首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The alkaliphilic bacterium, Bacillus halodurans S7, produces an alkaline active xylanase (EC 3.2.1.8), which differs from many other xylanases in being operationally stable under alkaline conditions as well as at elevated temperature. Compared to non-alkaline active xylanases, this enzyme has a high percent composition of acidic amino acids which results in high ratio of negatively to positively charged residues. A positive correlation was observed between the charge ratio and the pH optima of xylanases. The recombinant xylanase was crystallized using a hanging drop diffusion method. The crystals belong to the space group P212121 and the structure was determined at a resolution of 2.1 Å. The enzyme has the common eight-fold TIM-barrel structure of family 10 xylanases; however, unlike non-alkaline active xylanases, it has a highly negatively charged surface and a deeper active site cleft. Mutational analysis of non-conserved amino acids which are close to the acid/base residue has shown that Val169, Ile170 and Asp171 are important to hydrolyze xylan at high pH. Unlike the wild type xylanase which has optimum pH at 9–9.5, the triple mutant xylanase (V169A, I170F and D171N), which was constructed using sequence information of alkaline sensitive xylanses was optimally active around pH 7. Compared to non-alkaline active xylanases, the alkaline active xylanases have highly acidic surfaces and fewer solvent exposed alkali labile residues. Based on these results obtained from sequence, structural and mutational analysis, the possible mechanisms of high pH stability and catalysis are discussed. This will provide useful information to understand the mechanism of high pH adaptation and engineering of enzymes that can be operationally stable at high pH.  相似文献   

2.
A new xylanase gene (xynA) from the marine microorganism Zunongwangia profunda was identified to encode 374 amino acid residues. Its product (XynA) showed the highest identity (42.78 %) with a xylanase from Bacillus sp. SN5 among the characterized xylanases. XynA exhibited the highest activity at pH 6.5 and 30 °C, retaining 23 and 38 % of the optimal activity at 0 and 5 °C, respectively. XynA was not only cold active, but also halophilic, and both its activity and thermostability could be significantly increased by NaCl, showing the highest activity (180 % of the activity) at 3 M NaCl and retaining nearly 100 % activity at 5 M NaCl, compared to the absence of NaCl. In the presence of 3 M NaCl, the k cat/K m value of XynA exhibited a 3.41-fold increase for beechwood xylan compared to no added NaCl, and the residual activity of XynA increased from 23 % (no added NaCl) to 58 % after 1 h incubation at 45 °C. This may be the first report concerning a cold-adapted xylanase from a non-halophilic species that displays the highest activity at a NaCl concentration range from 3 to 5 M. The features of cold activity and salt tolerance suggest the potential application of XynA in the food industry and bioethanol production from marine seaweeds.  相似文献   

3.
The sequence of gene xynB encoding xylanase B from Paenibacillus sp. BP-23 was determined. It revealed an open reading frame of 999 nucleotides encoding a protein of 38,561 Da. The deduced amino acid sequence of xylanase B shows that the N-terminal region of the enzyme lacks the features of a signal peptide. When the xylan-degrading system of Paenibacillus sp. BP-23 was analysed in zymograms, it revealed that xylanase B was not secreted to the extracellular medium but instead remained cell-associated, even in late stationary-phase cultures. When xynB was expressed in a Bacillus subtilis secreting host, it also remained associated with the cells. Sequence homology analysis showed that xylanase B from Paenibacillus sp. BP-23 belongs to family 10 glycosyl hydrolases, exhibiting a distinctive high homology to six xylanases of this family. The homologous enzymes were also found to be devoid of a signal peptide and seem to constitute, together with xylanase B, a separate group of enzymes. They all have two conserved amino acid regions not found in the other family 10 xylanases, and cluster in a separate group after dendrogram analysis. We propose that these enzymes constitute a new subclass of family 10 xylanases, that are cell-associated, and that hydrolyse the xylooligosaccharides resulting from extracellular xylan hydrolysis. Xylanase B shows similar specific activity on aryl-xylosides and xylans. This can be correlated to some, not yet identified, trait of catalytic activity of the enzyme on plant xylan.  相似文献   

4.
《Gene》1997,187(2):247-251
The cDNA for xylanase B from Penicillium purpurogenum was cloned and sequenced. This DNA encodes a protein of 208 amino acids which is expected to yield a protein of 183 residues upon processing of the N terminus. The sequence of the predicted protein is very similar to that of 40 other xylanase domains which belong to family G of cellulases/xylanases (73–21% identity).  相似文献   

5.
Aeromonas caviae W-61 produces multiple extracellular xylanases, the xylanases 1, 2, 3, 4, and 5 [Nguyen, V. D. et al., Biosci. Biotechnol. Biochem., 56, 1708-1712 (1993)]. Here we purified and characterized high-molecular-weight xylanases, the xylanases 4 and 5 from the culture fluids of the bacterium. The purified xylanases 4 and 5, which had molecular masses of 120 and 140 kDa, respectively, were endo-beta-1,4-xylanases with similar enzymatic properties except for trans-xylosidase activity. The xylanase 4 showed a prominent transxylosidase activity when xylotriose and xylotetraose were used as the substrates, while the xylanase 5 had little transxylosidase activity under the same conditions. Protein sequencing indicated that the xylanase 4 was a C-terminally-truncated xylanase 5, suggesting that the C-terminal truncation of the xylanase 5 may endow the enzyme with transxylosidase activity.  相似文献   

6.
Two xylanases from the rumen anaerobic bacterium Prevotella ruminicola were found to possess highly unusual structures in which family 10 catalytic domains are interrupted by unrelated sequences. XynC from P. ruminicola B14 carries a 160 amino-acid insertion, while a P. ruminicola D31d xylanase carries an unrelated region of 280 amino acids, containing an imperfect 130 amino-acid duplication. Both regions of family 10 similarity were shown to be essential for activity of the D31d enzyme.  相似文献   

7.
The present work reports for the first time the purification and characterisation of two extremely halotolerant endo-xylanases from a novel halophilic bacterium, strain CL8. Purification of the two xylanases, Xyl 1 and 2, was achieved by anion exchange and hydrophobic interaction chromatography. The enzymes had relative molecular masses of 43 kDa and 62 kDa and pI of 5.0 and 3.4 respectively. Stimulation of activity by Ca2+, Mn2+, Mg2+, Ba2+, Li2+, NaN3 and isopropanol was observed. The Km and Vmax values determined for Xyl 1 with 4-O-methyl-d-glucuronoxylan are 5 mg/ml and 125,000 nkat/mg respectively. The corresponding values for Xyl 2 were 1 mg/ml and 143,000 nkat/mg protein. Xylobiose and xylotriose were the major end products for both endoxylanases. The xylanases were stable at pH 4–11 showing pH optima around pH 6. Xyl 1 shows maximal activity at 60°C, Xyl 2 at 65°C (at 4 M NaCl). The xylanases showed high temperature stability with half-lives at 60°C of 97 min and 192 min respectively. Both xylanases showed optimal activity at 1 M NaCl, but substantial activity remained for both enzymes at 5 M NaCl.Communicated by W.D. Grant  相似文献   

8.
A Blanco  T Vidal  J F Colom    F I Pastor 《Applied microbiology》1995,61(12):4468-4470
Xylanase A from the recently isolated Bacillus sp. strain BP-23 was purified to homogeneity. The enzyme shows a molecular mass of 32 kDa and an isoelectric point of 9.3. Optimum temperature and pH for xylanase activity were 50 degrees C and 5.5 respectively. Xylanase A was completely inhibited by N-bromosuccinimide. The main products of birchwood xylan hydrolysis were xylotetraose and xylobiose. The enzyme was shown to facilitate chemical bleaching of pulp, generating savings of 38% in terms of chlorine dioxide consumption. The amino-terminal sequence of xylanase A has a conserved sequence of five amino acids found in xylanases from family F.  相似文献   

9.
An extracellular xylanase (1,4-beta-D-xylan xylanohydrolase, EC 3.2.1.8, endo 1,4-beta-xylanase) was found to be the major protein in the culture filtrate of Penicillium chrysogenum when grown on 1% xylan. In contrast to other microorganism no xylanase multiplicity was found in P. chrysogenum under the conditions used. This enzyme was purified to homogeneity by high performance anion-exchange and size-exclusion chromatography. It had an M(r) of 35,000 as estimated by SDS-PAGE and was shown to be active as a monomer. No glycosylation of the protein could be detected neither by a sensitive glycostain nor by enzymatic deglycosylation studies. The enzyme hydrolyzed oat spelt and birchwood xylan randomly, yielding xylose and xylobiose as major end products. It had no cellulase, CMCase, beta-xylosidase or arabinogalactanase activity but acted on p-nitrophenylcellobioside. The pH and temperature optima for its activity were pH 6.0 and 40 degrees C, respectively. Eight peptides obtained after endoproteinase LysC digestion of xylanase have been sequenced, six of them showed considerable amino acid similarity to glucanases and high M(r)/acidic xylanases from different bacteria, yeasts and fungi.  相似文献   

10.
The aim of this study was to identify a novel 1,4-beta-xylanase gene from the mixed genome DNA of human fecal bacteria without bacterial cultivation. Total DNA was isolated from a population of bacteria extracted from fecal microbiota. Using PCR, the gene fragments encoding 5 different family 10 xylanases (xyn10A, xyn10B, xyn10C, xyn10D, and xyn10E) were found. Amino acid sequences deduced from these genes were highly homologous with those of xylanases from anaerobic intestinal bacteria such as Bacteroides spp. and Prevotella spp. Self-organizing map (SOM) analysis revealed that xynA10 was classified into Bacteroidetes. To confirm that one of these genes encodes an active enzyme, a full-length xyn10A gene was obtained using nested primers specific to the internal fragments and random primers. The xyn10A gene encoding the xylanase Xyn10A consists of 1146 bp and encodes a protein of 382 amino acids and a molecular weight of 43,552. Xyn10A was a single module novel xylanase. Xyn10A was purified from a recombinant Escherichia coli strain and characterized. This enzyme was optimally active at 40 degrees C and stable up to 50 degrees C at pH 6.5 and over the pH range 4.0-11.0 at 25 degrees C. In addition, 2 ORFs (ORF1 and ORF2) were identified upstream of xyn10A. These results suggested that many unidentified xylanolytic bacteria exist in the human gut and may contribute to the breakdown of xylan which contains dietary fiber.  相似文献   

11.
目的:建立一种简便、快速的木聚糖酶分离和提取方法。方法:采用活性聚丙烯酰胺凝胶电泳和均质提取法相结合,分离纯化枯草芽孢杆菌(Bacillus subtilis)固体培养基发酵产物中的木聚糖酶,进一步用薄层色谱和高压液相色谱对木聚糖酶进行鉴定。结果:采用活性聚丙烯酰胺凝胶电泳和均质提取法相结合,从枯草芽孢杆菌(Bacillus subtilis)固体培养基发酵产物中分离得到了两种内切木聚糖酶,酶解桦木木聚糖的产要产物以木二糖和木三糖为主。结论:活性聚丙烯酰胺凝胶电泳和均质提取法相结合是一种新的分离纯化木聚糖酶的简便、有效方法。  相似文献   

12.
Lipid preparations from the cells of a moderately halophilic bacterium, Pseudomonas halosaccharolytica grown under the two extreme conditions of high temperature-high NaCl concentration and low temperature-low NaCl concentration showed distinctively different profiles in phospholipid and fatty acid composition. Cells grown at 40 degrees C in medium containing 3.5 M NaCl had high concentrations of saturated and C19 cyclopropanoic fatty acids (about 50 per cent of the total), whereas cells grown at 20 degrees C in medium containing 0.5 M NaCl had decreased concentrations of these fatty acids with increased concentrations of the corresponding unsaturated fatty acids. The phospholipid composition was also affected ty the culture conditions; cells grown at 40 degrees C in 3.5 M NaCl had large amounts of acidic phospholipids, whereas those grown at 20 degrees C in 0.5 M NaCl had small amounts. ESR studies on liposomes prepared from lipids of cells grown under the two conditions showed characteristic profiles for correlation times and order parameters of three spin labels of stearic acid derivatives similar to those of membranes of whole cells of this bacterium. ESR studies showed that the physical properties of the liposomes from the total extractable lipids and isolated phosphatidylglycerol from the cells were completely different from those of synthetic dioleoylphosphatidylglycerol. Liposomes of the lipids extracted from cells grown at 40 degrees C in 3.5 M NaCl showed change in rotational viscosity on altering the NaCl concentration to 0.5M, whereas liposomes of lipids extracted from cells grown at 20 degrees C in 0.5 M NaCl did not show change in rotational viscosity on increasing the NaCl concentration to 3.5 M.  相似文献   

13.
A multienzyme complex from newly isolated Paenibacillus sp. TW1 was purified from pellet-bound enzyme preparations by elution with 0.25% sucrose and 1.0% triethylamine (TEA), ultrafiltration and Sephacryl S-400 gel filtration chromatography. The purified multienzyme complex showed a single protein band on non-denaturing polyacrylamide gel electrophoresis (native-PAGE). The high molecular mass of the purified multienzyme complex was approximately 1,950 kDa. The complex consisted of xylanase and cellulase activities as the major and minor enzyme subunits, respectively. The complex appeared as at least 18 protein bands on sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and as 15 xylanases and 6 cellulases on zymograms. The purified multienzyme complex contained xylanase, α-L-arabinofuranosidase, carboxymethyl cellulase (CMCase), avicelase and cellobiohydrolase. The complex could effectively hydrolyze corn hulls, corncobs and sugarcane bagasse. These results indicate that the multienzyme complex that is produced by this bacterium is a large, novel xylanolytic-cellulolytic enzyme complex.  相似文献   

14.
Two genes, xynD and gluB, encoding a xylanase and an endo-beta-(1,3)-(1,4)-glucanase (lichenase) from Bacillus polymyxa have been cloned and expressed in Escherichia coli and Bacillus subtilis. A sequenced DNA fragment of 4,466 bp contains both genes, which are separated by 155 bp. The xynD and gluB genes encode proteins of 67.8 kDa (XYND) and 27 kDa (GLUB). Two peptides with molecular masses of 62 and 53 kDa appear in cell extracts of E. coli and culture supernatants of B. subtilis clones containing the xynD gene. Both peptides show xylanase activity in zymogram analysis. The XYND enzyme also shows alpha-L-arabinofuranosidase activity. The XYND peptide and the xylanase XYNZ from Clostridium thermocellum (O. Grépinet, M. C. Chebrou, and P. Béguin, J. Bacteriol. 170:4582-4588, 1988) show 64% homology in a stretch of about 280 amino acids.  相似文献   

15.
Although the amino acid homology in the catalytic domain of FXYN xylanase from Streptomyces olivaceoviridis E-86 and Cex xylanase from Cellulomonas fimi is only 50%, an active chimeric enzyme was obtained by replacing module 10 in FXYN with module 10 from Cex. In the family F/10 xylanases, module 10 is an important region as it includes an acid/base catalyst and a substrate binding residue. In FXYN, module 10 consists of 15 amino acid residues, while in Cex it consists of 14 amino acid residues. The Km and kcat values of the chimeric xylanase FCF-C10 for PNP-xylobioside (PNP-X2) were 10-fold less than those for FXYN. CD spectral data indicated that the structure of the chimeric enzyme was similar to that of FXYN. Based on the comparison of the amino acid sequences of FXYN and Cex in module 10, we constructed four mutants of FXYN. When D133 or S135 of FXYN was deleted, the kinetic properties were not changed from those of FXYN. By deletion of both D133 and S135, the Km value for PNP-X2 decreased from the 2.0 mM of FXYN to 0.6 mM and the kcat value decreased from the 20 s(-1) of FXYN to 8.7 s(-1). Insertion of Q140 into the doubly deleted mutant further reduced the Km value to 0.3 mM and the kcat value to 3.8 s(-1). These values are close to those for the chimeric enzyme FCF-C10. These results indicate that module 10 itself is able to accommodate changes in the sequence position of amino acids which are critical for enzyme function. Since changes of the spatial position of these amino acids would be expected to result in enzyme inactivation, module 10 must have some flexibility in its tertiary structure. The structure of module 10 itself also affects the substrate specificity of the enzyme.  相似文献   

16.
A genomic library of the Dictyoglomus sp. strain Rt46B.1 was constructed in the phage vector lambda ZapII and screened for xylanase activity. A plaque expressing xylanase activity, designated B6-77, was isolated and shown to contain a genomic insert of 5.3 kb. Subcloning revealed that the xylanase activity was restricted to a internal 1,507-bp PstI-HindIII fragment which was subsequently sequenced and shown to contain a single complete open reading frame coding for a single-domain xylanase, XynA, with a putative length of 352 amino acids. Homology comparisons show that XynA is related to the family F group of xylanases. The temperature and pH optima of the recombinant enzyme were determined to be 85 degrees C and pH 6.5, respectively. However, the enzyme was active across a broad pH range, with over 50% activity between pH 5.5 and 9.5. XynA was shown to be a true endo-acting xylanase, being capable of hydrolyzing xylan to xylotriose and xylobiose, but it could not hydrolyze xylobiose to monomeric xylose. XynA was also shown to hydrolyze xylan present in Pinus radiata kraft pulp, indicating that it may be of use as an aid in pulp bleaching. The equivalent xylanase gene was also isolated from the related bacterium Dictyoglomus thermophilum, and DNA sequencing showed these genes to be identical, which, together with the 16S small-subunit rRNA gene sequencing data, indicates that Rt46B.1 and D. thermophilum are very closely related.  相似文献   

17.
木聚糖是植物细胞壁的主要组分,它是木糖以β1 ,4 木糖苷键形成主链,乙酰基,阿拉伯糖基等为附链组成的复合多聚糖.木聚糖酶可以降解木聚糖主链,在木聚糖的生物降解中起着非常重要的作用[1 ] .根据木聚糖酶催化域(catalyticdomain ,CD)氨基酸序列的相似性,木聚糖酶可分为两个家  相似文献   

18.
Xylanase is the enzyme complex that is responsible for the degradation of xylan; however, novel xylanase producers remain to be explored in marine environment. In this study, a Streptomyces strain M11 which exhibited xylanase activity was isolated from marine sediment. The 16S rDNA sequence of M11 showed the highest identity (99 %) to that of Streptomyces viridochromogenes. The xylanase produced from M11 exhibited optimum activity at pH 6.0, and the optimum temperature was 70 °C. M11 xylanase activity was stable in the pH range of 6.0–9.0 and at 60 °C for 60 min. Xylanase activity was observed to be stable in the presence of up to 5 M NaCl. Antibiotic-resistant mutants of M11 were isolated, and among the various antibiotics tested, streptomycin showed the best effect on obtaining xylanase overproducer. Mutant M11-1(10) isolated from 10 μg/ml streptomycin-containing plate showed 14 % higher xylanase activities than that of the wild-type strain. An analysis of gene rpsL (encoding ribosomal protein S12) showed that rpsL from M11-1(10) contains a K88R mutation. This is the first report to show that marine-derived S. viridochromogenes strain can be used as a xylanase producer, and utilization of ribosome engineering for the improvement of xylanase production in Streptomyces was also first successfully demonstrated.  相似文献   

19.
An extracellular xylanase was purified to homogeneity from the culture filtrate of the thermophilic fungus, Humicola lanuginosa (Griffon and Maublanc) Bunce and its properties were studied. A fourfold purification and a yield of 8% were achieved. The molecular weight of the protein was found to be 22,500 based on electrophoretic mobility and 29,000 by gel filtration behavior. The protein is rich in acidic amino acids, glycine and tyrosine, and poor in sulfur-containing amino acids. The kinetic properties of the enzyme are similar to those of other fungal xylanases. The enzyme shows high affinity toward larchwood xylan (Km = 0.91 mg/ml) and hydrolyzes only xylan. The enzyme becomes inactivated when stored for more than 2 months at -20 degrees C in the dry state. Such an inactivation has not been reported so far for any xylanase. Using chromatographic techniques, one species of protein differing from the native protein in charge but enzymatically active was isolated in low yields. However, a large molecular-weight species of the protein devoid of enzyme activity was isolated in substantial quantities and further characterized. Based on ultracentrifugation and gel electrophoretic studies, it was concluded that this species may be an aggregate of the native protein and that such an aggregation might be taking place on storage in the dry state at -20 degrees C, leading to loss in activity.  相似文献   

20.
A cDNA (xynA), encoding xylanase A (XYLA), was isolated from a cDNA library, derived from mRNA extracted from the rumen anaerobic fungus, Neocallimastix patriciarum. Recombinant XYLA, purified from Escherichia coli harbouring xynA, had a M(r) of 53,000 and hydrolysed oat-spelt xylan to xylobiose and xylose. The enzyme did not hydrolyse any cellulosic substrates. The nucleotide sequence of xynA revealed a single open reading frame of 1821 bp coding for a protein of M(r) 66,192. The predicted primary structure of XYLA comprised an N-terminal signal peptide followed by a 225-amino-acid repeated sequence, which was separated from a tandem 40-residue C-terminal repeat by a threonine/proline linker sequence. The large N-terminal reiterated regions consisted of distinct catalytic domains which displayed similar substrate specificities to the full-length enzyme. The reiterated structure of XYLA suggests that the enzyme was derived from an ancestral gene which underwent two discrete duplications. Sequence comparison analysis revealed significant homology between XYLA and bacterial xylanases belonging to cellulase/xylanase family G. One of these homologous enzymes is derived from the rumen bacterium Ruminococcus flavefaciens. The homology observed between XYLA and a rumen prokaryote xylanase could be a consequence of the horizontal transfer of genes between rumen prokaryotes and lower eukaryotes, either when the organisms were resident in the rumen, or prior to their colonization of the ruminant. It should also be noted that Neocallimastix XYLA is the first example of a xylanase which consists of reiterated sequences. It remains to be established whether this is a common phenomenon in other rumen fungal plant cell wall hydrolases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号