首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gompert Z  Buerkle CA 《Molecular ecology》2011,20(10):2111-2127
We developed a Bayesian genomic cline model to study the genetic architecture of adaptive divergence and reproductive isolation between hybridizing lineages. This model quantifies locus‐specific patterns of introgression with two cline parameters that describe the probability of locus‐specific ancestry as a function of genome‐wide admixture. ‘Outlier’ loci with extreme patterns of introgression relative to most of the genome can be identified. These loci are potentially associated with adaptive divergence or reproductive isolation. We simulated genetic data for admixed populations that included neutral introgression, as well as loci that were subject to directional, epistatic or underdominant selection, and analysed these data using the Bayesian genomic cline model. Under many demographic conditions, underdominance or directional selection had detectable and predictable effects on cline parameters, and ‘outlier’ loci were greatly enriched for genetic regions affected by selection. We also analysed previously published genetic data from two transects through a hybrid zone between Mus domesticus and M. musculus. We found considerable variation in rates of introgression across the genome and particularly low rates of introgression for two X‐linked markers. There were similarities and differences in patterns of introgression between the two transects, which likely reflects a combination of stochastic variability because of genetic drift and geographic variation in the genetic architecture of reproductive isolation. By providing a robust framework to quantify and compare patterns of introgression among genetic regions and populations, the Bayesian genomic cline model will advance our understanding of the genetics of reproductive isolation and the speciation process.  相似文献   

2.
Speciation occurs when populations diverge and become reproductively isolated from each other. Natural selection is commonly accepted to play a large role in this process, and it has been widely assumed that reproductive isolation often results as a by‐product of divergence driven by adaptation in allopatry. When such populations come into secondary contact, reinforcement can act to strengthen reproductive isolation, but the frequency and importance of this process are still unknown. Here, we explored genomic signatures of selection in allopatry and sympatry for loci associated with reproductive isolation using a natural primate hybrid zone. By analysing reduced‐representation sequencing data, we quantified admixture and population structure across a howler monkey hybrid zone and examined the relationship between locus‐specific differentiation and introgression. We detected extensive admixture that was mostly limited to the narrow contact zone. Loci with reduced introgression into the heterospecific genomic background (the pattern expected for loci associated with reproductive isolation due to selection against hybrids) were significantly more differentiated between allopatric parental populations than loci with neutral and increased introgression, supporting the hypothesis that reproductive isolation is a by‐product of divergence in allopatry. Further, loci with reduced introgression showed greater differentiation in sympatry than in allopatry, suggesting a role for reinforcement. Thus, our results reflect multiple forms of selection that have shaped reproductive isolation in this system. We conclude that reproductive isolation may have initially been driven by divergence in allopatry, but later reinforced by divergent selection in sympatry.  相似文献   

3.
Reproductive isolation can rise either as a consequence of genomic divergence in allopatry or as a byproduct of divergent selection in parapatry. To determine whether reproductive isolation in gynodioecious Silene nutans results from allopatric divergence or from ecological adaptation following secondary contact, we investigated the pattern of postzygotic reproductive isolation and hybridization in natural populations using two phylogeographic lineages, western (W1) and eastern (E1). Experimental crosses between the lineages identified strong, asymmetric postzygotic isolation between the W1 and the E1 lineages, independent of geographic overlap. The proportion of ovules fertilized, seeds aborted, and seeds germinated revealed relatively little effect on the fitness of hybrids. In contrast, hybrid mortality was high and asymmetric: while half of the hybrid seedlings with western lineage mothers died, nearly all hybrid seedlings with E1 mothers died. This asymmetric mortality mirrored the proportion of chlorotic seedlings, and is congruent with cytonuclear incompatibility. We found no evidence of hybridization between the lineages in regions of co‐occurrence using nuclear and plastid markers. Together, our results are consistent with the hypothesis that strong postzygotic reproductive isolation involving cytonuclear incompatibilities arose in allopatry. We argue that the dynamics of cytonuclear gynodioecy could facilitate the evolution of reproductive isolation.  相似文献   

4.
The maintenance or breakdown of reproductive isolation is an observable outcome of secondary contact between species. In cases where hybrids beyond the F1 are formed, the representation of each species' ancestry can vary dramatically among genomic regions. This genomic heterogeneity in ancestry and introgression can offer insight into evolutionary processes, particularly if introgression is compared in multiple hybrid zones. Similarly, considerable heterogeneity exists across the genome in the extent to which populations and species have diverged, reflecting the combined effects of different evolutionary processes on genetic variation. We studied hybridization across two hybrid zones of two phenotypically well‐differentiated bird species in Mexico (Pipilo maculatus and P. ocai), to investigate genomic heterogeneity in differentiation and introgression. Using genotyping‐by‐sequencing (GBS) and hierarchical Bayesian models, we genotyped 460 birds at over 41 000 single nucleotide polymorphism (SNP) loci. We identified loci exhibiting extreme introgression relative to the genome‐wide expectation using a Bayesian genomic cline model. We also estimated locus‐specific FST and identified loci with exceptionally high genetic divergence between the parental species. We found some concordance of locus‐specific introgression in the two independent hybrid zones (6–20% of extreme loci shared across zones), reflecting areas of the genome that experience similar gene flow when the species interact. Additionally, heterogeneity in introgression and divergence across the genome revealed another subset of loci under the influence of locally specific factors. These results are consistent with a history in which reproductive isolation has been influenced by a common set of loci in both hybrid zones, but where local environmental and stochastic factors also lead to genomic differentiation.  相似文献   

5.
Speciation is the process by which reproductively isolated lineages arise, and is one of the fundamental means by which the diversity of life increases. Whereas numerous studies have documented an association between ecological divergence and reproductive isolation, relatively little is known about the role of natural selection in genome divergence during the process of speciation. Here, we use genome-wide DNA sequences and Bayesian models to test the hypothesis that loci under divergent selection between two butterfly species (Lycaeides idas and L. melissa) also affect fitness in an admixed population. Locus-specific measures of genetic differentiation between L. idas and L. melissa and genomic introgression in hybrids varied across the genome. The most differentiated genetic regions were characterized by elevated L. idas ancestry in the admixed population, which occurs in L. idas-like habitat, consistent with the hypothesis that local adaptation contributes to speciation. Moreover, locus-specific measures of genetic differentiation (a metric of divergent selection) were positively associated with extreme genomic introgression (a metric of hybrid fitness). Interestingly, concordance of differentiation and introgression was only partial. We discuss multiple, complementary explanations for this partial concordance.  相似文献   

6.
F. Bonhomme 《Molecular ecology》2016,25(13):3187-3202
Ecophenotypic differentiation among replicate ecotype pairs within a species complex is often attributed to independent outcomes of parallel divergence driven by adaptation to similar environmental contrasts. However, the extent to which parallel phenotypic and genetic divergence patterns have emerged independently is increasingly questioned by population genomic studies. Here, we document the extent of genetic differentiation within and among two geographic replicates of the coastal and marine ecotypes of the European anchovy (Engraulis encrasicolus) gathered from Atlantic and Mediterranean locations. Using a genome‐wide data set of RAD‐derived SNPs, we show that habitat type (marine vs. coastal) is the most important component of genetic differentiation among populations of anchovy. By analysing the joint allele frequency spectrum of each coastal–marine ecotype pair, we show that genomic divergence patterns between ecotypes can be explained by a postglacial secondary contact following a long period of allopatric isolation (c. 300 kyrs). We found strong support for a model including heterogeneous migration among loci, suggesting that secondary gene flow has eroded past differentiation at different rates across the genome. Markers experiencing reduced introgression exhibited strongly correlated differentiation levels among Atlantic and Mediterranean regions. These results support that partial reproductive isolation and parallel genetic differentiation among replicate pairs of anchovy ecotypes are largely due to a common divergence history prior to secondary contact. They moreover provide comprehensive insights into the origin of a surprisingly strong fine‐scale genetic structuring in a high gene flow marine fish, which should improve stock management and conservation actions.  相似文献   

7.
During speciation‐with‐gene‐flow, effective migration varies across the genome as a function of several factors, including proximity of selected loci, recombination rate, strength of selection, and number of selected loci. Genome scans may provide better empirical understanding of the genome‐wide patterns of genetic differentiation, especially if the variance due to the previously mentioned factors is partitioned. In North American lake whitefish (Coregonus clupeaformis), glacial lineages that diverged in allopatry about 60,000 years ago and came into contact 12,000 years ago have independently evolved in several lakes into two sympatric species pairs (a normal benthic and a dwarf limnetic). Variable degrees of reproductive isolation between species pairs across lakes offer a continuum of genetic and phenotypic divergence associated with adaptation to distinct ecological niches. To disentangle the complex array of genetically based barriers that locally reduce the effective migration rate between whitefish species pairs, we compared genome‐wide patterns of divergence across five lakes distributed along this divergence continuum. Using restriction site associated DNA (RAD) sequencing, we combined genetic mapping and population genetics approaches to identify genomic regions resistant to introgression and derive empirical measures of the barrier strength as a function of recombination distance. We found that the size of the genomic islands of differentiation was influenced by the joint effects of linkage disequilibrium maintained by selection on many loci, the strength of ecological niche divergence, as well as demographic characteristics unique to each lake. Partial parallelism in divergent genomic regions likely reflected the combined effects of polygenic adaptation from standing variation and independent changes in the genetic architecture of postzygotic isolation. This study illustrates how integrating genetic mapping and population genomics of multiple sympatric species pairs provide a window on the speciation‐with‐gene‐flow mechanism.  相似文献   

8.
The genetic structure and dynamics of hybrid zones provide crucial information for understanding the processes and mechanisms of evolutionary divergence and speciation. In general, higher levels of evolutionary divergence between taxa are more likely to be associated with reproductive isolation and may result in suppressed or strongly restricted hybridization. In this study, we examined two secondary contact zones between three deep evolutionary lineages in the common vole (Microtus arvalis). Differences in divergence times between the lineages can shed light on different stages of reproductive isolation and thus provide information on the ongoing speciation process in M. arvalis. We examined more than 800 individuals for mitochondrial (mtDNA), Y‐chromosome and autosomal markers and used assignment and cline analysis methods to characterize the extent and direction of gene flow in the contact zones. Introgression of both autosomal and mtDNA markers in a relatively broad area of admixture indicates selectively neutral hybridization between the least‐divergent lineages (Central and Eastern) without evidence for partial reproductive isolation. In contrast, a very narrow area of hybridization, shifts in marker clines and the quasi‐absence of Y‐chromosome introgression support a moving hybrid zone and unidirectional selection against male hybrids between the lineages with older divergence (Central and Western). Data from a replicate transect further support non‐neutral processes in this hybrid zone and also suggest a role for landscape history in the movement and shaping of geneflow profiles.  相似文献   

9.
Divergence with gene flow is well documented and reveals the influence of ecological adaptation on speciation. Yet, it remains intuitive that gene exchange inhibits speciation in many scenarios, particularly among ecologically similar populations. The influence of gene flow on the divergence of populations facing similar selection pressures has received less empirical attention than scenarios where differentiation is coupled with local environmental adaptation. I used a paired study design to test the influence of genomic divergence and introgression on plumage differentiation between ecologically similar allopatric replacements of Andean cloud forest birds. Through analyses of short‐read genome‐wide sequences from over 160 individuals in 16 codistributed lineages, I found that plumage divergence is associated with deep genetic divergence, implicating a prominent role of geographic isolation in speciation. By contrast, lineages that lack plumage divergence across the same geographic barrier are more recently isolated or exhibit a signature of secondary genetic introgression, indicating a negative relationship between gene flow and divergence in phenotypic traits important to speciation. My results suggest that the evolutionary outcomes of cycles of isolation and divergence in this important theatre of biotic diversification are sensitive to time spent in the absence of gene flow.  相似文献   

10.
Analyzing the processes that determine whether species boundaries are maintained on secondary contact may shed light on the early phase of speciation. In Anacamptis morio and Anacamptis longicornu, two Mediterranean orchid sister-species, we used molecular and morphological analyses, together with estimates of pollination success and experimental crosses, to assess whether floral isolation can shelter the species' genomes from genetic admixture on secondary contact. We found substantial genetic and morphological homogenization in sympatric populations in combination with an apparent lack of postmating isolation. We further detected asymmetric introgression in the sympatric populations and an imbalance in cytotype representation, which may be due either to a difference in flowering phenology or else be a consequence of cytonuclear incompatibilities. Estimates of genetic clines for markers across sympatric zones revealed markers that significantly deviated from neutral expectations. We observed a significant correlation between spur length and reproductive success in sympatric populations, which may suggest that directional selection is the main cause of morphological differentiation in this species pair. Our results suggest that allopatric divergence has not led to the evolution of sufficient reproductive isolation to prevent genomic admixture on secondary contact in this orchid species pair.  相似文献   

11.
Next‐generation sequencing has made it possible to begin asking questions about the process of divergence at the level of the genome. For example, recently, there has been a debate around the role of ‘genomic islands of divergence’ (i.e. blocks of outlier loci) in facilitating the process of speciation‐with‐gene‐flow. The Swainson's thrush, Catharus ustulatus, is a migratory songbird with two genetically distinct subspecies that differ in a number of traits known to be involved in reproductive isolation in birds (plumage coloration, song and migratory behaviour), despite contemporary gene flow along a secondary contact zone. Here, we use RAD‐PE sequencing to test emerging hypotheses about the process of divergence at the level of the genome and identify genes and gene regions involved in differentiation in this migratory songbird. Our analyses revealed distinct genomic islands on 15 of the 23 chromosomes and an accelerated rate of divergence on the Z chromosome, one of the avian sex chromosomes. Further, an analysis of loci linked to traits known to be involved in reproductive isolation in songbirds showed that genes linked to migration are significantly more differentiated than expected by chance, but that these genes lie primarily outside the genomic islands. Overall, our analysis supports the idea that genes linked to migration play an important role in divergence in migratory songbirds, but we find no compelling evidence that the observed genomic islands are facilitating adaptive divergence in migratory behaviour.  相似文献   

12.
Contact zones provide an excellent arena in which to address questions about how genomic divergence evolves during lineage divergence. They allow us to both infer patterns of genomic divergence in allopatric populations isolated from introgression and to characterize patterns of introgression after lineages meet. Thusly motivated, we analyze genome‐wide introgression data from four contact zones in three genera of lizards endemic to the Australian Wet Tropics. These contact zones all formed between morphologically cryptic lineage‐pairs within morphologically defined species, and the lineage‐pairs meeting in the contact zones diverged anywhere from 3.1 to 5.8 million years ago. By characterizing patterns of molecular divergence across an average of 11K genes and fitting geographic clines to an average of 7.5K variants, we characterize how patterns of genomic differentiation and introgression change through time. Across this range of divergences, we find that genome‐wide differentiation increases but becomes no less heterogeneous. In contrast, we find that introgression heterogeneity decreases dramatically, suggesting that time helps isolated genomes “congeal.” Thus, this work emphasizes the pivotal role that history plays in driving lineage divergence.  相似文献   

13.
Parallel phenotypic differentiation is generally attributed to parallel adaptive divergence as an evolutionary response to similar environmental contrasts. Such parallelism may actually originate from several evolutionary scenarios ranging from repeated parallel divergence caused by divergent selection to a unique divergence event followed by gene flow. Reconstructing the evolutionary history underlying parallel phenotypic differentiation is thus fundamental to understand the relative contribution of demography and selection on genomic divergence during speciation. In this study, we investigate the divergence history of replicate European whitefish (Coregonus lavaretus), limnetic and benthic species pairs from two lakes in Norway and two lakes in Switzerland. Demographic models accounting for semi‐permeability and linked selection were fitted to the unfolded joint allele frequency spectrum built from genome‐wide SNPs and compared to each other in each species pair. We found strong support for a model of asymmetrical post‐glacial secondary contact between glacial lineages in all four lakes. Moreover, our results suggest that heterogeneous genomic differentiation has been shaped by the joint action of linked selection accelerating lineage sorting during allopatry, and heterogeneous migration eroding divergence at different rates along the genome following secondary contact. Our analyses reveal how the interplay between demography, selection and historical contingency has influenced the levels of diversity observed in previous whitefish phylogeographic studies. This study thus provides new insights into the historical demographic and selective processes that shaped the divergence associated with ecological speciation in European whitefish.  相似文献   

14.
ABSTRACT: BACKGROUND: Genetic divergence during speciation with gene flow is heterogeneous across the genome, with some regions exhibiting stronger differentiation than others. Exceptionally differentiated regions are often assumed to experience reduced introgression, i.e., reduced flow of alleles from one population into another because such regions are affected by divergent selection or cause reproductive isolation. In contrast, the remainder of the genome can be homogenized by high introgression. Although many studies have documented variation across the genome in genetic differentiation, there are few tests of this hypothesis that explicitly quantify introgression. Here, we provide such a test using 38,304 SNPs in populations of Timema cristinae stick insects. We quantify whether loci that are highly divergent between geographically separated ('allopatric') populations exhibit unusual patterns of introgression in admixed populations. To the extent this is true, highly divergent loci between allopatric populations contribute to reproductive isolation in admixed populations. RESULTS: As predicted, we find a substantial association between locus-specific divergence between allopatric populations and locus-specific introgression in admixed populations. However, many loci depart from this relationship, sometimes strongly so. We also report evidence for selection against foreign alleles due to local adaptation. CONCLUSIONS: Loci that are strongly differentiated between allopatric populations sometimes contribute to reproductive isolation in admixed populations. However, geographic variation in selection and local adaptation, in aspects of genetic architecture (such as organization of genes, recombination rate variation, number and effect size of variants contributing to adaptation, etc.), and in stochastic evolutionary processes such as drift can cause strong differentiation of loci that do not always contribute to reproductive isolation. The results have implications for the theory of 'genomic islands of speciation'.  相似文献   

15.
A major issue in evolutionary biology is explaining patterns of differentiation observed in population genomic data, as divergence can be due to both direct selection on a locus and genetic hitchhiking. “Divergence hitchhiking” (DH) theory postulates that divergent selection on a locus reduces gene flow at physically linked sites, facilitating the formation of localized clusters of tightly linked, diverged loci. “Genome hitchhiking” (GH) theory emphasizes genome‐wide effects of divergent selection. Past theoretical investigations of DH and GH focused on static snapshots of divergence. Here, we used simulations assessing a variety of strengths of selection, migration rates, population sizes, and mutation rates to investigate the relative importance of direct selection, GH, and DH in facilitating the dynamic buildup of genomic divergence as speciation proceeds through time. When divergently selected mutations were limiting, GH promoted divergence, but DH had little measurable effect. When populations were small and divergently selected mutations were common, DH enhanced the accumulation of weakly selected mutations, but this contributed little to reproductive isolation. In general, GH promoted reproductive isolation by reducing effective migration rates below that due to direct selection alone, and was important for genome‐wide “congealing” or “coupling” of differentiation (FST) across loci as speciation progressed.  相似文献   

16.
The genic species concept implies that while most of the genome can be exchanged somewhat freely between species through introgression, some genomic regions remain impermeable to interspecific gene flow. Hence, interspecific differences can be maintained despite ongoing gene exchange within contact zones. This study assessed the heterogeneous patterns of introgression at gene loci across the hybrid zone of an incipient progenitor–derivative species pair, Picea mariana (black spruce) and Picea rubens (red spruce). The spruce taxa likely diverged in geographic isolation during the Pleistocene and came into secondary contact during late Holocene. A total of 300 SNPs distributed across the 12 linkage groups (LG) of black spruce were genotyped for 385 individual trees from 33 populations distributed across the allopatric zone of each species and within the zone of sympatry. An integrative framework combining three population genomic approaches was used to scan the genomes, revealing heterogeneous patterns of introgression. A total of 23 SNPs scattered over 10 LG were considered impermeable to introgression and putatively under diverging selection. These loci revealed the existence of impermeable genomic regions forming the species boundary and are thus indicative of ongoing speciation between these two genetic lineages. Another 238 SNPs reflected selectively neutral diffusion across the porous species barrier. Finally, 39 highly permeable SNPs suggested ancestral polymorphism along with balancing selection. The heterogeneous patterns of introgression across the genome indicated that the speciation process between black spruce and red spruce is young and incomplete, albeit some interspecific differences are maintained, allowing ongoing species divergence even in sympatry. The approach developed in this study can be used to track the progression of ongoing speciation processes.  相似文献   

17.
Diverging semi‐isolated lineages either meet in narrow clinal hybrid zones, or have a mosaic distribution associated with environmental variation. Intrinsic reproductive isolation is often emphasized in the former and local adaptation in the latter, although both reduce gene flow between groups. Rarely are these two patterns of spatial distribution reported in the same study system. Here, we report that the long‐snouted seahorse Hippocampus guttulatus is subdivided into discrete panmictic entities by both types of hybrid zones. Along the European Atlantic coasts, a northern and a southern lineage meet in the southwest of France where they coexist in sympatry—i.e., in the same geographical zone—with little hybridization. In the Mediterranean Sea, two lineages have a mosaic distribution, associated with lagoon‐like and marine habitats. A fifth lineage was identified in the Black Sea. Genetic homogeneity over large spatial scales contrasts with isolation maintained in sympatry or close parapatry at a fine scale. A high variation in locus‐specific introgression rates provides additional evidence that partial reproductive isolation must be maintaining the divergence. We find that fixed differences between lagoon and marine populations in the Mediterranean Sea belong to the most differentiated SNPs between the two Atlantic lineages, against the genome‐wide pattern of structure that mostly follow geography. These parallel outlier SNPs cluster on a single chromosome‐wide island of differentiation. Since Atlantic lineages do not map to lagoon‐sea habitat variation, genetic parallelism at the genomic island suggests a shared genetic barrier contributes to reproductive isolation in contrasting contexts–i.e., spatial versus ecological. We discuss how a genomic hotspot of parallel differentiation could have evolved and become associated both with space and with a patchy environment in a single study system.  相似文献   

18.
Reproductive isolation between lineages is expected to accumulate with divergence time, but the time taken to speciate may strongly vary between different groups of organisms. In anuran amphibians, laboratory crosses can still produce viable hybrid offspring >20 My after separation, but the speed of speciation in closely related anuran lineages under natural conditions is poorly studied. Palearctic green toads (Bufo viridis subgroup) offer an excellent system to address this question, comprising several lineages that arose at different times and form secondary contact zones. Using mitochondrial and nuclear markers, we previously demonstrated that in Sicily, B. siculus and B. balearicus developed advanced reproductive isolation after Plio-Pleistocene divergence (2.6 My, 3.3–1.9), with limited historic mtDNA introgression, scarce nuclear admixture, but low, if any, current gene flow. Here, we study genetic interactions between younger lineages of early Pleistocene divergence (1.9 My, 2.5–1.3) in northeastern Italy (B. balearicus, B. viridis). We find significantly more, asymmetric nuclear and wider, differential mtDNA introgression. The population structure seems to be molded by geographic distance and barriers (rivers), much more than by intrinsic genomic incompatibilities. These differences of hybridization between zones may be partly explained by differences in the duration of previous isolation. Scattered research on other anurans suggests that wide hybrid zones with strong introgression may develop when secondary contacts occur <2 My after divergence, whereas narrower zones with restricted gene flow form when divergence exceeds 3 My. Our study strengthens support for this rule of thumb by comparing lineages with different divergence times within the same radiation.  相似文献   

19.
Hybrids between species provide information about the evolutionary processes involved in divergence. In addition to creating hybrids in the laboratory, biologists can take advantage of natural hybrid zones to understand the factors that shape gene flow between divergent lineages. In the early stages of speciation, most regions of the genome continue to flow freely between populations. Alternatively, the subset of the genome that confers reproductive barriers between nascent species is expected to reject introgression. Now enabled by advances in genomics, this perspective is motivating detailed comparisons of gene flow across genomic regions in hybrid zones. Here, I review methods for measuring and interpreting introgression at multiple loci in hybrid zones, focusing on the problem of identifying loci that contribute to reproductive isolation. Emerging patterns from multi-locus studies of hybrid zones are highlighted, including remarkable variance in introgression across the genome. Although existing methods have been useful, there is scope for development of new analytical approaches that better connect differential patterns of gene flow in hybrid zones with current knowledge of speciation mechanisms. I outline future prospects for differential introgression studies on a genomic scale.  相似文献   

20.
Hybrid zones, whereby divergent lineages come into contact and eventually hybridize, can provide insights on the mechanisms involved in population differentiation and reproductive isolation, and ultimately speciation. Suture zones offer the opportunity to compare these processes across multiple species. In this paper we use reduced‐complexity genomic data to compare the genetic and phenotypic structure and hybridization patterns of two mimetic butterfly species, Ithomia salapia and Oleria onega (Nymphalidae: Ithomiini), each consisting of a pair of lineages differentiated for their wing colour pattern and that come into contact in the Andean foothills of Peru. Despite similarities in their life history, we highlight major differences, both at the genomic and phenotypic level, between the two species. These differences include the presence of hybrids, variations in wing phenotype, and genomic patterns of introgression and differentiation. In I. salapia, the two lineages appear to hybridize only rarely, whereas in O. onega the hybrids are not only more common, but also genetically and phenotypically more variable. We also detected loci statistically associated with wing colour pattern variation, but in both species these loci were not over‐represented among the candidate barrier loci, suggesting that traits other than wing colour pattern may be important for reproductive isolation. Our results contrast with the genomic patterns observed between hybridizing lineages in the mimetic Heliconius butterflies, and call for a broader investigation into the genomics of speciation in Ithomiini ‐ the largest radiation of mimetic butterflies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号