共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
有机磷生物修复研究进展 总被引:6,自引:0,他引:6
目前,有机磷的生物修复还主要是微生物修复。但是植物修复更具优越性,因其花费更少、对环境更安全。然而植物对生长条件的要求相对较高,修复效率较低,应用还非常有限。本文综述了有机磷微生物修复和植物修复的研究进展,总结了已知的有机磷降解酶及其生物来源。结果表明,植物材料的筛选、土壤与OPs作用机理的研究、植物耐受和消除OPs的基因组学研究、植物-微生物联合降解体系的建立以及降解酶的植物根系分泌系统的利用是提高有机磷植物修复效率的重要途径。 相似文献
3.
化学农药的高毒性、生物积累性和扩散性极易对环境及人类健康造成危害,环境中化学农药的去除尤为重要。植物-微生物联合修复技术因其高效、环境友好和修复成本低等优点受到越来越多的关注,植物-微生物联合修复化学农药污染土壤是一种很有前景的方法。植物为根际和内生细菌提供养分,而细菌通过化学农药的降解和解毒来支持植物生长。本文综述了影响化学农药在植物体内吸收和转运的因素以及植物-微生物修复技术的原理,并讨论了植物与微生物在化学农药污染土壤修复中的协同效应,并对植物-微生物联合修复法在化学农药污染土壤修复中的应用前景进行了展望。 相似文献
4.
5.
6.
镉污染土壤的治理及植物修复 总被引:45,自引:0,他引:45
由于工业“三废”的排放,使农田遭受不同程度镉的污染,因而对人畜健康构成了威胁。本文对土壤镉的污染现状、治理途径及其原理、优缺点、可行性作了简要的回顾,对土壤镉污染植物修复技术类型、原理、特点以及基因工程等现代生物技术在镉污染植物修复技术中的应用前景作了进一步的展望,为实现对镉污染土壤进行有效的生态整治与安全高效益的利用提供了新的技术途径。 相似文献
7.
8.
土壤污染的生物修复技术研究进展 总被引:7,自引:0,他引:7
土壤污染是当今面临的一个重要环境问题。常规的土壤污染治理技术,如物理及化学治理技术,由于其技术要求高或经济成本昂贵,对土壤结构的扰动破坏严重,因而对其大规模的推广应用存在较大问题。而生物修复技术已被证明是一项非常有应用前景的新技术,成为土壤污染治理研究领域的一个热点,本文综述了近年来有机物及重金属土壤污染的生物修复机理和研究进展,并对其治理技术的最新研究动态、存在问题及发展趋势做了初步的讨论。 相似文献
9.
石油污染土壤的生物修复技术 总被引:48,自引:6,他引:48
1 前 言在石油生产、贮运、炼制加工及使用过程中 ,由于事故 ,不正常操作及检修等原因 ,都会有石油烃类的溢出和排放。例如 ,油田开发过程中的井喷事故 ;输油管线和贮油罐的泄漏事故 ;油槽车和油轮的泄漏事故 ;油井清蜡和油田地面设备检修 ;炼油和石油化工生产装置检修等。石油烃类大量溢出 ,应当尽可能予以回收 ,但有的情况下回收很困难 ,即使尽力回收 ,仍会残留一部分 ,对环境 (土壤、地面和地下水 )造成污染。其进入土壤后 ,会破坏土壤结构 ,分散土粒 ,使土壤的透水性降低。其富含的反应基能与无机氮、磷结合并限制硝化作用和脱磷酸作… 相似文献
10.
11.
海洋石油污染物的微生物降解与生物修复 总被引:28,自引:0,他引:28
石油是海洋环境的主要污染物 ,已经对海洋及近岸环境造成了严重的危害。微生物降解是海洋石油污染去除的主要途径。海洋石油污染物的微生物降解受石油组分与理化性质、环境条件以及微生物群落组成等多方面因素的制约 ,N和P营养的缺乏是海洋石油污染物生物降解的主要限制因子。在生物降解研究基础上发展起来的生物修复技术在海洋石油污染治理中发展潜力巨大 ,并且取得了一系列成果。介绍了海洋中石油污染物的来源、转化过程、降解机理、影响生物降解因素及生物修复技术等方面内容 ,强调了生物修复技术在治理海洋石油污染环境中的优势和重要性 ,指出目前生物修复技术存在的问题。 相似文献
12.
根分泌物在污染土壤生物修复中的作用 总被引:17,自引:2,他引:17
对根分泌物在植物根际微生态环境中 ,通过土壤 植物 微生物系统协同作用高效修复重金属和有机污染土壤的环境过程与机理进行了综述。根分泌物在重金属污染土壤植物修复中的作用主要表现在活化污染区重金属元素 ,使固定态转化为植物可吸收态 ,大大提高了重金属的植物有效性 ,通过植物的超积累作用 ,降低土壤中重金属污染物的含量 ;此外 ,根分泌物也可以和重金属形成稳定的螯合体 ,降低他们在土壤中的移动性 ,起到固定和钝化作用。对于有机污染物 ,根分泌物一方面为根际的微生物提供了丰富的营养和能源 ,使植物根际的微生物数量和代谢活力比非根际区高 ,增强了微生物对环境中的有机污染物的降解能力 ;另一方面植物根分泌到根际的酶系统可直接参与有机污染物降解的生化过程 ,提高降解效率。并对此领域今后研究工作的方向做了探讨 相似文献
13.
A chlorophenol-contaminated soil was tested for the biodegradability in a semi-pilot scale microcosm using indigenous microorganisms. More than 90% of 4-chlorophenol and 2,4,6-trichlorophenol, initially at 30 mg kg–1, were removed within 60 days and 30 mg pentachlorophenol kg–1 was completely degraded within 140 days. The chlorophenols were degraded more effectively under aerobic condition than under anaerobic condition. Soil moisture had a significant effect with the slowest degradation rate of chlorophenols at 25% in the range of 10–40% moisture content. At 25–40%, the rate of chlorophenol degradation was directly related to the soil moisture content, whereas at 10–25%, it was inversely related. Limited oxygen availability through soil agglomeration at 25% moisture content might decrease the degradation rate of chlorophenols. 相似文献
14.
微生物降解有机磷农药污染的研究进展 总被引:4,自引:0,他引:4
有机磷农药严重污染生态环境,微生物降解是治理有机磷农药污染的新技术,综述了降解有机磷农药污染的微生物种类、降解的机理、应用、存在的问题及今后研究方向。 相似文献
15.
Laboratory and field experiments were carried out for bioremediation of soils contaminated by fuel oil and motor oil. Bioventing was combined with the application of selected bacteria and dissolved nutrients. In the field experiments, soil gas was evacuated by air pumps from the permeable boreholes. The process was followed by both soil and gas analysis. Biodegradation of oil contamination and the microbial activity was measured by the oil and cell concentration in the soil. In 2 months, the oil content decreased considerably, and the cell number increased by one order of magnitude or more. The evacuated gas was tested for CO2, O2 and volatilized hydrocarbon content. The CO2 level proves the presence of biodegradation: a permanent high value about ten times higher than normal, could be measured for 2 months, followed by a slow decrease in the third month. Volatilized hydrocarbon content was the highest in the first 2 d. After a continuous decrease, it dropped under the threshold of measurability for the third month. Selective biodegradation of hydrocarbon mixtures (oily wastes) was investigated as well: gas Chromatographic oil analysis showed the changes in the oil composition. The appropriate microflora was working in an ideal commensalism, and as a result, all of the hydrocarbon components were degraded nearly to the same extent. 相似文献
16.
Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil 总被引:5,自引:0,他引:5
An effective chlorpyrifos-degrading bacterium (named strain YC-1) was isolated from the sludge of the wastewater treating system of an organophosphorus pesticides manufacturer. Based on the results of phenotypic features, phylogenetic similarity of 16S rRNA gene sequences and BIOLOG test, strain YC-1 was identified as the genus Stenotrophomonas. The isolate utilized chlorpyrifos as the sole source of carbon and phosphorus for its growth and hydrolyzed chlorpyrifos to 3,5,6-trichloro-2-pyridinol. Parathion, methyl parathion, and fenitrothion also could be degraded by strain YC-1 when provided as the sole source of carbon and phosphorus. The gene encoding the organophosphorus hydrolase was cloned using a PCR cloning strategy based on the known methyl parathion degrading (mpd) gene of Plesiomonas sp. M6. Sequence blast result indicated this gene has 99% similar to mpd. The inoculation of strain YC-1 (10(6) cells g(-1)) to soil treated with 100 mg kg(-1) chlorpyrifos resulted in a higher degradation rate than in noninoculated soils. Theses results highlight the potential of this bacterium to be used in the cleanup of contaminated pesticide waste in the environment. 相似文献
17.
Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil 总被引:2,自引:0,他引:2
Aims: The aim of this paper is to check the effect of salinity on the bioremediation process of petroleum hydrocarbons in the saline‐alkaline soil. Methods and Results: In this study, soil salinity was adjusted to different levels by water leaching method and the bioremediation process was conducted for 28 days. Soil pH increased after leaching and decreased during bioremediation process. At initial time, moderate salinity enhanced the biodegradation and addition of microbial consortium was not effective in enhancing degradation rate of petroleum hydrocarbons. At day of 28 days, higher degradation rate was found in treatments with more leaching times with a maximum value of 42·36%. Dehydrogenase activity increased with the progress of bioremediation and positive correlation was found between dehydrogenase activity and degradation rate of petroleum hydrocarbons. Denaturing gradient gel electrophoresis analysis result showed decreased microbial community diversity with increased salt content. Conclusions: The result suggested that salinity had great impact on bioremediation, and leaching and addition of inoculated consortium were effective in enhancing biodegradation of petroleum hydrocarbons in the saline‐alkaline soil. Significance and Impact of the Study: The result of this study is important for understanding the bioremediation process of petroleum in contaminated soil. New remediation method of petroleum contaminated soil can be developed based on this study. 相似文献
18.
Effects of Bacillus subtilis O9 biosurfactant on the bioremediation of crude oil-polluted soils 总被引:1,自引:0,他引:1
Cubitto MA Morán AC Commendatore M Chiarello MN Baldini MD Siñeriz F 《Biodegradation》2004,15(5):281-287
The application of a surfactant from Bacillus subtilis O9 (Bs) on the bioremediation of soils polluted with crude oil was assayed in soil microcosms under laboratory conditions. Three concentrations of biosurfactant were assayed (1.9, 19.5, and 39 mg kg(-1) soil). Microcosms without biosurfactant were prepared as controls. During the experiment, the crude oil-degrading bacterial population, the aliphatic and aromatic hydrocarbons were monitored in each microcosm. The results indicated that applying Bs did not negatively affect the hydrocarbon-degrading microbial population Concentrations of 19 and 19.5mg (Bs) per kilogram of soil stimulated the growth of the population involved in the crude oil degradation, and accelerated the biodegradation of the aliphatic hydrocarbons. However, none of the assayed Bs concentrations stimulated aromatic hydrocarbon degradation. 相似文献
19.
Demonstrations of remedial technologies are undertaken to show that the treatment process causes some level of contaminant reduction, and to follow important operating or process parameters during treatment. In projects utilizing biological processes, it is important to demonstrate that enhanced metabolic activity — the proposed treatment mechanism — actually is responsible for the contaminant reduction. Results from two field‐scale bioremediation projects are used to highlight the importance of remedial objectives or endpoints when designing proper controls and selecting appropriate analytical methods. The results are also used to illustrate some of the limitations of using the “total”; concentration of a mixture for evaluating the effectiveness of a technology. 相似文献