首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
张瑜  金光泽 《植物生态学报》2016,40(12):1276-1288
倒木是森林生态系统的重要组成部分, 在地力维护、生物多样性保持以及碳(C)和养分循环等方面具有重要意义, 但倒木物理化学性质随其腐烂等级和径级而变化。为了深入理解腐烂等级和径级对倒木物理化学性质的影响, 该研究以典型阔叶红松林的建群种——红松(Pinus koraiensis)的倒木为研究对象, 将其每个腐烂等级(I-V)下的倒木分为4个径级(径级i ≤ 10.0 cm、径级ii 10.1-30.0 cm、径级iii 30.1-50.0 cm、径级iv >50.0 cm), 研究了不同腐烂等级、径级及两者交互作用对倒木心材和边材物理化学性质的影响。结果表明: 心材和边材具有相似的变化规律。倒木心材和边材含水率随着腐烂等级增加而增加, 而木材密度随腐烂等级和径级的增加均呈下降趋势; 边材C含量以及心材和边材的氮(N)、磷(P)含量随腐烂等级增加呈上升趋势, 心材N、P含量随径级增加呈先增加后减少的趋势; 纤维素含量随腐烂等级增加呈下降趋势, 而木质素含量呈上升趋势, 纤维素和木质素含量随径级增加没有明显变化规律。倒木含水率与C、N、P、木质素含量(除心材P含量)显著正相关, 与纤维素含量显著负相关; 木材密度与C、N、P、木质素含量显著负相关, 与纤维素含量显著正相关。由此可见, 倒木物理化学性质受不同腐烂等级和径级的影响有各自的变化规律, 且倒木的物理性质(含水率和木材密度)是影响化学含量变化的重要因素。  相似文献   

2.
《植物生态学报》2016,40(12):1276
AimsLog is an important component for most of forest ecosystems. It plays crucial roles in maintaining soil fertility, sustaining biodiversity and cycling of carbon (C) and nutrient. However, physico-chemical properties of logs vary with decay classes and diameter classes. Our objective was to study effects of decay classes and diameter classes on physico-chemical properties of logs in a typical mixed broadleaved-Korean pine forest in northern China.MethodsIn this study, logs of Pinus koraiensis were chosen as it was the constructive species in the typical mixed broadleaved-Korean pine forest. Logs of P. koraiensis at each decay classes (I-V) were divided into four diameter classes, including diameter class i ≤ 10.0 cm, diameter class ii: 10.1-30.0 cm, diameter class iii: 30.1-50.0 cm, and diameter class iv > 50.0 cm. Then, we explored effects of different decay classes, diameter classes and their interactions on the physico-chemical properties of logs for both the heartwood and sapwood.Important findings The results showed that the physico-chemical properties of heartwood and sapwood generally exhibited similar variations. Their moisture content both increased with an increasing decay class, whereas wood density both decreased with an increased decay class and diameter class. The carbon concentrations of the sapwood showed a trend of gradual increasing during decomposition, and there was an accumulation in nitrogen (N) and phosphorus (P) concentrations of the heartwood and sapwood with an increased decay class, simultaneously. Only N and P concentrations of the heartwood increased and then decreased with an increasing diameter class. The cellulose content decreased with an increasing decay class. In contrast to the cellulose, the lignin content increased with an increased decay class. However, cellulose and lignin contents exhibited no distinct trend among diameter classes. The moisture content of logs had a significant positive correlation with C, N, P concentrations and lignin content (except P concentrations of the heartwood), but had a significant negative correlation with the cellulose content (p< 0.05). The wood density was negatively correlated with C, N, P concentrations and the lignin content, but it was positively correlated with the cellulose content (p< 0.05). Therefore, physico-chemical properties of logs had unique patterns along both decay classes and diameter classes, and the physical properties of logs (the moisture content and wood density) were important factor affecting the variations of their chemical contents.  相似文献   

3.
Decomposition of oak Quercus spp. logs (25 35 cm diameter, 3 m long) was compared among log substrates in Oregon, Minnesota. Kansas and North Carolina during the first five years on the ground. Decomposition of whole logs (weighted by substrate) averaged 0.069 yr-1 (±0.16 SD). but followed a 2-exponential model (k = 0.12 yr-1 year 1 and k = 0.06 yr -1 years 2 5), reflecting qualitative differences among log substrates (outer and inner bark, sapwood and heartwood). Rapid loss from bark substrates contributed to the initial rapid decay rate. Sapwood decay rate averaged 0.15 yr-1 and dominated the second log decay rate. Heartwood lost only 6% mass during the first five years, for an overall decay rate of 0.012 yr-1 that likely will represent a longer-term third exponential decay rate.
Carbon loss amounted to ca 5 kg yr-1 per 170 kg log. Nutrient concentrations generally declined during the first five years, but nitrogen, sulfur, and sodium accumulated in sapwood and heartwood during this period. Sulfur content increased in all substrates and doubled in whole logs during this 5-yr period. Complex patterns of nutrient content suggest patterns of microbial colonization and nutrient utilization. Polynomial models were developed to describe rates of carbon and nutrient flux in log substrates.  相似文献   

4.
Eastern redcedar is widespread in the US and produces significant amount of biomass. Open-grown trees invade abandoned fields and compete with valuable forage species in pastures and rangelands. Value-added product development from redcedar is vital for management of eastern redcedar. Cedarwood oil is a valuable component which can be used for further value-added product development. This study examined the effect of age on the distribution of oil in redcedar tree segments. Trunks of eastern redcedar (Juniperus virginiana L.) trees at different stages of growth (26-63 years old) were divided into three sections (top, center and lower). Each section was fractionated separately into bark, heartwood and sapwood segments. Heartwood and sapwood samples from each tree section were analyzed for oil content and composition. A hydrodistillation method was used for oil extraction. Volatile components of tree segments were examined by using a Gas Chromatograph-headspace analysis technique. The heartwood of eastern redcedar contained significantly higher oil than sapwood. Older trees had more oil in the heartwood than younger trees. Both redcedar bark and leaves contained significantly lower oil content than the cedarwood. There were also significant differences in the oil composition of bark, leaves and wood fractions. Cedarwood oil extraction may benefit from prior separation of tree segments prior to oil extraction. However, the economic feasibility of separation prior to an extraction process needs to be further studied. Required extra capital investment and operating costs need to be examined, as well as whether sapwood is worth processing.  相似文献   

5.
为探究漓江流域岩溶区檵木群落不同恢复阶段凋落物的分解情况,运用凋落物袋法研究其凋落物分解初期动态。结果表明:经过1a的分解,檵木群落凋落物失重大小顺序为:灌木阶段乔灌阶段乔林阶段。檵木群落灌木阶段、乔灌阶段和乔林阶段凋落物分解50%所需的时间分别为1.28a、1.38a、1.41a,分解95%所需的时间分别为5.54a、5.97a和6.09a。经过1a的分解,凋落物养分动态变化为:灌木阶段和乔灌阶段C含量总体上升,乔林阶段C含量总体下降;3个恢复阶段N和纤维素含量总体上升;灌木阶段和乔林阶段P含量总体下降,乔灌阶段P含量总体上升;灌木阶段木质素含量总体上升,而乔灌阶段和乔林阶段木质素含量总体下降。相关分析表明,灌木阶段凋落物分解速率分别与C,N,P,C/P,N/P之间呈显著或极显著相关性,乔灌阶段凋落物分解速率与N和木质素/N之间呈显著或极显著相关性,乔林阶段凋落物分解速率分别与N,纤维素、C/N和木质素/N之间呈显著或极显著相关性。  相似文献   

6.
锐齿栎林非同化器官营养元素含量的分布   总被引:6,自引:2,他引:4  
锐齿栎林非同化器官营养元素含量的大小为,N:皮>枝>根>边材>心材,P:根>枝>皮>边材>心材,K:枝>皮>根>边材>心材,Ca:皮>枝>根>心材>边材,Mg:根>皮>枝>边材>心材。不同枝径和冠层枝营养元素含量存在一定差异。干皮及干木质部营养元素含量与盘高度呈显著的正相关或正相关,随圆盘由基部到稍部高度的增加均呈增加的趋势。干营养元素含量为干皮>边材>心材,三者呈极显蓍的正相关或显著的正相关。随林木根径和根系在运动场支中的增加,极系营养元素含量均呈了低的趋势。69年生个体生物量和营养元素积累量分别为1235.782和14.4977kg,其中N、P、K、Ca、Mg的积累量分别占营养元素积累量的20.2%、8.5%、20.4%、53.0%和2.9%;根、干、皮、枝和叶的生物量分别占生物总量的17.05%、49.59%、9.18%、24.30%和0.86%,营养元素积累量分别占总量的14.93%、22.65%、21.19%、36.97%、4.25%。  相似文献   

7.
Litter decay rates are often correlated with the initial lignin:N or lignin:cellulose content of litter, suggesting that interactions between lignin and more labile compounds are important controls over litter decomposition. The chemical composition of lignin may influence these interactions, if lignin physically or chemically protects labile components from microbial attack. We tested the effect of lignin chemical composition on litter decay in the field during a year-long litterbag study using the model system Arabidopsis thaliana. Three Arabidopsis plant types were used, including one with high amounts of guaiacyl-type lignin, one with high aldehyde- and p-hydroxyphenyl-type lignin, and a wild type control with high syringyl-type lignin. The high aldehyde litter lost significantly more mass than the other plant types, due to greater losses of cellulose, hemicellulose, and N. Aldehyde-rich lignins and p-hydroxyphenyl-type lignins have low levels of cross-linking between lignins and polysaccharides, supporting the hypothesis that chemical protection of labile polysaccharides and N is a mechanism by which lignin controls total litter decay rates. 2D NMR of litters showed that lignin losses were associated with the ratio of guaiacyl-to-p-hydroxyphenyl units in lignin, because these units polymerize to form different amounts of labile- and recalcitrant-linkages within the lignin polymer. Different controls over lignin decay and polysaccharide and N decay may explain why lignin:N and lignin:cellulose ratios can be better predictors of decay rates than lignin content alone.  相似文献   

8.
When lodgepole pines (Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson) that are killed by the mountain pine beetle (Dendroctonus ponderosae) and its fungal associates are not harvested, fungal decay can affect wood and fibre properties. Ophiostomatoids stain sapwood but do not affect the structural properties of wood. In contrast, white or brown decay basidiomycetes degrade wood. We isolated both staining and decay fungi from 300 lodgepole pine trees killed by mountain pine beetle at green, red, and grey stages at 10 sites across British Columbia. We retained 224 basidiomycete isolates that we classified into 34 species using morphological and physiological characteristics and rDNA large subunit sequences. The number of basidiomycete species varied from 4 to 14 species per site. We assessed the ability of these fungi to degrade both pine sapwood and heartwood using the soil jar decay test. The highest wood mass losses for both sapwood and heartwood were measured for the brown rot species Fomitopsis pinicola and the white rot Metulodontia and Ganoderma species. The sap rot species Trichaptum abietinum was more damaging for sapwood than for heartwood. A number of species caused more than 50% wood mass losses after 12 weeks at room temperature, suggesting that beetle-killed trees can rapidly lose market value due to degradation of wood structural components.  相似文献   

9.
The susceptibility of Scots pine (Pinus sylvestris L.) sap- and heartwood against the wood decaying brown-rot fungus (Coniophora puteana) was investigated after long-term forest fertilization at three different sites in central Finland. Different wood properties: wood extractives, wood chemistry, and wood anatomy were used to explain sap- and heartwood decay. Scots pine sapwood was more susceptible to decay than its heartwood. In one site, sapwood seemed to be more resistant to wood decay after forest fertilization whereas the susceptibility of heartwood increased. Significant changes in the sapwood chemistry were found between treatment and sites, however, no relationship between wood chemistry and wood decay was observed in the factor analysis. The results of this study show that there was an inconsistent relationship between decay susceptibility and fertilization and the measured physical and chemical attributes of the wood were not consistently correlated with the decay rate.  相似文献   

10.
基于黑龙江省林口林业局、东京城林业局和东北林业大学帽儿山实验林场的35株人工长白落叶松的解析样木数据,构建长白落叶松的边材、心材和树皮密度的Beta回归模型,采用赤池信息准则、决定系数、平均绝对偏差、均方根误差和似然比检验对模型的拟合优度进行比较评价,进而选取边材、心材和树皮密度的最优模型,最后采用刀切法对选择出的最优模型进行检验,评价模型预测能力。结果表明: 边材、心材和树皮密度的最优模型的自变量不完全相同,其中,边材密度与树木年龄、树高、相对高度和相对高度的平方关系较好,而心材密度最优模型的自变量为年生长量、相对高度和相对高度的平方,树皮密度最优模型的自变量为树木年龄、年生长量、相对高度和相对高度的平方。对最优模型分析可知,从树干基部到树梢,边材密度逐渐减小,心材密度先减小后增加,树皮密度先增加后减小。本研究所建立的Beta回归模型可以预估该研究区域的人工林内长白落叶松的边材、心材和树皮任意位置的木材密度,为树干平均密度和生物量的研究奠定基础。  相似文献   

11.
The standing dead phase is an important stage in the decomposition of emergent vegetation in marsh wetlands, yet few studies have examined how intrinsic litter traits constrain rates of standing litter decomposition or fungal colonization across plant tissue types or species. To address broad constraints on the decomposition of standing dead litter, we conducted a systematic survey of emergent standing dead decomposition studies that measured decay rates and/or fungal biomass, and litter % lignin, carbon:nitrogen (C:N) and/or carbon:phosphorus (C:P). Across 52 datasets, litter of low C:N and C:P ratios exhibited increased decomposition rates (r = −0.737 and −0.645, respectively), whereas % lignin was not significantly correlated with decomposition rates (r = 0.149). Mixed-effects models for litter decomposition rates indicated significant effects of litter molar C:N and C:N + lignin as an additive model, with the former providing marginally better support. Litter % lignin, however, was strongly negatively correlated with fungal biomass (r = −0.669), indicating greater fungal colonization of low-lignin litter, and not correlated with C:N (r = −0.337) and C:P (r = −0.456) ratios. The best-supported model predicting fungal biomass was litter molar C:N, with the C:N + lignin additive model also showing significant effects. Fungal carbon-use efficiency (CUE) also had a strong negative correlation with % lignin (r = −0.604), molar C:N (r = −0.323) and C:P (r = −0.632) across datasets. Our study demonstrates the constraining effects that litter stoichiometry and % lignin elicit on decomposition of standing dead litter and fungal colonization, respectively. These findings improve our understanding of biogeochemical cycling and prediction of the fates of C and nutrients in wetlands.  相似文献   

12.
1. Ecological stoichiometry theory was applied to investigate how a consumer contends with an extreme elemental mismatch between its food and its body via symbiotic facilitation. 2. The beetle Dendroctonus brevicomis LeConte develops in bark, a substrate extremely low in nitrogen (N) and phosphorus (P). Its survival there depends on interactions with mutualist and antagonist fungi. 3. This study found that mutualists transfer N and P from sapwood and phloem into bark, where beetles feed, whereas the antagonist moves these elements only to phloem, resulting in starvation of the insect. However, even with mutualists, N and P concentrations remained low in bark, resulting in low N and extremely low P concentrations in the beetle. 4. The N:P ratios found in D. brevicomis larvae were the highest thus far reported for beetles and among the highest for insects and invertebrates. This suggests that the beetle has evolved additional, nutrient‐sparing adaptations.  相似文献   

13.
Summary The activities of two key enzymes in flavonoid biosynthesis, phenylalanine ammonia-lyase (PAL, E.C. 4.3.1.5) and chalcone synthase (CHS, E.C. 2.3.1.74) were determined in the trunkwood of Robinia pseudoacacia L. The trees under investigation were cut at different times of the year (September, November, January and April). At all times PAL is active, both in the youngest wood layer (the outermost growth ring) and at the sapwood heartwood boundary. On the other hand, CHS is active exclusively in the vicinity of the heartwood boundary. The results indicate that PAL is involved both in the formation of lignin (outermost annual ring), and in flavonoid biosynthesis (heartwood boundary). Highest activity of both PAL and CHS could be measured at the sapwood heartwood boundary in the tree felled in November, indicating that heartwood formation was occurring mainly at that time. The flavonoids accumulated in the heartwood are obviously formed in situ and seem to be transported only to a minor extent — if at all — via the phloem and the ray cells to the heartwood.  相似文献   

14.
Nitrogen, phosphorus, potassium, calcium, and magnesium concentrations in woody tissue are poorly documented, but are necessary for understanding whole-tree nutrient use and storage. Here, we report how wood macronutrient concentrations vary radially and along the length of a tree for 10 tropical tree species in Sabah, Malaysia. Bark nutrient concentrations were consistently high: 2.9–13.7 times greater than heartwood depending on the nutrient. In contrast, within the wood both the radial (sapwood vs. heartwood) and vertical (trunk bottom vs. trunk middle) variation was modest. Higher concentrations in sapwood relative to heartwood provide empirical support for wood nutrient resorption during sapwood senescence. Dipterocarp species showed resorption rates of 25.3 ± 7.1% (nitrogen), 62.7 ± 11.9% (phosphorus), and 56.2 ± 12.5% (potassium), respectively, while non-dipterocarp species showed no evidence of nutrient resorption in wood. This suggests that while dipterocarps have lower wood nutrient concentrations, this family is able to compensate for this by using wood nutrient resorption as an efficient nutrient conservation mechanism. In contrast to other nutrients, calcium and magnesium tended to accumulate in heartwood. Wood density (WD) showed little vertical variation along the trunk. Across the species (WD range of 0.33 to 0.94 mg/cm3), WD was negatively correlated with wood P and K concentration and positively correlated with wood Ca concentration. As our study showed exceptionally high nutrient concentrations in the bark, debarking and leaving the bark of the harvested trees on site during logging operations could substantially contribute to maintaining nutrients within forest ecosystems.  相似文献   

15.
Aims Carbon (C) and nitrogen (N) stoichiometry contributes to understanding elemental compositions and coupled biogeochemical cycles in ecosystems. However, we know little about the temporal patterns of C:N stoichiometry during forest development. The goal of this study is to explore the temporal patterns of intraspecific and ecosystem components' variations in C:N stoichiometry and the scaling relationships between C and N at different successional stages.Methods Along forest development in a natural temperate forest, northeastern China, four age gradients were categorized into ca. 10-, 30-, 70- and 200-year old, respectively, and three 20 m × 20 m plots were set up for each age class. Leaves, branches, fine roots and fresh litter of seven dominant species as well as mineral soil at depth of 0–10 cm were sampled. A Universal CHN Elemental Analyzer was used to determine the C and N concentrations in all samples.Important findings Intraspecific leaf C, N and C:N ratios remained stable along forest development regardless of tree species; while C, N concentrations and C:N ratios changed significantly either in branches or in fine roots, and they varied with tree species except Populus davidiana (P < 0.05). For ecosystem components, we discovered that leaf C:N ratios remained stable when stand age was below ca. 70 years and dominant tree species were light-demanding pioneers such as Betula platyphylla and Populus davidiana, while increased significantly at the age of ca. 200 years with Pinus koraiensis as the dominant species. C:N ratios in branches and fresh litter did not changed significantly along forest development stages. C concentrations scaled isometrically with respect to N concentrations in mineral soil but not in other ecosystem components. Our results indicate that, leaf has a higher intraspecific C:N stoichiometric stability compared to branch and fine root, whereas for ecosystem components, shifts in species composition mainly affect C:N ratios in leaves rather than other components. This study also demonstrated that C and N remain coupled in mineral soils but not in plant organs or fresh litter during forest development.  相似文献   

16.
This study was carried out to evaluate the effect of N, P, and K on the growth of Caesalpinia echinata plants and on the anatomical and chemical characteristics of their stems. Eight-month-old plants were grown in polyethylene pots of 8 L containing soil. The pots were arranged in randomized blocks where they received N, P, and K in isolated form, and NPK combined in 10:10:10 and 04:14:08 ratios. The applications were repeated at intervals of 90 days for 450 days, between January 2008 and April 2009. The nitrogen fertilization (N) and in the form NPK 04:14:08 provided greater stem growth and leaf area, but with lower values of Dickson quality index, which suggests lower survival potential under field conditions. Fertilizations do not influence the insoluble lignin concentration and the components of cellulose and hemicelluloses of the secondary xylem of the stem. In the stem bark, however, the levels of xylose, glucose, and insoluble lignin were higher in P and K when compared to N and the NPK forms. Nevertheless, the levels of xylose and insoluble lignin in all the treatments were lower than those in the control group. Concerning anatomical characteristics, there was higher diameter of the vessel element and reduced length of its cells for the NPK combination. All the fertilizing formulas reduced fiber wall thickness of the secondary xylem compared to control. The results suggest phosphate fertilization as the most recommended for growing C. echinata plants with increased chances of survival under field conditions.  相似文献   

17.
The bark, branch timber, sapwood and heartwood extractives of Calophyllum tomentosum contain friedelin, friedelan-3β-ol, betulinic acid, taraxero  相似文献   

18.
The litter mass loss, concentration and mass of some major nutrient elements, degradation of lignin and cellulose in decomposing Quercus serrata Murray leaf litter were monitored for 3 years using the litterbag method. The mobility of elements during the course of the study was in the order of: K > P > C > Mg > Ca > N. Three patterns of nutrient dynamics were observed: (i) concentration increased while mass decreased (N, Mg and Ca); (ii) concentration and nutrient mass decreased (K and C); and (iii) both concentration and mass had fluctuated (P). The C to element ratio tended to increase as the element was released, and decreased as the element was retained. Nitrogen mobility in relation to carbon was characterized by three phases: (i) initial release; (ii) accumulation and (iii) final release. The decay rate (k) calculated from 0–6 months period was overestimated for an average annual rate while those of 0–36 months fit the negative single exponential model (Adj. r2 = 0.99) better than shorter periods. For lignin, the concentration had increased then decreased but tended to stabilize after 1 year while the lignin mass had continuously decreased throughout the study period. During the first 9 months, both the concentrations and mass of cellulose had fluctuated but declined thereafter. The amounts of N had initially increased but declined after 1 year; P had fluctuated while K, Ca, Mg and C had decreased throughout the study. N and C/N ratio exerted strong influence on mass loss during the first24 months but the influence of lignin emerged after 24 months.  相似文献   

19.
为探索植物叶片氮(N)、磷(P)、碳(C)生态化学计量特征随植物生长发育的变化规律,在普洱季风常绿阔叶林中,选取6种优势植物种(红锥(Castanopsis hystrix)、短刺锥(Castanopsis echidnocarpa)、泥柯(Lithocarpus fenestratus)、截果柯(Lithocarpus truncatus)、西南木荷(Schima wallichii)、茶梨(Anneslea fragrans))采集叶片,分析其N、P、C含量及化学计量比随植物生长发育的变化。结果显示:6种植物在不同生长阶段的N含量变化范围为7.90–17.72 mg·g–1,P为0.34–1.39 mg·g–1,C为458.48–516.87 mg·g–1,C:N为28.04–65.70,N:P为11.41–63.50,C:P为355.23–1 878.17,且不同生长阶段6种植物及总体叶片N、P、C含量及其化学计量比变化趋势各异。在变异系数上,N:P比整体变异最大,为36.46%(变化范围19.19%–91.65%),其次为C:P,为34.80%(变化范围15.99%–91.60%),C的整体变异最小,为3.12%(变化范围1.61%–5.89%)。变异来源分析结果显示,N含量、C含量、C:N、N:P及C:P均主要受植物生长阶段的影响,而P含量主要受物种与生长阶段的交互作用影响。  相似文献   

20.
Two potential biofuel resources, Douglas-fir and Loblolly pine bark, were subjected to extensive chemical and compositional analysis. The barks were initially extracted with dichloromethane, and the resulting extracted compounds were characterized by gas chromatography coupled with mass spectrometric analysis. Characterization of the major bark biocomponents indicated that Douglas-fir and Loblolly pine bark contained 22.5 and 13.2 % tannins, 44.2 and 43.5 % lignin, 16.5 and 23.1 % cellulose, and 7.6 and 14.1 % hemicellulose, respectively. Of particular interest is the high content of tannins and lignin, which make these barks excellent potential precursors for bio-oils and/or other value-added chemicals. 13C nuclear magnetic resonance (NMR) was used to characterize the chemical structure of the lignin and tannins. These samples were also analyzed by 31P NMR after phosphitylation of the hydroxyl groups in lignin and tannins. The NMR spectral data indicated that the lignin in both barks contained p-hydroxyphenyl (h) and guaiacyl (g) of lignin monomers with an h/g ratio of 10:90 and 22:78 for Douglas-fir and Loblolly pine bark, respectively. Gel permeation chromatography was used to analyze the molecular weight distributions of extracted tannins, isolated cellulose, and ball-milled lignin. The pyrolysis of Douglas-fir and pine bark at 500°C in a tubular reactor generated 48.2 and 45.2 % of total oil, of which the light oil contents are 14.1 and 20.7 % and heavy oil are 34.1 and 24.4 %. Similarly, fast pyrolysis at 375°C yielded 56.1 and 49.8 % of total oil for Douglas-fir and pine bark, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号