators of crucial aspects of plant development. To better understand the roles of five Class III HD-Zip genes in rice (Oryza sativa) development, we investigated their expression patterns, ectopic expression phenotypes, and auxin responsiveness. Four genes, OSHB1 to OSHB4, were expressed in a localized domain of the shoot apical meristem (SAM), the adaxial cells of leaf primordia, the leaf margins, and the xylem tissue of vascular bundles. In contrast, expression of OSHB5 was observed only in phloem tissue. Plants ectopically expressing microRNA166-resistant versions of the OSHB3 gene exhibited severe defects, including the ectopic production of leaf margins, shoots, and radialized leaves. The treatment of seedlings with auxin quickly induced ectopic OSHB3 expression in the entire region of the SAM, but not in other tissues. Furthermore, this ectopic expression of OSHB3 was correlated with leaf initiation defects. Our findings suggest that rice Class III HD-Zip genes have conserved functions with their homologs in Arabidopsis (Arabidopsis thaliana), but have also acquired specific developmental roles in grasses or monocots. In addition, some Class III HD-Zip genes may regulate the leaf initiation process in the SAM in an auxin-dependent manner.  相似文献   

6.
Arabidopsis NSN1 encodes a nucleolar GTP-binding protein and is required for flower development. Defective flowers were formed in heterozygous nsn1/+?plants. Homozygous nsn1 plants were dwarf and exhibited severe defects in reproduction. Arrests in embryo development in nsn1 could occur at any stage of embryogenesis. Cotyledon initiation and development during embryogenesis were distorted in nsn1 plants. At the seedling stage, cotyledons and leaves of nsn1 formed upward curls. The curled leaves developed meristem-like outgrowths or hyperplasia tissues in the adaxial epidermis. Long and enlarged pavement cells, characteristic of the abaxial epidermis of wild type plants, were found in the adaxial epidermis in nsn1 leaves, suggesting a disoriented leaf polarity in the mutant. The important role of NSN1 in embryo development and leaf differentiation was consistent with the high level expression of the NSN1 gene in the developing embryos and the primordia of cotyledons and leaves. The CLAVATA 3 (CLV3) gene, a stem cell marker in the Arabidopsis shoot apical meristem (SAM), was expressed in expanded regions surrounding the SAM of nsn1 plants, and induced ectopically in the meristem-like outgrowths in cotyledons and leaves. The nsn1 mutation up-regulated the expression levels of several genes implicated in the meristem identity and the abaxial cell fate, and repressed the expression of other genes related to the specification of cotyledon boundary and abaxial identity. These results demonstrate that NSN1 represents a novel GTPase required for embryogenesis, leaf development and leaf polarity establishment in Arabidopsis.  相似文献   

7.
8.
ragged seedling2 (rgd2) is a novel, recessive mutation affecting lateral organ development in maize. The mutant phenotype of homozygous rgd2-R leaves is variable. Mild leaf phenotypes have a reduced midrib and may be moderately narrow and furcated; severe Rgd2-R(-) leaves are filamentous or even radial. Despite their radial morphology, severe Rgd2-R(-) mutant leaves develop distinct adaxial and abaxial anatomical features. Although Rgd2-R(-) mutants exhibit no reduction in adaxial or abaxial cell types, areas of epidermal cell swapping may occur that are associated with misaligned vascular bundles and outgrowths of ectopic margins. Scanning electron microscopy of young primordia and analyses of leaf developmental-marker gene expression in mutant apices reveal that RGD2 functions during recruitment of leaf founder cells and during expansive growth of leaf primordia. Overall, these phenotypes suggest that development is uncoordinated in Rgd2-R(-) mutant leaves, so that leaf components and tissues may develop quasi-independently. Models whereby RGD2 is required for developmental signaling during the initiation, anatomical patterning, and lateral expansion of maize leaves are discussed.  相似文献   

9.
10.
Recent work on species with simple leaves suggests that the juxtaposition of abaxial (lower) and adaxial (upper) cell fates (dorsiventrality) in leaf primordia is necessary for lamina outgrowth. However, how leaf dorsiventral symmetry affects leaflet formation in species with compound leaves is largely unknown. In four non-allelic dorsiventrality-defective mutants in tomato, wiry, wiry3, wiry4 and wiry6, partial or complete loss of ab-adaxiality was observed in leaves as well as in lateral organs in the flower, and the number of leaflets in leaves was reduced significantly. Morphological analyses and expression patterns of molecular markers for ab-adaxiality [LePHANTASTICA (LePHAN) and LeYABBY B (LeYAB B)] indicated that ab-adaxial cell fates were altered in mutant leaves. Reduction in expression of both LeT6 (a tomato KNOX gene) and LePHAN during post-primordial leaf development was correlated with a reduction in leaflet formation in the wiry mutants. LePHAN expression in LeT6 overexpression mutants suggests that LeT6 is a negative regulator of LePHAN. KNOX expression is known to be correlated with leaflet formation and we show that LeT6 requires LePHAN activity to form leaflets. These phenotypes and gene expression patterns suggest that the abaxial and adaxial domains of leaf primordia are important for leaflet primordia formation, and thus also important for compound leaf development. Furthermore, the regulatory relationship between LePHAN and KNOX genes is different from that proposed for simple-leafed species. We propose that this change in the regulatory relationship between KNOX genes and LePHAN plays a role in compound leaf development and is an important feature that distinguishes simple leaves from compound leaves.  相似文献   

11.
McHale NA  Koning RE 《The Plant cell》2004,16(5):1251-1262
Initiation and growth of leaf blades is oriented by an adaxial/abaxial axis aligned with the original axis of polarity in the leaf primordium. To investigate mechanisms regulating this process, we cloned the Nicotiana tabacum ortholog of PHANTASTICA (NTPHAN) and generated a series of antisense transgenics in N. sylvestris. We show that NSPHAN is expressed throughout emerging blade primordia in the wild type and becomes localized to the middle mesophyll in the expanding lamina. Antisense NSPHAN leaves show ectopic expression of NTH20, a class I KNOX gene. Juvenile transgenic leaves have normal adaxial/abaxial polarity and generate leaf blades in the normal position, but the adaxial mesophyll shows disorganized patterns of cell division, delayed maturation of palisade, and ectopic reinitiation of blade primordia along the midrib. Reversal of the phenotype with exogenous gibberellic acid suggests that NSPHAN, acting via KNOX repression, maintains determinacy in the expanding lamina and sustains the patterns of cell proliferation critical to palisade development.  相似文献   

12.
Plant architecture is elaborated through the activity of shoot apical meristems (SAMs), which produce repeating units known as phytomers, that are comprised of leaf, node, internode, and axillary bud. Insight into how SAMs function and how individual phytomer components are related to each other can been obtained through characterization of recessive mutants with perturbed shoot development. In this study, we characterized a new mutant to further understand mechanisms underlying shoot development in maize. The filifolium1-0 (ffm1-0) mutants develop narrow leaves on dwarfed shoots. Shoot growth often terminates at the seedling stage from depletion of the SAM, but if plants survive to maturity they are invariably bushy. KN1-like homeobox (KNOX) proteins are inappropriately regulated in mutant apices, adaxial identity is not specified in mutant leaves, and axillary meristems develop precociously. We propose that FFM1 acts to demarcate zones within the SAM so that appropriate fates can be conferred on cells within those zones by other factors. On the basis of the mutant phenotype, we also speculate about different relationships between phytomer components in maize and Arabidopsis.  相似文献   

13.
14.
The Arabidopsis PINHEAD/ZWILLE (PNH/ZLL) gene is thought to play an important role in the formation of the shoot apical meristem (SAM) and in leaf adaxial cell specification. To investigate the molecular mechanisms of rice development, we have isolated a rice homologue of PNH/ZLL, called OsPNH1. Around the SAM, OsPNH1 was strongly expressed in developing leaf primordia, specifically in the presumptive vascular domains, developing vascular tissues, a few cell-layers of the adaxial region, and future bundle sheath extension cells. In the SAM, only weak expression was observed in the central region, whereas strong expression was detected in the mid-vein region of leaf founder cells in the peripheral SAM domain. We produced transgenic rice plants containing the antisense OsPNH1 strand. The antisense OsPNH1 plants developed malformed leaves with an altered vascular arrangement and abnormal internal structure. These plants also formed an aberrant SAM with reduced KNOX gene expression. We examined the subcellular localization of the OsPNH1-GFP fusion protein and found that it was localized in the cytoplasm. On the basis of these observations, we propose that OsPNH1 functions not only in SAM maintenance as previously thought, but also in leaf formation through vascular development.  相似文献   

15.
T Foster  J Yamaguchi  B C Wong  B Veit    S Hake 《The Plant cell》1999,11(7):1239-1252
Maize leaves have a stereotypical pattern of cell types organized into discrete domains. These domains are altered by mutations in knotted1 (kn1) and knox (for kn1-like homeobox) genes. Gnarley (Gn1) is a dominant maize mutant that exhibits many of the phenotypic characteristics of the kn1 family of mutants. Gn1 is unique because it changes parameters of cell growth in the basal-most region of the leaf, the sheath, resulting in dramatically altered sheath morphology. The strongly expressive allele Gn1-R also gives rise to a floral phenotype in which ectopic carpels form. Introgression studies showed that the severity of the Gn1-conferred phenotype is strongly influenced by genetic background. Gn1 maps to knox4, and knox4 is ectopically expressed in plants with the Gn1-conferred phenotype. Immunolocalization experiments showed that the KNOX protein accumulates at the base of Gn1 leaves in a pattern that is spatially and temporally correlated with appearance of the mutant phenotype. We further demonstrate that Gn1 is knox4 by correlating loss of the mutant phenotype with insertion of a Mutator transposon into knox4.  相似文献   

16.
Cardamine hirsuta, a small crucifer closely related to the model organism Arabidopsis thaliana, offers high genetic tractability and has emerged as a powerful system for studying the genetic basis for diversification of plant form. Contrary to A. thaliana, which has simple leaves, C. hirsuta produces dissected leaves divided into individual units called leaflets. Leaflet formation requires activity of Class I KNOTTED1-like homeodomain (KNOX) proteins, which also promote function of the shoot apical meristem (SAM). In C. hirsuta, KNOX genes are expressed in the leaves whereas in A. thaliana their expression is confined to the SAM, and differences in expression arise through cis-regulatory divergence of KNOX regulation. KNOX activity in C. hirsuta leaves delays the transition from proliferative growth to differentiation thus facilitating the generation of lateral growth axes that give rise to leaflets. These axes reflect the sequential generation of cell division foci across the leaf proximodistal axis in response to auxin activity maxima, which are generated by the PINFORMED1 (PIN1) auxin efflux carriers in a process that resembles organogenesis at the SAM. Delimitation of C. hirsuta leaflets also requires the activity of CUP SHAPED COTYLEDON (CUC) genes, which direct formation of organ boundaries at the SAM. These observations show how species-specific deployment of fundamental shoot development networks may have sculpted simple versus dissected leaf forms. These studies also illustrate how extending developmental genetic studies to morphologically divergent relatives of model organisms can greatly help elucidate the mechanisms underlying the evolution of form.  相似文献   

17.
One of the most fascinating aspects of plant morphology is the regular geometric arrangement of leaves and flowers, called phyllotaxy. The shoot apical meristem (SAM) determines these patterns, which vary depending on species and developmental stage. Auxin acts as an instructive signal in leaf initiation, and its transport has been implicated in phyllotaxy regulation in Arabidopsis (Arabidopsis thaliana). Altered phyllotactic patterns are observed in a maize (Zea mays) mutant, aberrant phyllotaxy1 (abph1, also known as abphyl1), and ABPH1 encodes a cytokinin-inducible type A response regulator, suggesting that cytokinin signals are also involved in the mechanism by which phyllotactic patterns are established. Therefore, we investigated the interaction between auxin and cytokinin signaling in phyllotaxy. Treatment of maize shoots with a polar auxin transport inhibitor, 1-naphthylphthalamic acid, strongly reduced ABPH1 expression, suggesting that auxin or its polar transport is required for ABPH1 expression. Immunolocalization of the PINFORMED1 (PIN1) polar auxin transporter revealed that PIN1 expression marks leaf primordia in maize, similarly to Arabidopsis. Interestingly, maize PIN1 expression at the incipient leaf primordium was greatly reduced in abph1 mutants. Consistently, auxin levels were reduced in abph1, and the maize PIN1 homolog was induced not only by auxin but also by cytokinin treatments. Our results indicate distinct roles for ABPH1 as a negative regulator of SAM size and a positive regulator of PIN1 expression. These studies highlight a complex interaction between auxin and cytokinin signaling in the specification of phyllotactic patterns and suggest an alternative model for the generation of altered phyllotactic patterns in abph1 mutants. We propose that reduced auxin levels and PIN1 expression in abph1 mutant SAMs delay leaf initiation, contributing to the enlarged SAM and altered phyllotaxy of these mutants.  相似文献   

18.
Jasinski S  Kaur H  Tattersall A  Tsiantis M 《Planta》2007,226(5):1255-1263
Leaves of seed plants can be described as simple, where the leaf blade is entire, or dissected, where the blade is divided into distinct leaflets. Both simple and dissected leaves are initiated at the flanks of a pluripotent structure termed the shoot apical meristem (SAM). In simple-leafed species, expression of class I KNOTTED1-like homeobox (KNOX) proteins is confined to the meristem while in many dissected leaf plants, including tomato, KNOX expression persists in leaf primordia. Elevation of KNOX expression in tomato leaves can result in increased leaflet number, indicating that tight regulation of KNOX expression may help define the degree of leaf dissection in this species. To test this hypothesis and understand the mechanisms controlling leaf dissection in tomato, we studied the clausa (clau) and tripinnate (tp) mutants both of which condition increased leaflet number phenotypes. We show that TRIPINNATE and CLAUSA act together, to restrict the expression level and domain of the KNOX genes Tkn1 and LeT6/Tkn2 during tomato leaf development. Because loss of CLAU or TP activity results in increased KNOX expression predominantly on the adaxial (upper) leaf domain, our observations indicate that CLAU and TP may participate in a domain-specific KNOX repressive system that delimits the ability of the tomato leaf to generate leaflets.  相似文献   

19.
The maize leaf consists of four distinct tissues along its proximodistal axis: sheath, ligule, auricle and blade. liguleless1 (lg1) functions cell autonomously to specify ligule and auricle, and may propagate a signal that correctly positions the blade-sheath boundary. The dominant Wavy auricle in blade (Wab1) mutation disrupts both the mediolateral and proximodistal axes of the maize leaf. Wab1 leaf blades are narrow and ectopic auricle and sheath extend into the blade. The recessive lg1-R mutation exacerbates the Wab1 phenotype; in the double mutants, most of the proximal blade is deleted and sheath tissue extends along the residual blade. We show that lg1 is misexpressed in Wab1 leaves. Our results suggest that the Wab1 defect is partially compensated for by lg1 expression. A mosaic analysis of Wab1 was conducted in Lg1+ and lg1-R backgrounds to determine if Wab1 affects leaf development in a cell-autonomous manner. Normal tissue identity was restored in all wab1+/- sectors in a lg1-R mutant background, and in three quarters of sectors in a Lg1+ background. These results suggest that lg1 can influence the autonomy of Wab1. In both genotypes, leaf-halves with wab1+/- sectors were significantly wider than non-sectored leaf-halves, suggesting that Wab1 acts cell-autonomously to affect lateral growth. The mosaic analysis, lg1 expression data and comparison of mutant leaf shapes reveal previously unreported functions of lg1 in both normal leaf development and in the dominant Wab1 mutant.  相似文献   

20.
Pinnate compound leaves have laminae called leaflets distributed at intervals along an axis, the rachis, whereas simple leaves have a single lamina. In simple- and compound-leaved species, the PHANTASTICA (PHAN) gene is required for lamina formation. Antirrhinum majus mutants lacking a functional gene develop abaxialized, bladeless adult leaves. Transgenic downregulation of PHAN in the compound tomato (Solanum lycopersicum) leaf results in an abaxialized rachis without leaflets. The extent of PHAN gene expression was found to be correlated with leaf morphology in diverse compound-leaved species; pinnate leaves had a complete adaxial domain of PHAN gene expression, and peltate leaves had a diminished domain. These previous studies predict the form of a compound-leaved phan mutant to be either peltate or an abaxialized rachis. Here, we characterize crispa, a phan mutant in pea (Pisum sativum), and find that the compound leaf remains pinnate, with individual leaflets abaxialized, rather than the whole leaf. The mutant develops ectopic stipules on the petiole-rachis axis, which are associated with ectopic class 1 KNOTTED1-like homeobox (KNOX) gene expression, showing that the interaction between CRISPA and the KNOX gene PISUM SATIVUM KNOTTED2 specifies stipule boundaries. KNOX and CRISPA gene expression patterns indicate that the mechanism of pea leaf initiation is more like Arabidopsis thaliana than tomato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号