首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The origin of the fundamental behavioral differences between humans and our closest living relatives is one of the central issues of evolutionary anthropology. The prominent, chimpanzee-based referential model of early hominin behavior has recently been challenged on the basis of broad multispecies comparisons and newly discovered fossil evidence. Here, we argue that while behavioral data on extant great apes are extremely relevant for reconstruction of ancestral behaviors, these behaviors should be reconstructed trait by trait using formal phylogenetic methods. Using the widely accepted hominoid phylogenetic tree, we perform a series of character optimization analyses using 65 selected life-history and behavioral characters for all extant hominid species. This analysis allows us to reconstruct the character states of the last common ancestors of Hominoidea, Hominidae, and the chimpanzee–human last common ancestor. Our analyses demonstrate that many fundamental behavioral and life-history attributes of hominids (including humans) are evidently ancient and likely inherited from the common ancestor of all hominids. However, numerous behaviors present in extant great apes represent their own terminal autapomorphies (both uniquely derived and homoplastic). Any evolutionary model that uses a single extant species to explain behavioral evolution of early hominins is therefore of limited use. In contrast, phylogenetic reconstruction of ancestral states is able to provide a detailed suite of behavioral, ecological and life-history characters for each hypothetical ancestor. The living great apes therefore play an important role for the confident identification of the traits found in the chimpanzee–human last common ancestor, some of which are likely to represent behaviors of the fossil hominins.  相似文献   

2.
Theories of ecological diversification make predictions about the timing and ordering of character state changes through history. These theories are testable by “reconstructing” ancestor states using phylogenetic trees and measurements of contemporary species. Here we use maximum likelihood to estimate and evaluate the accuracy of ancestor reconstructions. We present likelihoods of discrete ancestor states and derive probability distributions for continuous ancestral traits. The methods are applied to several examples: diets of ancestral Darwin's finches; origin of inquilinism in gall wasps; microhabitat partitioning and body size evolution in scrubwrens; digestive enzyme evolution in artiodactyl mammals; origin of a sexually selected male trait, the sword, in platies and swordtails; and evolution of specialization in Anolis lizards. When changes between discrete character states are rare, the maximum-likelihood results are similar to parsimony estimates. In this case the accuracy of estimates is often high, with the exception of some nodes deep in the tree. If change is frequent then reconstructions are highly uncertain, especially of distant ancestors. Ancestor states for continuous traits are typically highly uncertain. We conclude that measures of uncertainty are useful and should always be provided, despite simplistic assumptions about the probabilistic models that underlie them. If uncertainty is too high, reconstruction should be abandoned in favor of approaches that fit different models of trait evolution to species data and phylogenetic trees, taking into account the range of ancestor states permitted by the data.  相似文献   

3.
Mapping morphological characters on a molecular-based phytogeny enabled examination of character evolution and an historical perspective into evolutionary processes, both of which are important aspects of systematic research and comparative biology. In this study, 63 morphological characters from hepialid moths in New Zealand were mapped on a phylogenetic tree reconstructed from mitochondrial DNA COI & II sequence data. Morphological characters hypothesized to be synapomorphies for the New Zealand 'Oxycanus' lineages and 'Oxycanus' lineage s.s. were confirmed to be homologous when mapped on the COI & II phytogeny. The direction of character state transformation was determined for five characters, with members of the Aenetus and Aoraia lineages exhibiting hypothesized ancestral states. Male genitalic characters were less homoplasious than other character partitions and covaried significandy with phytogeny.  相似文献   

4.
Although phylogenetic reconstruction of ancestral character states is becoming an increasingly common technique for studying evolution, few researchers have assessed the reliability of these reconstructions. Here I test for congruence between a phylogenetic reconstruction and a widely accepted scenario based on independent lines of evidence. I used Livezey's (1991) phylogeny to reconstruct ancestral states of plumage dichromatism in dabbling ducks (Anatini). Character state mapping reconstructs monochromatic ancestors for the genus Anas as well as most of its main clades. This reconstruction differs strongly from the widely accepted scenario of speciation and plumage evolution in the group (e.g., Delacour and Mayr 1945; Sibley 1957). This incongruence may occur because two standard assumptions of character state reconstruction are probably not met in this case. Violating either of these two assumptions would be a source of error sufficient to create misleading reconstructions. The first assumption that probably does not apply to ducks is that terminal taxa, in this case species, are monophyletic. Many of the widespread dichromatic species of ducks may be paraphyletic and ancestral to isolated monochromatic species. Three lines of evidence support this scenario: population-level phylogenies, biogeography, and vestigial plumage patterns. The second assumption that probably does not apply to duck plumage color is that gains and losses of character states are equally likely. Four lines of evidence suggest that dichromatic plumage might be lost more easily than gained: weak female preferences for bright male plumage, biases toward the loss of sexually dichromatic characters, biases toward the loss of complex characters, and repeated loss of dichromatism in other groups of birds. These seven lines of evidence support the accepted scenario that widespread dichromatic species repeatedly budded off isolated monochromatic species. Drift and genetic biases probably caused the easy loss of dichromatism in ducks and other birds during peripatric speciation. In order to recover the accepted scenario using Livezey's tree, losses of dichromatism must be five times more likely than gains. The results of this study caution against the uncritical use of unordered parsimony as the sole criterion for inferring ancestral states. Detailed population-level sampling is needed and altered transformation weighting may be warranted in ducks and in many other groups and character types with similar attributes.  相似文献   

5.
6.
Choosing among alternative trees of multigene families   总被引:4,自引:0,他引:4  
Estimation of gene trees is the first step in testing alternative hypotheses about the evolution of multigene families. The standard practice for inferring gene family history is to construct trees that meet some objective criteria based on the fit of the character state changes (nucleotide or amino acid changes) to the gene tree. Unfortunately, analysis of character state data can be misleading. In addition, this approach ignores information about the relationships of the species from which the genes have been sampled. In this paper I explore using statistics of fit between the character data and gene trees and the reconciliation of the gene and species trees for choosing among alternative evolutionary hypotheses of gene families. In particular, I advocate a two-pronged strategy for choosing among alternative gene trees. First, the character data are used to define a set of acceptable gene trees (i.e., trees that are not significantly different from the minimum length tree). Next, the set of acceptable gene trees is reconciled with a known species tree, and the gene tree requiring the fewest number of gene duplications and losses is adopted as the best estimate of evolutionary history. The approach is illustrated using three gene families: BMP, EGR, and LDH.  相似文献   

7.
Abstract.— Methods of ancestor reconstruction are important tools for evolutionary inference that are difficult to test empirically because ancestral states are rarely known with certainty. We evaluated reconstruction methods for continuous phenotypic characters using taxa from an experimentally generated bacteriophage phylogeny. Except for one slowly evolving character, the estimated ancestral states of continuous phenotypic characters were highly inaccurate and biased, even when including a known ancestor at the root. This error was caused by a directional trend in character evolution and by rapid rates of character evolution. Computer simulations confirmed that such factors affect reconstruction of continuous characters in general. We also used phenotypic viral characters to evaluate two methods that attempt to estimate the correlation between characters during evolution. Whereas a nonphylogenetic regression was relatively inaccurate and biased, independent contrasts accurately estimated the correlation between characters with little bias.  相似文献   

8.
SUMMARY The reconstruction of ancestors is a central aim of comparative anatomy and evolutionary developmental biology, not least in attempts to understand the relationship between developmental and organismal evolution. Inferences based on living taxa can and should be tested against the fossil record, which provides an independent and direct view onto historical character combinations. Here, we consider the nature of the last common ancestor of living ecdysozoans through a detailed analysis of palaeoscolecids, an early and extinct group of introvert‐bearing worms that have been proposed to be ancestral ecdysozoans. In a review of palaeoscolecid anatomy, including newly resolved details of the internal and external cuticle structure, we identify specific characters shared with various living nematoid and scalidophoran worms, but not with panarthropods. Considered within a formal cladistic context, these characters provide most overall support for a stem‐priapulid affinity, meaning that palaeoscolecids are far‐removed from the ecdysozoan ancestor. We conclude that previous interpretations in which palaeoscolecids occupy a deeper position in the ecdysozoan tree lack particular morphological support and rely instead on a paucity of preserved characters. This bears out a more general point that fossil taxa may appear plesiomorphic merely because they preserve only plesiomorphies, rather than the mélange of primitive and derived characters anticipated of organisms properly allocated to a position deep within animal phylogeny.  相似文献   

9.
Random trees and random characters can be used in null models for testing phylogenetic hypothesis. We consider three interpretations of random trees: first, that trees are selected from the set of all possible trees with equal probability; second, that trees are formed by random speciation or coalescence (equivalent); and third, that trees are formed by a series of random partitions of the taxa. We consider two interpretations of random characters: first, that the number of taxa with each state is held constant, but the states are randomly reshuffled among the taxa; and second, that the probability each taxon is assigned a particular state is constant from one taxon to the next. Under null models representing various combinations of randomizations of trees and characters, exact recursion equations are given to calculate the probability distribution of the number of character state changes required by a phylogenetic tree. Possible applications of these probability distributions are discussed. They can be used, for example, to test for a panmictic population structure within a species or to test phylogenetic inertia in a character's evolution. Whether and how a null model incorporates tree randomness makes little difference to the probability distribution in many but not all circumstances. The null model's sense of character randomness appears more critical. The difficult issue of choosing a null model is discussed.  相似文献   

10.
The recognition of ancestors is problematic using cladistic logic alone because monophyletic groups (clades) are defined by shared derived characters (synapomorphies) which their ancestors must have lacked. Nevertheless, ancestors possess three key attributes. They belong within a larger, paraphyletic group. They will be morphologically most similar to their immediate descendants, and they evolved before any and all of their descendants. Recognition of ancestors requires both morphological and stratigraphic data and, in practice, the task is to reduce the size of the paraphyletic group within which the ancestor must lie. All ancestor‐descendant relationships are phylogenetic hypotheses. Despite the legendary incompleteness of the fossil record, testing the validity of available data is far more difficult for character analysis than for stratigraphy.  相似文献   

11.
SUMMARY Traits from early development mapped onto phylogenetic trees can potentially offer insight into the evolutionary history of development by inferring the states of those characters among ancestors at nodes in the phylogeny. A key and often-overlooked aspect of such mapping is the underlying model of character evolution. Without a well-supported and realistic model ("nothing"), character mapping of ancestral traits onto phylogenetic trees might often return results ("something") that lack a sound basis. Here we reconsider a challenging case study in this area of evolutionary developmental biology: the inference of ancestral states for ecological and morphological characters in the reproduction and larval development of asterinid sea stars. We apply improved analytical methods to an expanded set of asterinid phylogenetic data and developmental character states. This analysis shows that the new methods might generally offer some independent insight into choice of a model of character evolution, but that in the specific case of asterinid sea stars the quantitative features of the model (especially the relative probabilities of different directions of change) have an important effect on the results. We suggest caution in applying ancestral state reconstructions in the absence of an independently corroborated model of character evolution, and highlight the need for such modeling in evolutionary developmental biology.  相似文献   

12.
The taxonomic value and evolutionary significance of 30 leaf epidermal characters from 238 samples representing 127 species of all seven genera in the tribe Gaultherieae (Ericaceae) and two outgroup genera were investigated by scanning electron microscopy. The character states were coded and optimized onto a maximum‐likelihood tree based on previous molecular data with Fitch parsimony and hierarchical Bayesian analysis to trace the evolution of character states throughout all internodes in the phylogenetic tree for Gaultherieae. Leaf epidermal characters were found to be largely consistent within species, but highly variable at interspecific and higher taxonomic levels. The most recent common ancestral states of 15 characters diagnosed various lineages recovered from prior studies, some with no prior morphological support. Relatively high frequencies of state change occur in the eastern Asian clade Gaultheria series Gymnobotrys + Diplycosia, the American clade G. subsection Dasyphyta p.p., the core East Asian clade and the Australia/New Zealand clade. The characters with the highest frequencies of state change are the outer stomatal ledge ornamentation type, the stomatal apparatus level, stomatal density and area, and the type of abaxial trichomes. These character state change patterns may provide insight into the ecological adaptions of Gaultherieae during their evolutionary history. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 686–710.  相似文献   

13.
Although a large body of work investigating tests of correlated evolution of two continuous characters exists, hypotheses such as character displacement are really tests of whether substantial evolutionary change has occurred on a particular branch or branches of the phylogenetic tree. In this study, we present a methodology for testing such a hypothesis using ancestral character state reconstruction and simulation. Furthermore, we suggest how to investigate the robustness of the hypothesis test by varying the reconstruction methods or simulation parameters. As a case study, we tested a hypothesis of character displacement in body size of Caribbean Anolis lizards. We compared squared-change, weighted squared-change, and linear parsimony reconstruction methods, gradual Brownian motion and speciational models of evolution, and several resolution methods for linear parsimony. We used ancestor reconstruction methods to infer the amount of body size evolution, and tested whether evolutionary change in body size was greater on branches of the phylogenetic tree in which a transition from occupying a single-species island to a two-species island occurred. Simulations were used to generate null distributions of reconstructed body size change. The hypothesis of character displacement was tested using Wilcoxon Rank-Sums. When tested against simulated null distributions, all of the reconstruction methods resulted in more significant P-values than when standard statistical tables were used. These results confirm that P-values for tests using ancestor reconstruction methods should be assessed via simulation rather than from standard statistical tables. Linear parsimony can produce an infinite number of most parsimonious reconstructions in continuous characters. We present an example of assessing the robustness of our statistical test by exploring the sample space of possible resolutions. We compare ACCTRAN and DELTRAN resolutions of ambiguous character reconstructions in linear parsimony to the most and least conservative resolutions for our particular hypothesis.  相似文献   

14.
Over the past two decades, behavioural biologists and ecologists have made effective use of the comparative method, but have often stopped short of adopting an explicitly phylogenetic approach. We examined 68 behaviour and life history (BLH) traits of 15 penguin species to: (i) infer penguin phylogeny, (ii) assess homology of behavioural characters, and (iii) evaluate hypotheses about character evolution and ancestral states. Parsimony analysis of the BLH dataset found either two shortest trees (characters coded as unordered) or a single shortest tree (characters coded as a combination of unordered and Dollo). The BLH data had significant structure. Kishino–Hasegawa tests indicated that BLH trees were significantly different from most previous estimates of penguin phylogeny. The BLH phylogeny generated from Dollo characters appeared to be less accurate than the tree derived from the completely unordered dataset. Dividing BLH data into display and non‐display traits resulted in no significant differences in level of homoplasy and no difference in the accuracy of phylogeny. Tests for homology of BLH traits were performed by mapping the characters onto a molecular tree. Assuming that independent gains are less likely than losses of character states, 65 of the 68 characters were likely to be homologous across taxa, and at least several characters appeared to have been stable since the origin of modern penguins around 30 Myr. Finally, the likely BLH traits of the most recent common ancestor of extant penguins were reconstructed from character states along the internal branch leading to the penguins. This analysis suggested that the “proto‐penguin” probably had a similar life history to current temperate penguins but few ritualized behaviours. A southern, cool‐temperate origin of penguins is suggested.  相似文献   

15.
The evolutionary history of gains and losses of vegetative reproductive propagules (soredia) in Porpidia s.l., a group of lichen-forming ascomycetes, was clarified using Bayesian Markov chain Monte Carlo (MCMC) approaches to monophyly tests and a combined MCMC and maximum likelihood approach to ancestral character state reconstructions. The MCMC framework provided confidence estimates for the reconstructions of relationships and ancestral character states, which formed the basis for tests of evolutionary hypotheses. Monophyly tests rejected all hypotheses that predicted any clustering of reproductive modes in extant taxa. In addition, a nearest-neighbor statistic could not reject the hypothesis that the vegetative reproductive mode is randomly distributed throughout the group. These results show that transitions between presence and absence of the vegetative reproductive mode within Porpidia s.l. occurred several times and independently of each other. Likelihood reconstructions of ancestral character states at selected nodes suggest that--contrary to previous thought--the ancestor to Porpidia s.l. already possessed the vegetative reproductive mode. Furthermore, transition rates are reconstructed asymmetrically with the vegetative reproductive mode being gained at a much lower rate than it is lost. A cautious note has to be added, because a simulation study showed that the ancestral character state reconstructions were highly dependent on taxon sampling. However, our central conclusions, particularly the higher rate of change from vegetative reproductive mode present to absent than vice versa within Porpidia s.l., were found to be broadly independent of taxon sampling.  相似文献   

16.
Two qualitative taxonomic characters are potentially compatible if the states of each can be ordered into a character state tree in such a way that the two resulting character state trees are compatible. The number of potentially compatible pairs (NPCP) of qualitative characters from a data set may be considered to be a measure of its phylogenetic randomness. The value of NPCP depends on the number of evolutionary units (EUs), the number of characters, the number of states in the characters, the distributions of EUs among these states, and the amount and distribution of missing information and so does not directly indicate degree of phylogenetic randomness. Thus, for an observed data set, we used Monte Carlo methods to estimate the probability that a data set chosen equiprobably from among those identical (with respect to all the other above determining features) to the observed data set would have as high (or low) an NPCP as the observed data set. This probability, the realized significance of the observed NPCP, is attractive as an indication of phylogenetic randomness because it does not require the assumptions made by other such methods: No character state trees are assumed and consequently, only potential compatibility can be determined; no particular method of phylogenetic estimation is assumed; and no phylogenetic trees are constructed. We determined the values and significances of NPCP for analyses of 57 data sets taken from 53 published sources. All data sets from 37 of those sources exhibited realized significances of < 0.01, indicating high levels of phylogenetic nonrandomness. From each of the remaining 16 sources, at least one data set was more phylogenetically random. Inclusion of outgroups changed significance in some cases, but not always in the same direction. Data sets with significantly low NPCP may be consistent with an ancient hybrid origin (or other ancient polyphyletic gene exchange, crossing over, viral transfer, etc.) of the study group.  相似文献   

17.
An adequate stratigraphic record can not only aid in both cladistic and stratophenetic reconstruction of phytogenies, but can also serve in estimating the temporal consistency of the resulting phylogenetic trees. For hypothetical data sets, cladistically constructed trees can be as consistent with the temporal distribution of sampled populations or species as those constructed stratophenetically. Empirical testing in taxonomic groups with sufficiently dense fossil records is needed to show whether, and under what conditions, this potential can be realized. A stratophenetic tree and cladistic trees based on several approaches to character weighting were constructed for Caribbean Neogene species of the bryozoan Metrarabdotos with multiple‐character data from closely spaced sequential populations. The modular morphology and highly punctuated evolutionary pattern of these species blur the distinction between continuous and discrete characters, so that all available characters are potentially of equal significance in establishing phytogenies, rather than just those with discrete states conventionally used in cladistic analysis. However, only the cladistic trees generated with all characters weighted to emphasize contribution to species discrimination have temporal consistencies that are clearly significant statistically and approach that of the stratophenetic tree in magnitude. These results provide a start toward establishing general guidelines for cladistic analysis of taxa with stratigraphie records too sparse for stratophenetic reconstruction.  相似文献   

18.
Absent characters (negative characters) are difficult to assess and their correct interpretation as symplesiomorphies, synapomorphies or convergencies (homoplasies) is one of the greatest challenges in phylogenetic systematics. Different phylogenetic assessments often result in contradictory phylogenetic hypotheses, in which the direction of evolutionary changes is diametrically opposed. Especially in deciding between primary (plesiomorphic) and secondary (apomorphic) absence, false conclusions may be reached if only the outgroup comparison and the principle of parsimony are employed without attempting any biological evaluation or interpretation of characters. For example, in the higher‐level systematization of the Annelida and related taxa different assessments of absent characters have led to conflicting hypotheses about the phylogenetic relationships and the ground pattern of the annelid stem species. Varying phylogenetic interpretations regarding the absence of the chemosensory nuchal organs in the clitellates and their presence in polychaetes initiated a controversy that produced two alternative phylogenetic hypotheses: (1) the Clitellata are highly derived Annelida related to a subtaxon within the, in this case, paraphyletic ‘Polychaeta’ or (2) the Clitellata are comparatively primitive Annelida representing the sister group of a monophyletic taxon Polychaeta. In the former, the absence of nuchal organs in the Clitellata is regarded as a secondary character, in the latter as primary. As most Clitellata are either limnetic or terrestrial, we must ask which characters are plesiomorphies, taken from their marine stem species without changes. In addition to a thorough investigation and evaluation of clitellate characters, a promising approach to these questions is to look for such characters in limnetic and terrestrial annelids clearly not belonging to the Clitellata. A similar problem applies to the evaluation of the position of the Echiura, which lack both segmentation and nuchal organs. Evidence is presented that in both taxa these absent characters represent derived, apomorphic character states. The consequences for their phylogenetic position and the questionable monophyly of the Polychaeta are discussed. The conclusion drawn from morphological character assessments is in accordance with recently published hypotheses based on molecular data.  相似文献   

19.
GROUNDPLANS AND EXEMPLARS: PATHS TO THE TREE OF LIFE   总被引:3,自引:1,他引:2  
Abstract — During cladistic analysis of a diverse higher taxon it is impractical to code every species as a separate terminal. In such cases, workers proceed in one of two distinct ways: (1) examine a number of member species in order to deduce groundplan character states of the higher group before the analysis is begun, here called the intuitive method, or (2), code a number of real species belonging to the group as terminals in the analysis, called the exemplar method. Both methods have the same aim, to estimate the groundplan of the higher taxon concerned.
Both groundplan estimation methods will lead to identical results when the character in question has the same state in all members of the terminal group, however when the character has two or more states, the two methods may give different results. The precise methods employed in the intuitive approach have not been articulated in the literature, but possible techniques may result in non-parsimonious ancestral state assignments, even in simple cases.
Groundplan estimation in the exemplar method is an extension of parsimony. The exemplar method allows groundplan state/s at internal nodes to be calculated during tree search. In many cases the exemplar method assigns a number of possible states to the groundplan, and the state assignment is therefore equivocal. This is not a deficiency of the method but reflects the notion that the parsimony criterion alone cannot always distinguish a single state present in a hypothetical ancestor. The optimal choice of exemplars required to estimate the groundplan most efficiently is discussed under a simple and common hypothesis of character transformation. For complex character distributions up to three exemplars may be required, each from a separate lineage of the group close to its hypothetical common ancestral node.  相似文献   

20.
The evolution of body size was reconstructed in chuckwallas (genus Sauromalus), large herbivorous lizards of southwest North America, using a phylogeny derived from sequence variation in the mitochondrial cytochrome b gene. The body mass of two endemic island species (S. hispidus and S. varius) is typically fivefold larger than mainland species. We tested the hypothesis that large body size has evolved on these islands in response to local ecological conditions against the alternative hypothesis that large size is simply retained from large iguanine ancestors. The most parsimonious tree topology depicts the insular gigantic Sauromalus as monophyletic, having diverged from a common ancestor on the Baja California peninsula after the radiation of smaller bodied clades. In a robustness analysis of this topology, we found general support for this tree over alternative topologies representing minimum evolution hypotheses that imply large body size is retained from large iguanine ancestors. The most parsimonious reconstruction of body size evolution implies a change from large to small size after the Sauromalus ancestor diverged from Iguana, and one reversal back to large size within Sauromalus. The large size increase in the gigantic clade contrasts with evolutionary stasis of small body size (for an iguanine) in mainland populations. The gigantic species show 3–4% total sequence divergence from S. obesus populations on the nearby Baja California peninsula, and mainland populations of S. obesus obesus show similar levels of divergence from each other. An analysis of character transitions and comparative behavior implicates predation, and its relaxation on isolated islands, as a strong selective force in Sauromalus. Patterns of genetic differentiation in Sauromalus and biogeographic implications are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号