首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wind farms are steadily growing across Europe, with potentially detrimental effects on wildlife. Indeed, cumulative impacts in addition to local effects should be considered when planning wind farm development at a regional scale, and mapping the potential risk to bats at this scale would help in the large-scale planning of wind turbines and focus field surveys on vulnerable areas. Although modelling offers a powerful approach to tackle this goal, its application has been thus far neglected. We developed a simple regional-scale analysis in an area of central Italy (Molise region) that is undergoing considerable wind farm development. We implemented species distribution models (SDMs) for two bat species vulnerable to wind farm impact, Nyctalus leisleri and Pipistrellus pipistrellus. We developed risk maps by overlaying SDMs for the two species with turbine locations, assessed the alteration of the landscape patterns of foraging habitat patches determined by the wind turbines, and identified highly vulnerable areas where wind farm construction would be particularly risky. SDMs were statistically robust (AUC ≥0.8 for both species) and revealed that 41 % of the region offers suitable foraging habitat for both species. These areas host over 50 % of the existing or planned wind farms, with 21 % of the turbines located within 150 m of forest edges, suggesting an increase in fatality risk. The alterations in suitable foraging patches consisted of a 7.7 % increase in the number of patches, a 10.7 % increase in the shape index, and a 8.1 % decrease in the mean patch area. The region’s western portion, which is most suitable to both species, requires careful consideration with regard to future wind farm planning.  相似文献   

2.
Quantifying the likely effects of offshore wind farms on wildlife is fundamental before permission for development can be granted by any Determining Authority. The effects on marine top predators from displacement from important habitat are key concerns during offshore wind farm construction and operation. In this respect, we present evidence for no significant displacement from a UK offshore wind farm for two broadly distributed species of conservation concern: common guillemot (Uria aalge) and harbor porpoise (Phocoena phocoena). Data were collected during boat‐based line transect surveys across a 360 km2 study area that included the Robin Rigg offshore wind farm. Surveys were conducted over 10 years across the preconstruction, construction, and operational phases of the development. Changes in guillemot and harbor porpoise abundance and distribution in response to offshore wind farm construction and operation were estimated using generalized mixed models to test for evidence of displacement. Both common guillemot and harbor porpoise were present across the Robin Rigg study area throughout all three development phases. There was a significant reduction in relative harbor porpoise abundance both within and surrounding the Robin Rigg offshore wind farm during construction, but no significant difference was detected between the preconstruction and operational phases. Relative common guillemot abundance remained similar within the Robin Rigg offshore wind farm across all development phases. Offshore wind farms have the potential to negatively affect wildlife, but further evidence regarding the magnitude of effect is needed. The empirical data presented here for two marine top predators provide a valuable addition to the evidence base, allowing future decision making to be improved by reducing the uncertainty of displacement effects and increasing the accuracy of impact assessments.  相似文献   

3.
Wind farms offer a cleaner alternative to fossil fuels and can mitigate their negative effects on climate change. However, wind farms may have negative impacts on birds. The East China Coast forms a key part of the East Asian–Australasian Flyway, and it is a crucial region for wind energy development in China. However, despite ducks being the dominant animal taxon along the East China Coast in winter and considered as particularly vulnerable to the effects of wind farms, the potential negative impacts of wind farms on duck populations remain unclear. We therefore assessed the effects of wind farms on duck abundance, distribution, and habitat use at Chongming Dongtan, which is a major wintering site for ducks along the East Asian–Australasian Flyway, using field surveys and satellite tracking. We conducted seven paired field surveys of ducks inside wind farm (IWF) and outside wind farm (OWF) sites in artificial brackish marsh, paddy fields, and aquaculture ponds. Duck abundance was significantly higher in OWF compared with IWF sites and significantly higher in artificial brackish marsh than in aquaculture ponds and paddy fields. Based on 1,918 high‐resolution satellite tracking records, the main habitat types of ducks during the day and at night were artificial brackish marsh and paddy fields, respectively. Furthermore, grid‐based analysis showed overlaps between ducks and wind farms, with greater overlap at night than during the day. According to resource selection functions, habitat use by wintering ducks was impacted by distance to water, land cover, human activity, and wind farm effects, and the variables predicted to have significant impacts on duck habitat use differed between day and night. Our study suggests that wintering ducks tend to avoid wind turbines at Chongming Dongtan, and landscape of paddy fields and artificial wetlands adjoining natural wetlands is crucial for wintering ducks.  相似文献   

4.
Wind-power plants (WPs) within reindeer (Rangifer tarandus tarandus) habitat may have negative effects on reindeer habitat use. Avoidance effects towards a WP were tested by comparing reindeer distributions on a peninsula where a WP was built in 2006 with a control peninsula without a WP. Distributions were measured by direct observations during construction period, and in four subsequent years, and limited faecal pellet group counts along transects before, during and after the WP construction (2005–2010). We predicted higher reindeer density in the control than the WP peninsula and at increasing distances from the WP when controlling for habitat quality. We found no avoidance effects from the WP, with significantly more reindeer in the WP than the control peninsula. Faecal pellet group data supported a lack of negative effects towards the WP after construction compared to before, while area within 100 m from the access road to the WP was avoided during the construction period and for 3 years afterwards. Reindeer avoided low-quality habitat both in the control and WP peninsulas. Our study indicates that WP development might have minor effects on habitat use if built in poor habitats, at least for semi-domestic reindeer. Our results cannot be used to infer effects of a WP built in higher-quality habitats or where large-scale movements are less restrictive than on a peninsula. Disturbance effects of human infrastructure likely are context-dependent, and management should thus be careful in planning of WPs to minimize adverse effects.  相似文献   

5.
Flight behaviour characteristics such as flight altitude and avoidance behaviour determine the species-specific collision risk of birds with wind turbines. However, traditional observational methods exhibit limited positional accuracy. High-resolution GPS telemetry represents a promising method to overcome this drawback. In this study, we used three-dimensional GPS tracking data including high-accuracy tracks recorded at 3-s intervals to investigate the collision risk of breeding male Montagu's Harriers Circus pygargus in the Dutch–German border region. Avoidance of wind turbines was quantified by a novel approach comparing observed flights to a null model of random flight behaviour. On average, Montagu's Harriers spent as much as 8.2 h per day in flight. Most flights were at low altitude, with only 7.1% within the average rotor height range (RHR; 45–125 m). Montagu's Harriers showed significant avoidance behaviour, approaching turbines less often than expected, particularly when flying within the RHR (avoidance rate of 93.5%). For the present state, with wind farms situated on the fringes of the regional nesting range, collision risk models based on our new insights on flight behaviour indicated 0.6–2.0 yearly collisions of adult males (as compared with a population size of c. 40 pairs). However, the erection of a new wind farm inside the core breeding area could markedly increase mortality (up to 9.7 yearly collisions). If repowering of the wind farms was carried out using low-reaching modern turbines (RHR 36–150 m), mortality would more than double, whereas it would stay approximately constant if higher turbines (RHR 86–200 m) were used. Our study demonstrates the great potential of high-resolution GPS tracking for collision risk assessments. The resulting information on collision-related flight behaviour allows for performing detailed scenario analyses on wind farm siting and turbine design, in contrast to current environmental assessment practices. With regard to Montagu's Harriers, we conclude that although the deployment of higher wind turbines represents an opportunity to reduce collision risk for this species, precluding wind energy developments in core breeding areas remains the most important mitigation measure.  相似文献   

6.
Previous studies have shown negative associations between wind energy development and breeding birds, including species of conservation concern. However, the magnitude and causes of such associations remain uncertain, pending detailed ‘before‐after‐control‐intervention’ (BACI) studies. We conducted one of the most detailed such studies to date, assessing the impacts of terrestrial wind energy development on the European Golden Plover Pluvialis apricaria, a species with enhanced protection under European environmental law. Disturbance activity during construction had no significant effect on Golden Plover breeding abundance or distribution. In contrast, once turbines were erected, Golden Plover abundance was significantly reduced within the wind farm (?79%) relative to the baseline, with no comparable changes in buffer or control areas. Golden Plovers were significantly displaced by up to 400 m from turbines during operation. Hatching and fledging success were not affected by proximity to turbine locations either during construction or operation. The marked decline in abundance within the wind farm during operation but not construction, together with the lack of evidence for changes in breeding success or habitat, strongly suggests the displacement of breeding adults through behavioural avoidance of turbines, rather than a response to disturbance alone. It is of critical importance that wind farms are appropriately sited to prevent negative wildlife impacts. We demonstrate the importance of detailed BACI designs for quantifying the impacts on birds, and recommend wider application of such studies to improve the evidence base surrounding wind farm impacts on birds.  相似文献   

7.
Wind farms may have two broad potential adverse effects on birds via antagonistic processes: displacement from the vicinity of turbines (avoidance), or death through collision with rotating turbine blades. Large raptors are often shown or presumed to be vulnerable to collision and are demographically sensitive to additional mortality, as exemplified by several studies of the Golden Eagle Aquila chrysaetos. Previous findings from Scottish Eagles, however, have suggested avoidance as the primary response. Our study used data from 59 GPS-tagged Golden Eagles with 28 284 records during natal dispersal before and after turbine operation < 1 km of 569 turbines at 80 wind farms across Scotland. We tested three hypotheses using measurements of tag records’ distance from the hub of turbine locations: (1) avoidance should be evident; (2) older birds should show less avoidance (i.e. habituate to turbines); and (3) rotor diameter should have no influence (smaller diameters are correlated with a turbine’s age, in examining possible habituation). Four generalized linear mixed models (GLMMs) were constructed with intrinsic habitat preference of a turbine location using Golden Eagle Topography (GET) model, turbine operation status (before/after), bird age and rotor diameter as fixed factors. The best GLMM was subsequently verified by k-fold cross-validation and involved only GET habitat preference and presence of an operational turbine. Eagles were eight times less likely to be within a rotor diameter’s distance of a hub location after turbine operation, and modelled displacement distance was 70 m. Our first hypothesis expecting avoidance was supported. Eagles were closer to turbine locations in preferred habitat but at greater distances after turbine operation. Results on bird age (no influence to 5+ years) rejected hypothesis 2, implying no habituation. Support for hypothesis 3 (no influence of rotor diameter) also tentatively inferred no habituation, but data indicated birds went slightly closer to longer rotor blades although not to the turbine tower. We proffer that understanding why avoidance or collision in large raptors may occur can be conceptually envisaged via variation in fear of humans as the ‘super predator’ with turbines as cues to this life-threatening agent.  相似文献   

8.
Joris Everaert 《Bird Study》2013,60(2):220-230
Capsule Local factors can lead to strong variation in mortality rate and collision risk that obscures possible effects of turbine size in wind farms.

Aims The impact of bird collisions was studied at eight land-based wind farm sites with a total of 66 small to large turbines in order to assess the mortality rate and collision risk.

Methods Searches for collision fatalities were performed under all turbines with a minimum search interval of 14 days. Mortality rate was calculated with corrections for available search area, scavenging and search efficiency. Flight movements of birds crossing five of the wind farm sites were recorded during a minimum of four days per site. Actual collision risk was then calculated as the number of collision fatalities relative to the average surveyed flight intensity.

Results Mortality rate was 21 birds per turbine per year on average. Most fatalities were local common species (e.g. gulls) but rarer species were also found (e.g. terns, raptors and waders). Collision risk of gulls was 0.05% and 0.08% on average for birds, respectively, flying at turbine and rotor height through the wind farms (0.09% and 0.14% maximum). Large gulls had a significant higher collision risk than small gulls at rotor height. Mortality rate and collision risk were not significantly related to turbine size. The results were integrated in a widely used collision risk model to obtain information of micro-avoidance, i.e. the proportion of birds that fly through the wind farm but avoid passing through the rotor swept area of the turbines. For gulls, this micro-avoidance was 96.1% and 96.3% on average for birds, respectively, flying at turbine and rotor height through the wind farms.

Conclusion The results indicate that local factors can lead to strong variation in mortality rate and collision risk that obscures possible effects of turbine size in wind farms. However, large turbines have more installed capacity (MW), so repowering wind farms with larger but fewer wind turbines, could reduce total mortality at certain locations.  相似文献   

9.
The rapid development of wind energy may have negative effects on bird populations, including collisions with turbines, displacement due to disturbance or habitat loss, indirect effects of reduced breeding success and barrier effects. This challenging conservation issue has attracted a great deal of interest, but the noise generated by turbines has been largely overlooked. Here, we studied acoustic behaviour of Skylarks Alauda arvensis in relation to wind farm start‐up to assess whether a change in song parameters can indicate a deterioration in the acoustic environment. We recorded territorial males displaying close to operating and non‐operating turbines and at a control site without turbines. In the following breeding season, we undertook replications at the same sites, except that the non‐operating turbines were now in operation. We found that Skylarks displaying at the wind farm were affected by wind turbine noise. Males singing close to operating wind turbines sang higher‐frequency songs than males from a control site and those that displayed near non‐operating turbines. In addition, an upward frequency shift in songs was observed when non‐operating turbines started to operate in the consecutive season. We therefore conclude that the frequency shift observed did not result from turbine presence, but from the noise they started to generate. This shows that a change in song parameters may reliably and within a relatively short time indicate a significant deterioration of the acoustic environment as a consequence of wind farm start‐up. This may help conservation biologists to identify species and populations that are particularly susceptible to wind farm noise.  相似文献   

10.
Assessing the impacts of avian collisions with wind turbines requires reliable estimates of avian flight intensities and altitudes, to enable accurate estimation of collision rates, avoidance rates and related effects on populations. At sea, obtaining such estimates visually is limited not only by weather conditions but, more importantly, because a high proportion of birds fly at night and at heights above the range of visual observation. We used vertical radar with automated bird‐tracking software to overcome these limitations and obtain data on the magnitude, timing and altitude of local bird movements and seasonal migration measured continuously at a Dutch offshore wind farm. An estimated 1.6 million radar echoes representing individual birds or flocks were recorded crossing the wind farm annually at altitudes between 25 and 115 m (the rotor‐swept zone). The majority of these fluxes consisted of gull species during the day and migrating passerines at night. We demonstrate daily, monthly and seasonal patterns in fluxes at rotor heights and the influence of wind direction on flight intensity. These data are among the first to show the magnitude and variation of low‐altitude flight activity across the North Sea, and are valuable for assessing the consequences of developments such as offshore wind farms for birds.  相似文献   

11.
While technological characteristics largely determine the greenhouse gas (GHG) emissions during the construction of a wind farm and meteorological circumstances the actual electricity production, a thorough analysis to quantify the GHG footprint variability (in g CO2eq/kWh electricity produced) between wind farms is still lacking at the global scale. Here, we quantified the GHG footprint of 26,821 wind farms located across the globe, combining turbine-specific technological parameters, life-cycle inventory data, and location- and temporal-specific meteorological information. These wind farms represent 79% of the 651 global wind (GW) capacity installed in 2019. Our results indicate a median GHG footprint for global wind electricity of 10 g CO2eq/kWh, ranging from 4 to 56 g CO2eq/kWh (2.5th and 97.5th percentiles). Differences in the GHG footprint of wind farms are mainly explained by spatial variability in wind speed, followed by whether the wind farm is located onshore or offshore, the turbine diameter, and the number of turbines in a wind farm. We also provided a metamodel based on these four predictors for users to be able to easily obtain a first indication of GHG footprints of new wind farms considered. Our results can be used to compare the GHG footprint of wind farms to one another and to other sources of electricity in a location-specific manner.  相似文献   

12.
This study investigates the effects of the construction and operation of a large Danish offshore wind farm on harbor and gray seal haul-out behavior within a nearby (4 km) seal sanctuary. Time-lapse photography, visual monitoring, and aerial surveys were used to monitor the number of seals on land in daylight hours. Seals were monitored during two preconstruction periods (19 June–31 August 2001 and April–August 2002), a construction period of the wind farm (August 2002–December 2003), and a period of operation of the wind farm (December 2003–December 2004). Monthly aerial surveys were conducted to estimate the proportion of seals in the sanctuary relative to neighboring haul-out sites. From preconstruction to construction and through the first year of operation the number of harbor seals in the sanctuary increased at the same rate as the number of seals at the neighboring haul-out sites. No long-term effects on haul-out behavior were found due to construction and operation of the wind farm. However, a significant short-term decrease was seen in the number of seals present on land during sheet pile driving in or near the wind farm. Acoustic deterrents were utilized simultaneously to avoid hearing damage.  相似文献   

13.
We studied the impact of a wind farm (line of 25 small to medium sized turbines) on birds at the eastern port breakwater in Zeebrugge, Belgium, with special attention to the nearby breeding colony of Common Tern Sterna hirundo, Sandwich Tern Sterna sandvicensis and Little Tern Sterna albifrons. With the data of found collision fatalities under the wind turbines, and the correction factors for available search area, search efficiency and scavenging, we calculated that during the breeding seasons in 2004 and 2005, about 168 resp. 161 terns collided with the wind turbines located on the eastern port breakwater close to the breeding colony, mainly Common Terns and Sandwich Terns. The mean number of terns killed in 2004 and 2005 was 6.7 per turbine per year for the whole wind farm, and 11.2 resp. 10.8 per turbine per year for the line of 14 turbines on the sea-directed breakwater close to the breeding colony. The mean number of collision fatalities when including other species (mainly gulls) in 2004 and 2005 was 20.9 resp. 19.1 per turbine per year for the whole wind farm and 34.3 resp. 27.6 per turbine per year for 14 turbines on the sea-directed breakwater. The collision probability for Common Terns crossing the line of wind turbines amounted 0.110–0.118% for flights at rotor height and 0.007–0.030% for all flights. For Sandwich Tern this probability was 0.046–0.088% for flights at rotor height and 0.005–0.006% for all flights. The breeding terns were almost not disturbed by the wind turbines, but the relative large number of tern fatalities was determined as a significant negative impact on the breeding colony at the eastern port breakwater (additional mortality of 3.0–4.4% for Common Tern, 1.8–6.7% for Little Tern and 0.6–0.7% for Sandwich Tern). We recommend that there should be precautionary avoidance of constructing wind turbines close to any important breeding colony of terns or gulls, nor should artificial breeding sites be constructed near wind turbines, especially not within the frequent foraging flight paths.  相似文献   

14.
Avian collision risk at an offshore wind farm   总被引:1,自引:0,他引:1       下载免费PDF全文
We have been the first to investigate whether long-lived geese and ducks can detect and avoid a large offshore wind farm by tracking their diurnal migration patterns with radar. We found that the percentage of flocks entering the wind farm area decreased significantly (by a factor 4.5) from pre-construction to initial operation. At night, migrating flocks were more prone to enter the wind farm but counteracted the higher risk of collision in the dark by increasing their distance from individual turbines and flying in the corridors between turbines. Overall, less than 1% of the ducks and geese migrated close enough to the turbines to be at any risk of collision.  相似文献   

15.
The development of renewable energy technologies such as wind turbines forms a vital part of strategies to reduce greenhouse gas emissions worldwide. Although large wind farms generate the majority of wind energy, the small wind turbine (SWT, units generating <50 kW) sector is growing rapidly. In spite of evidence of effects of large wind farms on birds and bats, effects of SWTs on wildlife have not been studied and are likely to be different due to their potential siting in a wider range of habitats. We present the first study to quantify the effects of SWTs on birds and bats. Using a field experiment, we show that bird activity is similar in two distance bands surrounding a sample of SWTs (between 6-18 m hub height) and is not affected by SWT operation at the fine scale studied. At shorter distances from operating turbines (0-5 m), bat activity (measured as the probability of a bat "pass" per hour) decreases from 84% (71-91%) to 28% (11-54%) as wind speed increases from 0 to 14 m/s. This effect is weaker at greater distances (20-25 m) from operating turbines (activity decreases from 80% (65-89%) to 59% (32-81%)), and absent when they are braked. We conclude that bats avoid operating SWTs but that this effect diminishes within 20 m. Such displacement effects may have important consequences especially in landscapes where suitable habitat is limiting. Planning guidance for SWTs is currently lacking. Based on our results we recommend that they are sited at least 20 m away from potentially valuable bat habitat.  相似文献   

16.
Wind farming is a relatively new form of obtaining energy that does not cause air pollution or other forms of environmental degradation associated with fossil fuel technologies. However, their use impacts on the environment, and the current rate at which they are being put into operation, combined with poor understanding of their medium- and long-term impact, is a cause of concern. Wind farms represent a new source of impact and disturbance for birds that adds to the long list of disturbance factors caused by human activity, such as power lines, radio and television towers, highways, glass windows, the practice of poisoning, illegal hunting and overexploitation. Due to the precarious situation of several bird species and their decline, any additional cause of mortality may be significant and should give rise to increased attention and research. The aim of the present work is to analyse the effect of the “Sierra de Aguas” wind farm on bird density and abundance, flight behaviour, and bird mortality. Mortality rates did not increase due to the presence of the wind turbines. The results suggest that the presence and operation of the wind turbines did not have a clearly negative effect on passerine birds present in the region where wind farm is located. However, raptors used the space around the wind farm with lower frequency than prior to its existence, which represented a displacement of the home range of these species.  相似文献   

17.
The interaction between birds and wind turbines is an important factor to consider when a wind farm is constructed. A wind farm and two control areas were studied in Tarifa (Andalusia Province, southern Spain, 30STF590000–30STE610950). Variables were studied along linear transects in each area and observations of flight were also recorded from fixed points in the wind farm. The main purpose of our research was to determine the impact and the degree of flight behavioural change in birds flights resulting from a wind farm. Soaring birds can detect the presence of the turbines because they change their flight direction when they fly near the turbines and their abundance did not seem to be affected. This is also supported by the low amount of dead birds we found in the whole study period in the wind farm area. More studies will be necessary after and before the construction of wind farms to assess changes in passerine populations. Windfarms do not appear to be more detrimental to birds than other man-made structures.  相似文献   

18.
The benefits of low input farming on biodiversity and ecosystem services are already well-established, however most of these studies focus only on the focal field scales. We aimed to study whether these benefits exist at the whole farm scale, to find the main environmental driving effects on biodiversity at the whole farm scale in farms of different grassland grazing intensity, applying three well-known species diversity indicator groups of different ecological traits.Edaphic (earthworms), epigeic (spiders) and flying (bees) taxa were sampled in each identified habitat type within 18 low-input farms in Central Hungary, 2010. The number of habitat types, the number of grassland plots, the cumulative area of grasslands and habitat type had an effect on the species richness and abundance of spiders, while grassland grazing intensity influenced the species richness of bees. Both bees and spiders were sensitive to vegetation and weather conditions, resulting in more bees on flower-rich farms and those having higher temperature; and more spiders on farms with more heterogeneous vegetation structure and in low-wind areas. Relatively few earthworms were found in the whole study, and their abundance was not influenced by any of the farm composition and management variables.We conclude that local field management (grazing intensity of grassland patches) can have a farm scale effect, detectable on species diversity indicators that have high dispersal ability and strong connection to grasslands as important foraging sites (bees). However, other farmland biota (spiders) is also strongly determined by farmland composition and habitat diversity, therefore the maintenance of a mosaic within-farm habitat structure is strongly recommended. The application of earthworms as farmland composition or management indicators is strongly restricted because of their special needs of soil conditions.  相似文献   

19.
风力发电对鸟类的影响以及应对措施   总被引:2,自引:0,他引:2  
风能是一种清洁而稳定的可再生能源,风力发电可以减少全球温室气体排放,在减缓气候变化中发挥重要作用。然而,风电场的建设会对自然保护、生态环境和动物生存会造成一定的负面影响,其中对鸟类的影响尤为突出。本文通过查阅欧美等国风电场对鸟类及野生动物影响的研究文献,总结了风电场对鸟类的生存、迁徙和栖息地环境的影响,以及导致鸟类与风电塔相撞的影响因素,并提出了相关防范措施和方法。近十年中国风力发电事业发展迅猛,已经成为世界上风电装机容量最大的国家,但中国在评估风电场发展对野生动物影响方面的研究工作非常匮乏。目前,我国应借鉴国外相关研究管理经验,通过长期的连续观测,认真评估国内正在运行和在建风电场对于鸟类和其他野生动物的影响及潜在威胁。同时,应重视鸟类迁徙的基础研究,为新建风电场选址提供科学方案,保证风力发电与生态环境保护之间的和谐发展。  相似文献   

20.
Since the early 1990s, marine wind farms have become a reality, with at least 13 000 offshore wind turbines currently proposed in European waters. There are public concerns that these man-made structures will have a significant negative impact on the many bird populations migrating and wintering at sea. We assess the degree of usefulness and the limitations of different remote technologies for studying bird behaviour in relation to bird–turbine collisions at offshore wind farms. Radar is one of the more powerful tools available to describe the movement of birds in three-dimensional space. Although radar cannot measure bird–turbine collisions directly, it offers the opportunity to quantify input data for collision models. Thermal Animal Detection System (TADS) is an infra red-based technology developed as a means of gathering highly specific information about actual collision rates, and also for parameterizing predictive collision models. TADS can provide information on avoidance behaviour of birds in close proximity to turbine rotor-blades, flock size and flight altitude. This review also assesses the potential of other (some as yet undeveloped) techniques for collecting information on bird flight and behaviour, both pre- and post-construction of the offshore wind farms. These include the use of ordinary video surveillance equipment, microphone systems, laser range finder, ceilometers and pressure sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号