首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An idealized three-dimensional finite element model of a rodlike trabecular bone structure was developed to study its static and dynamic responses under compressive loading, considering the effects of bone marrow and apparent density. Static analysis of the model predicted hydraulic stiffening of trabecular bone due to the presence of bone marrow. The predicted power equation relating trabecular bone apparent elastic modulus to its apparent density was in good agreement with those of the reported experimental investigations. The ratio of the maximum stress in the trabecular bone tissue to its apparent stress had a high value, decreasing with increasing bone apparent density. Frequency analyses of the model predicted higher natural frequencies for the bone without marrow than those for the bone with marrow. Adding a mass relatively large compared to that of bone rendered a single-degree-of-freedom response. In this case, the resonant frequency was higher for the bone with marrow than that for the bone without marrow. The predicted vibrational measurement of apparent modulus was in good agreement with that of the static measurement, suggesting vibrational testing as a method for nondestructive measurement of trabecular bone elastic moduli.  相似文献   

2.
We study the effects of freeze–thaw and irradiation on structure–property relations of trabecular bone. We measure the porosity, apparent density, mineral content, trabecular orientation, trabecular thickness, fractal dimension, surface area, and connectivity of trabecular bone using micro-computed tomography (micro-CT) and relate them to Young?s modulus and ultimate strength measured by uniaxial compression testing. The analysis is done on six-month porcine trabecular bone from femoral heads. The effects of freeze–thaw are studied by using bones from three different groups: fresh bone and bones frozen for one and five years. We find that the porosity and apparent density have most dominant influence on the elastic modulus and strength of fresh bone. Also, five years of freezing lowers both Young?s modulus and ultimate strength of trabecular bone. Additionally, the effects of radiation are investigated by comparing Young?s modulus before and after micro-CT exposure. We find that the micro-CT irradiation has a negligible effect on the Young?s modulus of trabecular bone. These findings provide insights on the effects of tissue preservation and imaging on properties of trabecular bone.  相似文献   

3.
Multiaxial strength characteristics of trabecular bone   总被引:4,自引:1,他引:3  
Bovine trabecular bone specimens were tested in multiaxial stress, including pure shear, in a special test device. Shear strength was proportional to apparent density to the exponent 1.65, in approximate agreement with theoretical and experimental studies on the shear strengths of porous foams. The mean shear strength was 6.60 +/- 1.66 MPa, after normalizing for apparent density. This compares well with normalized shear strengths from Saha and Gorman's (1981) study on human femora. A scanning electron microscope study indicated random trabecular architecture and a complex fracture mechanism at the level of the individual trabecular struts. Hoffmann's (1967) 3-D isotropic failure criterion was applied to the multiaxial test data, along with data from uniaxial compression tests, indicating a compressive strength approximately three times the tensile strength.  相似文献   

4.
The compressive properties of human cancellous bone of the distal intracondylar femur in its wet condition were determined. Specimens were obtained from six cadaveric femora and were tested at a strain rate of 0.002, 0.10 and 9.16 sec−1. It was found that the compressive strength decreases with an increasing vertical distance from the joint. The highest compressive strength level was recorded in the posterior medial condyle. Correlations among the mechanical properties, the bulk specimen density and the bone mineral content yield (i) highly significant correlations between the compressive strength and the elastic modulus (ii) highly significant correlations between the compressive strength or the modulus of elasticity and the bulk specimen density (iii) a doubtful correlation between the compressive strength and the bone mineral content. All recorded graphs of the impact loaded specimens displayed several well defined stress peaks, unlike the graphs recorded at low loading rates. It can be concluded that upon impact loading the localized trabecular failure which is associated with each peak, does not affect the spongy bone's stress capacity in a detrimental way.  相似文献   

5.
Elastic modulus of trabecular bone material   总被引:15,自引:0,他引:15  
An ultrasonic technique was used to measure both the elastic modulus (Young's modulus) of trabecular bone material and the elastic modulus of the cancellous structure. The average trabecular modulus, measured on specimens obtained from three human and one bovine distal femora, was 13.0 GPa (S.D. 1.47) and 10.9 GPa (S.D. 1.57), respectively. On human specimens the structural elastic modulus was found to be related to the structural (apparent) density raised to the 1.88 power. The elastic modulus from the bovine specimens showed a more linear relationship with the density of the cancellous structure (density raised to the 1.57 power).  相似文献   

6.
The convergence behavior of finite element models depends on the size of elements used, the element polynomial order, and on the complexity of the applied loads. For high-resolution models of trabecular bone, changes in architecture and density may also be important. The goal of this study was to investigate the influence of these factors on the convergence behavior of high-resolution models of trabecular bone. Two human vertebral and two bovine tibial trabecular bone specimens were modeled at four resolutions ranging from 20 to 80 microns and subjected to both compressive and shear loading. Results indicated that convergence behavior depended on both loading mode (axial versus shear) and volume fraction of the specimen. Compared to the 20 microns resolution, the differences in apparent Young's modulus at 40 microns resolution were less than 5 percent for all specimens, and for apparent shear modulus were less than 7 percent. By contrast, differences at 80 microns resolution in apparent modulus were up to 41 percent, depending on the specimen tested and loading mode. Overall, differences in apparent properties were always less than 10 percent when the ratio of mean trabecular thickness to element size was greater than four. Use of higher order elements did not improve the results. Tissue level parameters such as maximum principal strain did not converge. Tissue level strains converged when considered relative to a threshold value, but only if the strains were evaluated at Gauss points rather than element centroids. These findings indicate that good convergence can be obtained with this modeling technique, although element size should be chosen based on factors such as loading mode, mean trabecular thickness, and the particular output parameter of interest.  相似文献   

7.
Study of the behavior of trabecular bone at strains below 0.40 percent is of clinical and biomechanical importance. The goal of this work was to characterize, with respect to anatomic site, loading mode, and apparent density, the subtle concave downward stress-strain nonlinearity, that has been observed recently for trabecular bone at these strains. Using protocols designed to minimize end-artifacts, 155 cylindrical cores from human vertebrae, proximal tibiae, proximal femora, and bovine proximal tibiae were mechanically tested to yield at 0.50 percent strain per second in tension or compression. The nonlinearity was quantified by the reduction in tangent modulus at 0.20 percent and 0.40 percent strain as compared to the initial modulus. For the pooled data, the mean +/- SD percentage reduction in tangent modulus at 0.20 percent strain was 9.07+/- 3.24 percent in compression and 13.8 +/- 4.79 percent in tension. At 0.40 percent strain, these values were 23.5 +/- 5.71 and 35.7+/- 7.10 percent, respectively. The magnitude of the nonlineari't depended on both anatomic site (p < 0.001) and loading mode (p < 0.001), and in tension was positively correlated with density. Calculated values of elastic modulus and yield properties depended on the strain range chosen to define modulus via a linear curve fit (p < 0.005). Mean percent differences in 0.20 percent offset yield strains were as large as 10.65 percent for some human sites. These results establish that trabecular bone exhibits nonlinearity at low strains, and that this behavior can confound intersite comparisons of mechanical properties. A nonlinear characterization of the small strain behavior of trabecular bone was introduced to characterize the initial stress-strain behavior more thoroughly.  相似文献   

8.
Damage in trabecular bone at small strains   总被引:5,自引:0,他引:5  
Evidence that damage decreases bone quality, increases fracture susceptibility, and serves as a remodeling stimulus motivates further study of what loading magnitudes induce damage in trabecular bone. In particular, whether damage occurs at the smaller strains characteristic of habitual, as opposed to traumatic, loading is not known. The overall goal of this study was to characterize damage accumulation in trabecular bone at small strains (0.20 - 0.45% strain). A continuum damage mechanics approach was taken whereby damage was quantified by changes in modulus and residual strain. Human vertebral specimens (n = 7) were tested in compression using a multi-cycle load - unload protocol in which the maximum applied strain for each cycle, epsilonmax, was increased incrementally from epsilonmax = 0.20% on the first loading cycle to epsilonmax = 0.45% on the last cycle. Modulus and residual strain were measured for each cycle. Both changes in modulus and residual strains commenced at small strains, beginning as early as 0.24 and 0.20% strain, respectively. Strong correlations between changes in modulus and residual strains were observed (r = 0.51 - 0.98). Fully nonlinear, high-resolution finite element analyses indicated that even at small apparent strains, tissue-level strains were sufficiently high to cause local yielding. These results demonstrate that damage in trabecular bone occurs at apparent strains less than half the apparent compressive yield strain reported previously for human vertebral trabecular bone. Further, these findings imply that, as a consequence of the highly porous trabecular structure, tissue yielding can initiate at very low apparent strains and that this local failure has detectable and negative consequences on the apparent mechanical properties of trabecular bone.  相似文献   

9.
Mechanical properties of trabecular bone. Dependency on strain rate.   总被引:8,自引:1,他引:7  
The effect of strain rate (epsilon) and apparent density (rho) on stiffness (E), strength (sigma u), and ultimate strain (epsilon u) was studied in 60 human trabecular bone specimens from the proximal tibia. Testing was performed by uniaxial compression to 5% specimen strain. Six different strain rates were used: 0.0001, 0.001, 0.01, 0.1, 1, and 10 s-1. Apparent density ranged between 0.23 and 0.59 g cm-3. Linear and non-linear regression analyses using strength, stiffness and ultimate strain as dependent variables (Y) and strain rate and apparent density as independent variables were performed using the following models: Y = a rho b epsilon c, Y = rho b(a + c epsilon; Y = (a + b rho)epsilon c, Y = a rho 2 epsilon c, E = a rho 3 epsilon c. The variations of strength and stiffness were explained equally well by the linear and the power function relationship to strain rate. The exponent was 0.07 in the power function relationship between strength and strain rate and 0.05 between stiffness and strain rate. The variation of ultimate strain was explained best using a power function relationship to strain rate (exponent = 0.03). The variation of strength and stiffness was explained equally well by the linear, power function and quadratic relationship to apparent density. The cubic relationship between stiffness and apparent density showed a less good fit. Ultimate strain varied independently of apparent density.  相似文献   

10.
Dependence of yield strain of human trabecular bone on anatomic site   总被引:17,自引:0,他引:17  
Understanding the dependence of human trabecular bone strength behavior on anatomic site provides insight into structure-function relationships and is essential to the increased success of site-specific finite element models of whole bones. To investigate the hypothesis that the yield strains of human trabecular bone depend on anatomic site, the uniaxial tensile and compressive yield properties were compared for cylindrical specimens from the vertebra (n=61), proximal tibia (n=31), femoral greater trochanter (n=23), and femoral neck (n=27) taken from 61 donors (67+/-15years). Test protocols were used that minimized end artifacts and loaded specimens along the main trabecular orientation. Yield strains by site (mean+/-S.D.) ranged from 0.70+/-0.05% for the trochanter to 0.85+/-0.10% for the femoral neck in compression, from 0.61+/-0.05% for the trochanter to 0.70+/-0.05% for the vertebra in tension, and were always higher in compression than tension (p<0.001). The compressive yield strain was higher for the femoral neck than for all other sites (p<0.001), as was the tensile yield strain for the vertebra (p<0.007). Analysis of covariance, with apparent density as the covariate, indicated that inter-site differences existed in yield stress even after adjusting statistically for density (p<0.035). Coefficients of variation in yield strain within each site ranged from only 5-12%, consistent with the strong linear correlations (r(2)=0.94-0.98) found between yield stress and modulus. These results establish that the yield strains of human trabecular bone can differ across sites, but that yield strain may be considered uniform within a given site despite substantial variation in elastic modulus and yield stress.  相似文献   

11.
The ability to predict trabecular failure using microstructure-based computational models would greatly facilitate study of trabecular structure–function relations, multiaxial strength, and tissue remodeling. We hypothesized that high-resolution finite element models of trabecular bone that include cortical-like strength asymmetry at the tissue level, could predict apparent level failure of trabecular bone for multiple loading modes. A bilinear constitutive model with asymmetric tissue yield strains in tension and compression was applied to simulate failure in high-resolution finite element models of seven bovine tibial specimens. Tissue modulus was reduced by 95% when tissue principal strains exceeded the tissue yield strains. Linear models were first calibrated for effective tissue modulus against specimen-specific experimental measures of apparent modulus, producing effective tissue moduli of (mean±S.D.) 18.7±3.4 GPa. Next, a parameter study was performed on a single specimen to estimate the tissue level tensile and compressive yield strains. These values, 0.60% strain in tension and 1.01% strain in compression, were then used in non-linear analyses of all seven specimens to predict failure for apparent tensile, compressive, and shear loading. When compared to apparent yield properties previously measured for the same type of bone, the model predictions of both the stresses and strains at failure were not statistically different for any loading case (p>0.15). Use of symmetric tissue strengths could not match the experimental data. These findings establish that, once effective tissue modulus is calibrated and uniform but asymmetric tissue failure strains are used, the resulting models can capture the apparent strength behavior to an outstanding level of accuracy. As such, these computational models have reached a level of fidelity that qualifies them as surrogates for destructive mechanical testing of real specimens.  相似文献   

12.
Trabecular bone loss in human vertebral bone is characterised by thinning and eventual perforation of the horizontal trabeculae. Concurrently, vertical trabeculae are completely lost with no histological evidence of significant thinning. Such bone loss results in deterioration in apparent modulus and strength of the trabecular core. In this study, a voxel-based finite element program was used to model bone loss in three specimens of human vertebral trabecular bone. Three sets of analyses were completed. In Set 1, strain adaptive resorption was modelled, whereby elements which were subject to the lowest mechanical stimulus (principal strain) were removed. In Set 2, both strain adaptive and microdamage mechanisms of bone resorption were included. Perforation of vertical trabeculae occurred due to microdamage resorption of elements with strains that exceeded a damage threshold. This resulted in collapse of the trabecular network under compression loading for two of the specimens tested. In Set 3, the damage threshold strain was gradually increased as bone loss progressed, resulting in reduced levels of microdamage resorption. This mechanism resulted in trabecular architectures in which vertical trabeculae had been perforated and which exhibited similar apparent modulus properties compared to experimental values reported in the literature. Our results indicate that strain adaptive remodelling alone does not explain the deterioration in mechanical properties that have been observed experimentally. Our results also support the hypothesis that horizontal trabeculae are lost principally by strain adaptive resorption, while vertical trabeculae may be lost due to perforation from microdamage resorption followed by rapid strain adaptive resorption of the remaining unloaded trabeculae.  相似文献   

13.
For a better understanding of traumatic bone fractures, knowledge of the mechanical behavior of bone at high strain rates is required. Importantly, it needs to be clarified how quasistatic mechanical testing experiments relate to real bone fracture. This merits investigating the mechanical behavior of bone with an increase in strain rate. Various studies examined how cortical and trabecular bone behave at varying strain rates, but no one has yet looked at this question using individual trabeculae. In this study, three-point bending tests were carried out on bovine single trabeculae excised from a proximal femur to test the trabecular material's strain rate sensitivity. An experimental setup was designed, capable of measuring local strains at the surface of such small specimens, using digital image correlation. Microdamage was detected using the bone whitening effect. Samples were tested through two orders of magnitude, at strain rates varying between 0.01 and 3.39 s(-1). No linear relationship was observed between the strain rate and the Young's modulus (1.13-16.46 GPa), the amount of microdamage, the maximum tensile strain at failure (14.22-61.65%) and at microdamage initiation (1.95-12.29%). The results obtained in this study conflict with previous studies reporting various trends for macroscopic cortical and trabecular bone samples with an increase in strain rate. This discrepancy might be explained by the bone type, the small sample geometry, the limited range of strain rates tested here, the type of loading and the method of microdamage detection. Based on the results of this study, the strain rate can be ignored when modeling trabecular bone.  相似文献   

14.
15.
Microdamage occurs in trabecular bone under normal loading, which impairs the mechanical properties. Architectural degradation associated with osteoporosis increases damage susceptibility, resulting in a cumulative negative effect on the mechanical properties. Treatments for osteoporosis could be targeted toward increased bone mineral density, improved architecture, or repair and prevention of microdamage. Delineating the relative roles of damage and architectural degradation on trabecular bone strength will provide insight into the most beneficial targets. In this study, damage was induced in bovine trabecular bone samples by axial compression, and the effects on the mechanical properties in shear were assessed. The damaged shear modulus, shear yield stress, ultimate shear stress, and energy to failure all depended on induced damage and decreased as the architecture became more rod-like. The changes in ultimate shear strength and toughness were proportional to the decrease in shear modulus, consistent with an effective decrease in the cross-section of trabeculae based on cellular solid analysis. For typical ranges of bone volume fraction in human bone, the strength and toughness were much more sensitive to decreased volume fraction than to induced mechanical damage. While ultimately repairing or avoiding damage to the bone structure and increasing bone density both improve mechanical properties, increasing bone density is the more important contributor to bone strength.  相似文献   

16.
Age-related increases in trabecular bone porosity, as seen in osteoporosis, not only affect the strength and stiffness, but also potentially the mechanobiological response of bone. The mechanical interaction between trabecular bone and bone marrow is one source of mechanobiological signaling, as many cell populations in marrow are mechanosensitive. However, measuring the mechanics of this interaction is difficult, due to the length scales and geometric complexity of trabecular bone. In this study, a multi-scale computational scheme incorporating high-resolution, tissue-level, fluid–structure interaction simulations with discrete cell-level models was applied to characterize the potential effects of trabecular porosity and marrow composition on marrow mechanobiology in human femoral bone. First, four tissue-level models with different volume fractions (BV/TV) were subjected to cyclic compression to determine the continuum level shear stress in the marrow. The calculated stress was applied to three detailed models incorporating individual cells and having differing adipocyte fractions. At the tissue level, compression of the bone along its principal mechanical axis induced shear stress in the marrow ranging from 2.0 to 5.6 Pa, which increased with bone volume fraction and strain rate. The shear stress was amplified at the cell level, with over 90% of non-adipocyte cells experiencing higher shear stress than the applied tissue-level stress. The maximum shear stress decreased by 20% when the adipocyte volume fraction (AVF) increased from 30%, as seen in young healthy marrow, to 45 or 60% AVF typically found in osteoporotic patients. The results suggest that increasing AVF has similar effects on the mechanobiological signaling in bone marrow as decreased volume fraction.  相似文献   

17.
Physical and mechanical properties of calf lumbosacral trabecular bone.   总被引:5,自引:0,他引:5  
The physical and mechanical properties of calf lumbar and sacral trabecular bone were determined and compared with those of human trabecular bone. The mean tissue density (1.66 +/- 0.12 g cm-3), equivalent mineral density (169 +/- 36 mg cm-3), apparent density (453 +/- 89 mg cm-3), ash density (194 +/- 59 mg cm-3), ash content (0.6 +/- 0.05%), compressive strength (7.1 +/- 3.0 MPa) and compressive modulus (173 +/- 97 MPa) of calf trabecular bone are similar to those of young human. There were moderate, positive linear correlations between apparent density and equivalent mineral density, ash density, and compressive strength; and between compressive strength and equivalent mineral density (R2 ranging from 0.35 to 0.48, p less than 0.001). Apparent density, ash density, and equivalent mineral density did not differ significantly in different regions. In contrast to humans, the compressive strength increased from posterior, near the facet, to the anterior vertebral body. These comparisons of physical and mechanical properties, as well as anatomical comparisons by others, indicate that the calf spine is a good model of the young non-osteoporotic human spine and thus useful for the testing of spinal instrumentation.  相似文献   

18.
Extremely low-level oscillatory accelerations, applied without constraint, can increase bone formation. Here, we tested the hypothesis that high-frequency oscillations, applied in the absence of functional weight bearing, can be sensed by trabecular bone to produce a structure that is more efficient in sustaining applied loads. The left leg of anesthetized adult female mice (n=18) was subjected to high-frequency oscillations at 45 Hz, 0.6g for 20 min/day, 5 days/week for 3 weeks, while the contralateral leg served as an internal control. To remove the potential interference of the habitual strain environment with the imposed physical signal, the hindlimbs of these mice were chronically unloaded. In vivo microCT scans of the proximal metaphyseal region of the tibia were transformed into finite element meshes to evaluate trabecular and cortical mechanical properties. Simulated longitudinal compression tests showed that the short applications of high-frequency oscillations were sensed primarily by trabecular bone. At the end of the experimental period, apparent trabecular stiffness of the oscillated bones was 38% (p<0.001) greater than that of non-weight bearing controls. Simulated uniaxial loads applied to trabecular bone induced 21%, 52%, and 131% greater (p<0.05) median, peak compressive, and peak tensile longitudinal stresses in control than in stimulated bones. Non-weight bearing control bones were also characterized by greater transverse normal and shear stresses (77% and 54%, respectively, p<0.001) as well as 35% greater (p=0.03) longitudinal shear stresses. Compared to normal age-matched controls (n=18), oscillations were able to attenuate, but not fully prevent, the decline in trabecular mechanical properties associated with the removal of weight bearing. These data indicate not only that bone cells can sense low-level, high-frequency oscillatory accelerations, but also that they can orchestrate a structural response that produces a stiffer trabecular structure that may be less prone to fracture.  相似文献   

19.
20.
The effect of mineral volume fraction on the tensile mechanical properties of cortical bone tissue is investigated by theoretical and experimental means. The mineral content of plexiform, bovine bone was lowered by 18% and 29% by immersion in fluoride solutions for 3 days and 12 days, respectively. The elastic modulus, yield strength and ultimate strength of bone tissue decreased, while the ultimate strain increased with a decrease in mineral content. The mechanical behavior of bone tissue was modeled by using a micromechanical shear lag theory consisting of overlapped mineral platelets reinforcing the organic matrix. The decrease in yield stress, by the 0.002 offset method, of the fluoride treated bones were matched in the theoretical curves by lowering the shear yield stress of the organic matrix. The failure criterion used was based on failure stresses determined from a failure envelope (Mohr's circle), which was constructed using experimental data. It was found that the model predictions of elastic modulus got worse with a decrease in mineral content (being 7.9%, 17.2% and 33.0% higher for the control, 3-day and 12-day fluoride-treated bones). As a result, the developed theory could not fully predict the yield strain of bones with lowered mineral content, being 12.9% and 21.7% lower than the experimental values. The predicted ultimate stresses of the bone tissues with lower mineral contents were within +/- 10% of the experimental values while the ultimate strains were 12.7% and 26.3% lower than the experimental values. Although the model developed in this study did not take into account the presence of hierarchical structures, voids, orientation of collagen molecules and micro cracks, it still indicated that the mechanical properties of the organic matrix depend on bone mineral content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号