首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production of functional eggs requires meiosis to be coordinated with developmental signals. Oocytes arrest in prophase I to permit oocyte differentiation, and in most animals, a second meiotic arrest links completion of meiosis to fertilization. Comparison of oocyte maturation and egg activation between mammals, Caenorhabditis elegans, and Drosophila reveal conserved signaling pathways and regulatory mechanisms as well as unique adaptations for reproductive strategies. Recent studies in mammals and C. elegans show the role of signaling between surrounding somatic cells and the oocyte in maintaining the prophase I arrest and controlling maturation. Proteins that regulate levels of active Cdk1/cyclin B during prophase I arrest have been identified in Drosophila. Protein kinases play crucial roles in the transition from meiosis in the oocyte to mitotic embryonic divisions in C. elegans and Drosophila. Here we will contrast the regulation of key meiotic events in oocytes.  相似文献   

2.
Female meiosis is driven by the activities of two major kinases, cyclin-dependent kinase 1 (Cdk1) and mitogen-activated protein kinase (MAPK). To date, the role of MAPK in control of meiosis is thought to be restricted to maintaining metaphase II arrest through stabilizing Cdk1 activity. In this paper, we find that MAPK and Cdk1 play compensatory roles to suppress the anaphase-promoting complex/cyclosome (APC/C) activity early in prometaphase, thereby allowing accumulation of APC/C substrates essential for meiosis I. Furthermore, inhibition of MAPK around the onset of APC/C activity at the transition from meiosis I to meiosis II led to accelerated completion of meiosis I and an increase in aneuploidy at metaphase II. These effects appear to be mediated via a Cdk1/MAPK-dependent stabilization of the spindle assembly checkpoint, which when inhibited leads to increased APC/C activity. These findings demonstrate new roles for MAPK in the regulation of meiosis in mammalian oocytes.  相似文献   

3.
Nicotinamide Impairs Entry into and Exit from Meiosis I in Mouse Oocytes   总被引:1,自引:0,他引:1  
Following exit from meiosis I, mammalian oocytes immediately enter meiosis II without an intervening interphase, accompanied by rapid reassembly of a bipolar spindle that maintains condensed chromosomes in a metaphase configuration (metaphase II arrest). Here we study the effect of nicotinamide (NAM), a non-competitive pan-sirtuin inhibitor, during meiotic maturation in mouse oocytes. Sirtuins are a family of seven NAD+-dependent deacetylases (Sirt1-7), which are involved in multiple cellular processes and are emerging as important regulators in oocytes and embryos. We found that NAM significantly delayed entry into meiosis I associated with delayed accumulation of the Cdk1 co-activator, cyclin B1. GVBD was also inhibited by the Sirt2-specific inhibitor, AGK2, and in a very similar pattern to NAM, supporting the notion that as in somatic cells, NAM inhibits sirtuins in oocytes. NAM did not affect subsequent spindle assembly, chromosome alignment or the timing of first polar body extrusion (PBE). Unexpectedly, however, in the majority of oocytes with a polar body, chromatin was decondensed and a nuclear structure was present. An identical phenotype was observed when flavopiridol was used to induce Cdk1 inactivation during late meiosis I prior to PBE, but not if Cdk1 was inactivated after PBE when metaphase II arrest was already established, altogether indicating that NAM impaired establishment rather than maintenance of metaphase II arrest. During meiosis I exit in NAM-treated medium, we found that cyclin B1 levels were lower and inhibitory Cdk1 phosphorylation was increased compared with controls. Although activation of the anaphase-promoting complex-Cdc20 (APC-Cdc20) occurred on-time in NAM-treated oocytes, Cdc20 levels were higher in very late meiosis I, pointing to exaggerated APC-Cdc20-mediated proteolysis as a reason for lower cyclin B1 levels. Collectively, therefore, our data indicate that by disrupting Cdk1 regulation, NAM impairs entry into meiosis I and the establishment of metaphase II arrest.  相似文献   

4.
Animal oocytes undergo a highly conserved developmental arrest in prophase of meiosis I. Often this marks a period of rapid growth for the oocyte and is necessary to coordinate meiotic progression with the developmental events of oogenesis. In Drosophila, the oocyte develops within a 16-cell germline cyst. Throughout much of oogenesis, the oocyte remains in prophase of meiosis I. By contrast, its 15 mitotic sisters enter the endocycle and become polyploid in preparation for their role as nurse cells. How germline cysts establish and maintain these two independent cell cycles is unknown. We demonstrate a role for the p21(CIP)/p27(Kip1)/p57(Kip2)-like cyclin-dependent kinase inhibitor (cki) dacapo in the maintenance of the meiotic cycle in Drosophila oocytes. Our data indicate that it is through the differential regulation of the cki Dacapo that two modes of cell-cycle regulation are independently maintained within the common cytoplasm of ovarian cysts.  相似文献   

5.
In mammalian oocytes, meiosis arrests at prophase I. Meiotic resumption requires activation of Maturation-Promoting Factor (MPF), comprised of a catalytic Cyclin-dependent kinase-1 (Cdk1) and a regulatory subunit cyclin B, and results in germinal vesicle breakdown (GVBD). Cyclic AMP (cAMP)-mediated Protein Kinase A (PKA) activity sustains prophase arrest by inhibiting Cdk1. However, the link between PKA activity and MPF inhibition remains unclear. Cdc25 phosphatases can activate Cdks by removing inhibitory phosphates from Cdks. Thus one method for sustaining prophase arrest could be inhibition of the activity of the Cdc25 protein required for MPF activation. Indeed, studies in Xenopus identify Cdc25C as a target of PKA activity in meiosis. However, in mice, studies suggest that Cdc25B is the phosphatase essential for GVBD and, therefore, the likely target of PKA activity. To assess these questions, we targeted a potential PKA substrate, a highly conserved serine 321 residue of Cdc25B and evaluated the effect on oocyte maturation. A Cdc25B-Ser321Ala point mutant mRNA induces GVBD when injected into prophase-arrested oocytes more rapidly than wild type mRNA. Using fluorescently-tagged proteins we also determined that the mutant protein enters the nucleus more rapidly than its wildtype counterpart. These data suggest that phosphorylation of the Ser321 residue plays a key role in the negative regulation and localization of Cdc25B during prophase arrest. PKA also phosphorylates a wildtype Cdc25B protein but not a Ser321Ala mutant protein in vitro. Mutation of Ser321 in Cdc25B also affects its association with a sequestering protein, 14-3-3. Our studies suggest that Cdc25B is a direct target of PKA in prophase-arrested oocytes and that Cdc25B phosphorylation results in its inhibition and sequestration by the 14-3-3 protein.  相似文献   

6.
Cyclin A (CycA), the only essential mitotic cyclin in Drosophila, is cytoplasmic during interphase and accumulates in the nucleus during prophase. We show that interphase localization is mediated by Leptomycin B (LMB)-sensitive nuclear export. This is a feature shared with human CyclinB1, and it is assumed that nuclear accumulation is necessary for mitotic entry. Here, we tested if the unique mitotic function of CycA requires nuclear accumulation. We fused subcellular localization signals to CycA and tested their mitotic capability. Surprisingly, nuclear accumulation was not required, and even a membrane-tethered form of CycA was able to induce mitosis. We noted that Cyclin B (CycB) protein disappears prematurely in CycA mutants, reminiscent of rca1 mutants. Rca1 is an inhibitor of Fizzy-related-APC/C activity, and in rca1 mutants, mitotic cyclins are degraded in G2 of the 16(th) embryonic cell cycle. Overexpression of Rca1 can restore mitosis in CycA mutants, indicating that the mitotic failure of CycA mutants is caused by premature activation of the APC/C. The essential mitotic function of CycA is therefore not the activation of numerous mitotic substrates by Cdk1-dependent phosphorylation. Rather, CycA-dependent kinase activity is required to inhibit one inhibitor of mitosis, the Fzr protein.  相似文献   

7.
8.
Progression through meiosis requires two waves of maturation promoting factor (MPF) activity corresponding to meiosis I and meiosis II. Frog oocytes contain a pool of inactive "pre-MPF" consisting of cyclin-dependent kinase 1 bound to B-type cyclins, of which we now find three previously unsuspected members, cyclins B3, B4 and B5. Protein synthesis is required to activate pre-MPF, and we show here that this does not require new B-type cyclin synthesis, probably because of a large maternal stockpile of cyclins B2 and B5. This stockpile is degraded after meiosis I and consequently, the activation of MPF for meiosis II requires new cyclin synthesis, principally of cyclins B1 and B4, whose translation is strongly activated after meiosis I. If this wave of new cyclin synthesis is ablated by antisense oligonucleotides, the oocytes degenerate and fail to form a second meiotic spindle. The effects on meiotic progression are even more severe when all new protein synthesis is blocked by cycloheximide added after meiosis I, but can be rescued by injection of indestructible B-type cyclins. B-type cyclins and MPF activity are required to maintain c-mos and MAP kinase activity during meiosis II, and to establish the metaphase arrest at the end of meiotic maturation. We discuss the interdependence of c-mos and MPF, and reveal an important role for translational control of cyclin synthesis between the two meiotic divisions.  相似文献   

9.
Reinitiation of meiosis in oocytes usually occurs as a two-step process during which release from the prophase block is followed by an arrest in metaphase of the first or second meiotic division [metaphase I (MI) or metaphase II (MII)]. The mechanism of MI arrest in meiosis is poorly understood, although it is a widely observed phenomenon in invertebrates. The blockage of fully grown starfish oocytes in prophase of meiosis I is released by the hormone 1-methyladenine. It has been believed that meiosis of starfish oocytes proceeds completely without MI or MII arrest, even when fertilization does not occur. Here we show that MI arrest of starfish oocytes occurs in the ovary after germinal vesicle breakdown. This arrest is maintained both by the Mos/MEK/MAP kinase pathway and the blockage of an increase of intracellular pH in the ovary before spawning. Immediately after spawning into seawater, activation of Na+/H+ antiporters via a heterotrimeric G protein coupling to a 1-methyladenine receptor in the oocyte leads to an intracellular pH increase that can overcome the MI arrest even in the presence of active MAP kinase.  相似文献   

10.
Xenopus oocytes are arrested at the G2/prophase boundary of meiosis I and enter meiosis in response to progesterone. A hallmark of meiosis is the absence of DNA replication between the successive cell division phases meiosis I (MI) and meiosis II (MII). After the MI-MII transition, Xenopus eggs are locked in metaphase II by the cytostatic factor (CSF) arrest to prevent parthenogenesis. Early Mitotic Inhibitor 1 (Emi1) maintains CSF arrest by inhibiting the ability of the Anaphase Promoting Complex (APC) to direct the destruction of cyclin B. To investigate whether Emi1 has an earlier role in meiosis, we injected Xenopus oocytes with neutralizing antibodies against Emi1 at G2/prophase and during the MI-MII transition. Progesterone-treated G2/prophase oocytes injected with anti-Emi1 antibody fail to activate Maturation Promoting Factor (MPF), a complex of cdc2/cyclin B, and the MAPK pathway, and do not undergo germinal vesicle breakdown (GVBD). Injection of purified ?90 cyclin B protein or blocking anti-Emi1 antibody with purified Emi1 protein rescues these meiotic processes in Emi1-neutralized oocytes. Acute inhibition of Emi1 in progesterone treated oocytes immediately after GVBD causes rapid loss of cdc2 activity with simultaneous loss of cyclin B levels and inactivation of the MAPK pathway. These oocytes decondense their chromosomes and enter a DNA replication phase instead of progressing to MII. Prior ablation of Cdc20, addition of methyl-ubiquitin, or addition of indestructible ?90 cyclin B rescues the MI-MII transition in Emi1 inhibited oocytes.  相似文献   

11.
Cyclin-dependent kinases (CDKs) are central regulators of eukaryotic cell cycle progression. In contrast to interphase CDKs, the mitotic phase CDK1 is the only CDK capable of driving the entire cell cycle and it can do so from yeast to mammals. Interestingly, plants and the marine chordate, Oikopleura dioica, possess paralogs of the highly conserved CDK1 regulator. However, whereas in plants the 2 CDK1 paralogs replace interphase CDK functions, O. dioica has a full complement of interphase CDKs in addition to its 5 odCDK1 paralogs. Here we show specific sub-functionalization of odCDK1 paralogs during oogenesis. Differential spatiotemporal dynamics of the odCDK1a, d and e paralogs and the meiotic polo-like kinase 1 (Plk1) and aurora kinase determine the subset of meiotic nuclei in prophase I arrest that will seed growing oocytes and complete meiosis. Whereas we find odCDK1e to be non-essential, knockdown of the odCDK1a paralog resulted in the spawning of non-viable oocytes of reduced size. Knockdown of odCDK1d also resulted in the spawning of non-viable oocytes. In this case, the oocytes were of normal size, but were unable to extrude polar bodies upon exposure to sperm, because they were unable to resume meiosis from prophase I arrest, a classical function of the sole CDK1 during meiosis in other organisms. Thus, we reveal specific sub-functionalization of CDK1 paralogs, during the meiotic oogenic program.  相似文献   

12.
Mammalian oocytes in ovarian follicles are arrested in meiosis at prophase I. This arrest is maintained until ovulation, upon which the oocyte exits from this arrest, progresses through meiosis I and to metaphase of meiosis II. The progression from prophase I to metaphase II, known as meiotic maturation, is mediated by signals that coordinate these transitions in the life of the oocyte. ENSA (α-endosulfine) and ARPP19 (cAMP-regulated phosphoprotein-19) have emerged as regulators of M-phase, with function in inhibition of protein phosphatase 2A (PP2A) activity. Inhibition of PP2A maintains the phosphorylated state of CDK1 substrates, thus allowing progression into and/or maintenance of an M-phase state. We show here ENSA in mouse oocytes plays a key role in the progression from prophase I arrest into M-phase of meiosis I. The majority of ENSA-deficient oocytes fail to exit from prophase I arrest. This function of ENSA in oocytes is dependent on PP2A, and specifically on the regulatory subunit PPP2R2D (also known as B55δ). Treatment of ENSA-deficient oocytes with Okadaic acid to inhibit PP2A rescues the defect in meiotic progression, with Okadaic acid-treated, ENSA-deficient oocytes being able to exit from prophase I arrest. Similarly, oocytes deficient in both ENSA and PPP2R2D are able to exit from prophase I arrest to an extent similar to wild-type oocytes. These data are evidence of a role for ENSA in regulating meiotic maturation in mammalian oocytes, and also have potential relevance to human oocyte biology, as mouse and human have genes encoding both Arpp19 and Ensa.  相似文献   

13.
CDK1-cyclin B1 is a universal cell cycle kinase required for mitotic/meiotic cell cycle entry and its activity needs to decline for mitotic/meiotic exit. During their maturation, mouse oocytes proceed through meiosis I and arrest at second meiotic metaphase with high CDK1-cyclin B1 activity. Meiotic arrest is achieved by the action of a cytostatic factor (CSF), which reduces cyclin B1 degradation. Meiotic arrest is broken by a Ca2+ signal from the sperm that accelerates it. Here we visualised degradation of cyclin B1::GFP in oocytes and found that its degradation rate was the same for both meiotic divisions. Ca2+ was the necessary and sufficient trigger for cyclin B1 destruction during meiosis II; but it played no role during meiosis I and furthermore could not accelerate cyclin B1 destruction during this time. The ability of Ca2+ to trigger cyclin B1 destruction developed in oocytes following a restabilisation of cyclin B1 levels at about 12 h of culture. This was independent of actual first polar body extrusion. Thus, in metaphase I arrested oocytes, Ca2+ would induce cyclin B1 destruction and the first polar body would be extruded. In contrast to some reports in lower species, we found no evidence that oocyte activation was associated with an increase in 26S proteasome activity. We therefore conclude that Ca2+ mediates cyclin B1 degradation by increasing the activity of an E3 ubiquitin ligase. However, this stimulation occurs only in the presence of the ubiquitin ligase inhibitor CSF. We propose a model in which Ca2+ directly stimulates destruction of CSF during mammalian fertilisation.  相似文献   

14.
Fertilization of clam oocytes initiates a series of cell divisions, of which the first three--meiosis I, meiosis II, and the first mitotic division--are highly synchronous. After fertilization, protein synthesis is required for the successful completion of every division except meiosis I. When protein synthesis is inhibited, entry into meiosis I and the maintenance of M phase for the normal duration of meiosis occur normally, but the chromosomes fail to interact correctly with the spindle in meiosis II metaphase. By contrast, inhibition of protein synthesis immediately after completion of meiosis or mitosis stops cells entering the next mitosis. We describe the behavior of cyclins A and B in relation to these "points of no return." The cyclins are synthesized continuously and are rapidly destroyed shortly before the metaphase-anaphase transition of the mitotic cell cycles, with cyclin A being degraded in advance of cyclin B. Cyclin destruction normally occurs during a 5-min window in mitosis, but in the monopolar mitosis that occurs after parthenogenetic activation of clam oocytes, or when colchicine is added to fertilized eggs about to enter first mitosis, the destruction of cyclin B is strongly delayed, whereas proteolysis of cyclin A is maintained in an activated state for the duration of metaphase arrest. Under either of these abnormal conditions, inhibition of protein synthesis causes a premature return to interphase that correlates with the time when cyclin B disappears.  相似文献   

15.
Heterochromatic homology ensures the segregation of achiasmate chromosomes during meiosis I in Drosophila melanogaster females, perhaps as a consequence of the heterochromatic threads that connect achiasmate homologs during prometaphase I. Here, we ask how these threads, and other possible heterochromatic entanglements, are resolved prior to anaphase I. We show that the knockdown of Topoisomerase II (Top2) by RNAi in the later stages of meiosis results in a specific defect in the separation of heterochromatic regions after spindle assembly. In Top2 RNAi-expressing oocytes, heterochromatic regions of both achiasmate and chiasmate chromosomes often failed to separate during prometaphase I and metaphase I. Heterochromatic regions were stretched into long, abnormal projections with centromeres localizing near the tips of the projections in some oocytes. Despite these anomalies, we observed bipolar spindles in most Top2 RNAi-expressing oocytes, although the obligately achiasmate 4th chromosomes exhibited a near complete failure to move toward the spindle poles during prometaphase I. Both achiasmate and chiasmate chromosomes displayed defects in biorientation. Given that euchromatic regions separate much earlier in prophase, no defects were expected or observed in the ability of euchromatic regions to separate during late prophase upon knockdown of Top2 at mid-prophase. Finally, embryos from Top2 RNAi-expressing females frequently failed to initiate mitotic divisions. These data suggest both that Topoisomerase II is involved in the resolution of heterochromatic DNA entanglements during meiosis I and that these entanglements must be resolved in order to complete meiosis.  相似文献   

16.

Background  

Meiosis in higher vertebrates shows a dramatic sexual dimorphism: germ cells enter meiosis and arrest at prophase I during embryogenesis in females, whereas in males they enter mitotic arrest during embryogenesis and enter meiosis only after birth. Here we report the molecular analysis of meiosis onset in the chicken model and provide evidence for conserved regulation by retinoic acid.  相似文献   

17.
Meiosis in mammalian females is marked by two arrest points, at prophase I and metaphase II, which must be tightly regulated in order to produce a haploid gamete at the time of fertilization. The transition metal zinc has emerged as a necessary and dynamic regulator of the establishment, maintenance, and exit from metaphase II arrest, but the roles of zinc during prophase I arrest are largely unknown. In this study, we investigate the mechanisms of zinc regulation during the first meiotic arrest. Disrupting zinc availability in the prophase I arrested oocyte by treatment with the heavy metal chelator N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN) causes meiotic resumption even in the presence of pharmacological inhibitors of meiosis. We further show that the MOS-MAPK pathway mediates zinc-dependent prophase I arrest, as the pathway prematurely activates during TPEN-induced meiotic resumption. Conversely, inhibition of the MOS-MAPK pathway maintains prophase I arrest. While prolonged zinc insufficiency ultimately results in telophase I arrest, early and transient exposure of oocytes to TPEN is sufficient to induce meiotic resumption and bypass the telophase I block, allowing the formation of developmentally competent eggs upon parthenogenetic activation. These results establish zinc as a crucial regulator of meiosis throughout the entirety of oocyte maturation, including the maintenance of and release from the first and second meiotic arrest points.  相似文献   

18.
《The Journal of cell biology》1995,128(6):1145-1162
Cell cycle progression for postembryonic cells requires the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-R), the enzyme which catalyzes the production of the isoprenoid precursor, mevalonate. In this study, we examine the requirements of HMG-R activity for cell cycle progression during the meiotic and early mitotic divisions using oocytes and dividing embryos from the surf clam, Spisula solidissima. Using two different inhibitors of HMG-R, we find that the activity of this enzyme appears to be required at three distinct points of the cell cycle during meiosis. Depending on the stage at which these inhibitors are added to synchronous clam cultures, a reversible cell cycle block is triggered at the time of activation or at metaphase of either meiosis I or II, whereas there is not block to the mitotic cell cycle. Inhibition of HMG-R activity in activated oocytes does not affect the transient activation of p42MAPK but results in a block at metaphase of meiosis I that is accompanied by the stabilization of cyclins A and B and p34cdc2 kinase activity. Our results suggest that metabolites from the mevalonate biosynthetic pathway can act to influence the process of activation, as well as the events later in the cell cycle that lead to cyclin proteolysis and the exit from M phase during clam meiosis.  相似文献   

19.
BACKGROUND: The importance of mitotic spindle checkpoint control has been well established during somatic cell divisions. The metaphase-to-anaphase transition takes place only when all sister chromatids have been properly attached to the bipolar spindle and are aligned at the metaphase plate. Failure of this checkpoint may lead to unequal separation of sister chromatids. On the contrary, the existence of such a checkpoint during the first meiotic division in mammalian oocytes when homologous chromosomes are segregated has remained controversial. RESULTS: Here, we show that mouse oocytes respond to spindle damage by a transient and reversible cell cycle arrest in metaphase I with high Maturation Promoting Factor (MPF) activity. Furthermore, the mitotic checkpoint protein Mad2 is present throughout meiotic maturation and is recruited to unattached kinetochores. Overexpression of Mad2 in meiosis I leads to a cell cycle arrest in metaphase I. Expression of a dominant-negative Mad2 protein interferes with proper spindle checkpoint arrest. CONCLUSIONS: Errors in meiosis I cause missegregation of chromosomes and can result in the generation of aneuploid embryos with severe birth defects. In human oocytes, failures in spindle checkpoint control may be responsible for the generation of trisomies (e.g., Down Syndrome) due to chromosome missegregation in meiosis I. Up to now, the mechanisms ensuring correct separation of chromosomes in meiosis I remained unknown. Our study shows for the first time that a functional Mad2-dependent spindle checkpoint exists during the first meiotic division in mammalian oocytes.  相似文献   

20.
Meiosis is often described as a special case of cell division since it differs from mitosis in having two nuclear divisions without an intervening S-phase. It will be of great interest to uncover what molecular mechanisms underlie these special features of meiosis. We previously reported that the tardy asynchronous meiosis (tam) mutant of Arabidopsis (Arabidopsis thaliana) is slower in cell cycle progression in male meiosis. Here we report that TAM encodes the A-type cyclin, CYCA1;2. The point mutation in tam replaced a conserved threonine with an isoleucine in the linker region between the alpha4 and alpha5 helices of the first cyclin fold. By studying the dynamics of a CYCA1;2-green fluorescent protein fusion protein under the control of the CYCA1;2 promoter, we found that the fusion protein was most abundant at pachytene, but was undetectable from late prophase I until telophase II. Nonetheless, cell cycle progression in tam was delayed in both pachytene and meiosis II. We conclude either that the CYCA1;2 produced in prophase I indirectly regulates meiosis II progression, or that a very low level of CYCA1;2 directly regulates meiosis II progression. Either of these scenarios is a deviation from the typical mode of action of mitotic cyclins in mitosis and meiosis I, in which each nuclear division is coupled with a peak of expression of mitotic cyclins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号