首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
The 11-4 p53 cDNA clone failed to transform primary rat fibroblasts when cotransfected with the ras oncogene. Two linker insertion mutations at amino acid 158 or 215 (of 390 amino acids) activated this p53 cDNA for transformation with ras. These mutant cDNAs produced a p53 protein that lacked an epitope, recognized by monoclonal antibody PAb246 (localized at amino acids 88 to 110 in the protein) and preferentially bound to a heat shock protein, hsc70. In rat cells transformed by a genomic p53 clone plus ras, two populations of p53 proteins were detected, PAb246+ and PAb246-, which did or did not bind to this monoclonal antibody, respectively. The PAb246- p53 preferentially associated with hsc70, and this protein had a half-life 4- to 20-fold longer than free p53 (PAb246+). These data suggest a possible functional role for hsc70 in the transformation process. cDNAs for p53 derived from methylcholanthrene-transformed cells transform rat cells in cooperation with the ras oncogene and produce a protein that bound with the heat shock proteins. Recombinant clones produced between a Meth A cDNA and 11-4 were tested for the ability to transform rat cells. A single amino acid substitution at residue 132 was sufficient to activate the 11-4 p53 cDNA for transformation. These studies have identified a region between amino acids 132 and 215 in the p53 protein which, when mutated, can activate the p53 cDNA. These results also call into question what the correct p53 wild-type sequence is and whether a wild-type p53 gene can transform cells in culture.  相似文献   

2.
The majority of the p53 genes derived from human colorectal carcinomas contain point mutations. A significant number of these mutations occur in or around amino acids 143, 175, 273, or 281. Experiments presented here demonstrate for the first time that p53 DNA clones containing any one of these mutations cooperate with the activated ras oncogene to transform primary rat embryo cells in culture. These transformed cells produce elevated levels of the human p53 protein, which has extended half-lives (1.5-7 h), as compared to the wild-type human p53 protein (20-30 min). The p53 mutant with an alteration at residue 175 (p53-175H) binds tightly to the cellular heat shock protein, hsc70. In contrast, the p53 mutants possessing mutations at either residue 273 or 281 (p53-273H/281G) do not bind detectably to this heat shock protein and generally are less efficient at forming transformed foci in culture. The transformed cell lines are tumorigenic in nude mice. Thus, two classes of p53 mutant proteins can be distinguished: p53-175H, which cooperates with ras efficiently and binds to hsc70, and p53-273H/281G, which has a reduced efficiency of transformed foci formation and does not bind hsc70. This demonstrates that complex formation between mutant p53 and hsc70 is not required for p53-mediated transformation, but rather it facilitates this function, perhaps by ensuring sequestration of the endogenous wild-type p53 protein. The positive effect on cell proliferation by these mutant p53 proteins is consistent with a role for activated p53 mutants in the genesis of colorectal carcinomas.  相似文献   

3.
Oligomeric protein complexes containing the nuclear oncogene p53 and the simian virus 40 large tumor antigen (D. I. H. Linzer and A. J. Levine, Cell 17:43-51, 1979), the adenovirus E1B 55-kilodalton (kDa) tumor antigen, and the heat shock protein hsc70 (P. Hinds, C. Finlay, A. Frey, and A. J. Levine, Mol. Cell. Biol. 7:2863-2869, 1987) have all been previously described. To begin isolating, purifying, and testing these complexes for functional activities, we have developed a rapid immunoaffinity column purification. p53-protein complexes are eluted from the immunoaffinity column by using a molar excess of a peptide comprising the epitope recognized by the p53 monoclonal antibody. This mild and specific elution condition allows p53-protein interactions to be maintained. The hsc70-p53 complex from rat cells is heterogeneous in size, with some forms of this complex associated with a 110-kDa protein. The maximum apparent molecular mass of such complexes is 660,000 daltons. Incubation with micromolar levels of ATP dissociates this complex in vitro into p53 and hsc70 110-kDa components. Nonhydrolyzable substrates of ATP fail to promote this dissociation of the complex. Murine p53 synthesized in Escherichia coli has been purified 660-fold on the same antibody affinity column and was found to be associated with an E. coli protein of 70 kDa. Immunoblot analysis with specific antisera demonstrated that this E. coli protein was the heat shock protein dnaK, which has extensive sequence homology with the rat hsc70 protein. Incubation of the immunopurified p53-dnaK complex with ATP resulted in the dissociation of the p53-dnaK complex as it did with the p53-hsc70 complex. This remarkable conservation of p53-heat shock protein interactions and the specificity of dissociation reactions suggest a functionally important role for heat shock proteins in their interactions with oncogene proteins.  相似文献   

4.
In cells transformed by mutant mouse p53 plus ras, the former protein is found to be complexed with the heat-shock protein cognate hsc70. To determine whether hsc70 can directly affect neoplastic transformation, nonestablished rat embryo fibroblasts (REF) were transfected with rat genomic hsc70 DNA in conjunction with various oncogenes. We report here that the hsc70 gene could efficiently suppress focus induction by mutant p53 plus ras, as well as by myc plus ras. No inhibitory effect of hsc70 was detectable in assays monitoring the ability of REF to be immortalized by mutant p53, arguing against a nonspecific deleterious effect of the hsc70 genomic clone on REF survival and proliferation. Lines generated in the presence of the hsc70 plasmid produced augmented levels of hsc70. Plasmids encoding only short NH2-terminal fragments of hsc70 could also, in some cases, partially reduce oncogene-mediated focus formation. However, a maximal inhibitory effect required the production of a functional hsc70 protein. The data presented here raise the possibility that hsc70 may be directly involved in the modulation of oncogene-mediated transformation.  相似文献   

5.
The transformation-related protein p53 is normally very labile. The stability of p53 is significantly increased in a number of fibrosarcoma cell lines derived from mouse tumors induced by treatment with physical or chemical agents. In many instances, p53 stabilization is correlated with the ability to form a stable complex with the heat shock protein cognate hsc70. We describe a line in which p53 is very stable yet has no detectable interaction with hsc70. The inability to form such a complex probably resides in the primary structure of the endogenous p53, since introduction of other p53 variants into those cells resulted in the appearance of a p53-hsc70 complex. The factors affecting p53 stability were investigated by stable transfection experiments. The results indicated that the primary structure of the p53 protein is a major determinant of its turnover rate; different p53 variants were degraded at distinct and characteristic rates in a number of transformed cell types. However, at least one p53 variant was degraded differently in nontransformed BALB/c-3T3 than in transformed fibrosarcoma cells, demonstrating that the specific cellular environment can also affect the stability of p53.  相似文献   

6.
7.
8.
9.
J B Mannick  X Tong  A Hemnes    E Kieff 《Journal of virology》1995,69(12):8169-8172
Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) is important for primary B-lymphocyte growth transformation. We now demonstrate that the W repeat-encoded domain of EBNA-LP significantly associates with proteins of the heat shock protein 70 family (hsp72/hsc73). hsp72/hsc73 may mediate the previously observed interaction between EBNA-LP and the retinoblastoma protein or p53.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号