首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
尿激酶原-RGDS双功能分子——构建、表达及性质研究   总被引:1,自引:0,他引:1  
利用定点突变及DNA重组技术 ,构建了在尿激酶原K区C 端的β 发夹区插入了精氨酸 甘氨酸 天冬氨酸 丝氨酸 (RGDS)片段的尿激酶原嵌合体基因 ,并利用昆虫杆状病毒表达系统通过感染Sf9细胞对嵌合体尿激酶原进行了高效表达 .用尿激酶原单抗亲和柱纯化表达产物 ,获得初步纯化的嵌合体蛋白 .对嵌合体蛋白进行血小板膜结合实验表明 ,此嵌合体具有依赖于钙离子的结合活化血小板膜的活性 .用生色底物Chromozym U测定嵌合体的酰胺解活性 ,结果显示 ,纤溶酶激活后的嵌合体比活为 62 0 0 0IU/mg,与文献报道的纤溶酶激活的尿激酶原比活 65 3 5 5IU/mg相近 .纤溶酶激活后的嵌合体激活纤溶酶原的反应符合米氏方程 ,其Km 值为 0 .97μmol/L ,与天然尿激酶的Km 值 1.64μmol/L相近 .嵌合体还显示了较强的体外抑制血小板聚集活性 .这些结果表明 ,此尿激酶原 RGDS嵌合体有可能成为一种新的双功能溶栓药物 .  相似文献   

2.
染料脱色过氧化物酶(DyP-type过氧化物酶)是含有亚铁血红素,能降解各种有毒染料的一类蛋白.为了研究运动发酵单胞菌Zymomonas mobilis ZM4 (ATCC 31821)中一种新的DyP-type过氧化物酶的特点和功能,以Z.mobilis基因组DNA为模板,通过PCR扩增目的基因,克隆到大肠杆菌表达载体pET-21b(+)中.通过ZmDyP与其他DyP-type过氧化物酶的比对,发现它们存在着共同保守氨基酸D149、R239、T254、F256和GXXDG结构基序,说明ZmDyP是Dyp-type过氧化物酶家族的一个新成员.经IPTG诱导大肠杆菌中pET21 b(+)-ZmDyP表达,并将表达的酶进行金属螯合层析纯化.SDS-PAGE分析表明,纯酶分子量为36 kDa,而活性染色显示分子量为108 kDa,表明该酶在活性状态下可能是一个三聚体.光谱扫描显示ZmDyP有一个典型的亚铁血红素吸收峰,说明它是含有亚铁血红素的蛋白.对ZmDyP性质进行了研究,发现以2,2-二氨-双(3-乙基苯并噻唑-6-磺酸)ABTS为底物,ZmDyP表现出更高的转化效率.这些研究结果丰富了DyP-type 过氧化物酶家族信息,并且为ZmDyP的结构功能和反应机制研究奠定了基础.  相似文献   

3.
目前激酶类蛋白的表达大多由昆虫细胞表达系统实现,采用BacMam系统来表达受体型酪氨酸激酶人FGFR1,旨在获得更接近天然结构与功能的重组蛋白.首先,将pDEST20载体的多角体蛋白启动子替换成CMV enhancer启动子,获得BacMam表达载体pDEST20-CMVe.通过Gateway系统,将FGFR1具有酪氨酸激酶活性的区域克隆至改造后的载体中.利用昆虫细胞Sf9产生病毒,P2代病毒转导哺乳动物细胞FreeStyle 293-F进行表达,经亲和纯化后,成功获得了75 kD的融合蛋白.通过磷酸化底物的反应检测此FGFR1激酶的活性.结果表明,BacMam系统是一个良好的表达重组激酶FGFR1的平台,并且所表达的激酶活性高于昆虫细胞表达的激酶蛋白.  相似文献   

4.
文山松毛虫质型多角体病毒在Sf21细胞中离体增殖试验   总被引:2,自引:1,他引:1  
研究了文山松毛虫质型多角体病毒(DpCPV-W)在Sf21细胞中的离体增殖行为,并进行了空斑试验,结果显示DpCPV-W毒株能够在Sf21细胞中增殖,也能在Sf21细胞上形成空斑,并能产生形态正常的病毒多角体.在DpCPV-W中加入基因工程增效蛋白,能显著增加病毒粒子对离体细胞的感染率,增幅达145%.生物测定表明,离体增殖的病毒多角体与虫体增殖的多角体的毒力相当.因此,Sf21细胞可以作为文山松毛虫CPV增殖行为研究的离体细胞系统,也可通过空斑纯化技术对文山松毛虫CPV生产防治的病毒种进行单个病毒粒子的分离纯化.  相似文献   

5.
为研究过氧化物酶体脂肪酸β-氧化及D-双功能蛋白在糖尿病脂代谢紊乱中所起的作用,分析了链脲佐菌素诱导的糖尿病大鼠肝脏过氧化物酶体数量和过氧化物酶体脂肪酸β-氧化及D-双功能蛋白活性的改变,并用蛋白质印迹检测过氧化氢酶和D-双功能蛋白的表达量.发现糖尿病大鼠肝脏过氧化物酶体增殖,过氧化氢酶蛋白量和酶活性显著增加,过氧化物酶体脂肪酸β-氧化增强,D-双功能蛋白含量和酶活性显著降低,脂酰CoA氧化酶、L-3-羟脂酰CoA脱氢酶活性显著增加.对过氧化物酶体脂肪酸β-氧化增强和D-双功能蛋白活性降低与糖尿病脂代谢紊乱的关系进行了初步探讨.  相似文献   

6.
利用Bac-to-Bac杆状病毒表达系统表达DEK蛋白并进行纯化。首先以pFastBacI质粒构建重组质粒pFastBacI-DEK,转化DH10Bac大肠杆菌后获得重组穿梭载体Bacmid-DEK,通过脂质体介导转染Sf9细胞产生具有强感染力的重组杆状病毒AcNPV-DEK。用此重组杆状病毒AcNPV-DEK感染Sf9细胞表达His-DEK融合蛋白。在非变性条件下,利用Ni-NTA agarose对表达的His-DEK融合蛋白进行纯化,经SDS-PAGE和Western blotting分析,在50 kDa处出现特异性蛋白条带并证实其为His-DEK融合蛋白。凝胶迁移阻滞实验表明,融合蛋白His-DEK与DNA 的结合具有结构特异性,其与超螺旋型DNA结合活性强于与线性化DNA的结合活性。真核表达并纯化的融合蛋白His-DEK与DNA的结合活性要明显强于原核表达的融合蛋白His-CDB。DEK 蛋白的磷酸化修饰会阻碍其与DNA的结合,而Sf9细胞中表达的融合蛋白His-DEK存在磷酸化修饰,将His-DEK去磷酸化后,其与DNA的结合活性有所提高。  相似文献   

7.
目的:通过在大肠杆菌SUMO系统中对鼠双微体2(MDM2)C端结构域ZFRING(aa.300-491)进行构建并进行表达,酶切和纯化,从而得到MDM2蛋白C端结构域的单体结构,为其后续的晶体研究及MDM2非p53依赖途径的研究提供途径。方法:利用大肠杆菌SUMO表达系统对zfring基因进行重组构建。构建成功的表达载体经诱导表达优化后,通过Ni-NTA进行亲和层析纯化,并利用SDS-PAGE及Western blot鉴定分析。纯化后的融合蛋白经ULP1酶切得到目的蛋白ZFRING,并通过Hi Trap Q FF离子交换层析检验和去除杂质DNA。最后通过分子筛检验其蛋白结构。结果:构建了SUMO-ZFRING重组载体。重组载体在大肠杆菌高效可溶性表达,纯化并酶切后的目的蛋白ZFRING以单体形式存在。结论:通过原核表达、纯化、酶切及层析发鉴定,成功获得高稳定、高纯度且为单体结构的MDM2 C端结构域ZFRING蛋白,为后续关于MDM2,尤其是其非p53依赖途径的结构学和功能学提供了思路和途径。  相似文献   

8.
PLCζ是PLC家族的一种新型同工酶,在哺乳动物卵母细胞激活中起着极其重要的作用。近年来,体外大量表达和纯化有活性的PLCζ蛋白用于结构生物学研究一直未能获得成功。本研究首次在杆状病毒表达系统中表达和纯化重组人PLCζ蛋白,首先将人PLCζ基因克隆至pFastBac-HTA质粒构建重组载体,转化DH10Bac发生位点特异性转座,经抗性和蓝白斑筛选,获得重组穿梭质粒Bacmid-PLCζ;在脂质体介导下将穿梭质粒转染Sf9昆虫细胞产生重组病毒,扩增病毒感染Sf9昆虫细胞进行蛋白表达;利用Ni~(2+)亲和柱及分子筛来纯化蛋白,并通过考马斯亮蓝染色、Western blotting及飞行时间质谱对蛋白进行鉴定,并进行酶活性测定。结果显示重组蛋白在Sf9昆虫细胞感染杆状病毒后72 h达到峰值并以分泌形式表达在细胞培养基中,Ni~(2+)亲和柱及分子筛纯化后的重组蛋白经Western blotting及电离飞行时间质谱鉴定为PLCζ蛋白,酶活性可达326.8 U/mL。该实验结果为重组人PLCζ蛋白大规模生产和生物医学应用研究提供了可参考利用的技术。  相似文献   

9.
GST融合蛋白在杆状病毒系统中表达的可溶性研究   总被引:2,自引:0,他引:2  
将构建好的可表达GST融合蛋白的重组病毒AcMNPV-OCC--GST-6xHis-Etp28感染Sf9细胞,一定时间后取感染了病毒的细胞裂解物上清液进行SDS-PAGE分析,结果显示53kDa的融合蛋白(GST-6xHis-Etp28)呈不溶状态.在原有裂解液的基础上,加固体十二烷基肌氨酸钠至终浓度1.5%,并将Triton X-100的比例由1%提高到2%.SDS-PAGE结果显示至少有1/3的GST-6xHis-Etp28处于溶解状态,可溶性GST-6xHis-Etp28经亲合层析,53kDa的目标蛋白得到纯化.  相似文献   

10.
目的:利用昆虫细胞表达系统真核表达并纯化小电导钙激活钾离子通道蛋白1(KCNN1)。方法:以基因重组方法构建杆状病毒穿梭质粒reBacmid-KCNN1,将其转染至杆状病毒/Sf9细胞表达系统表达目的蛋白,并用Western印迹鉴定KCNN1的表达水平;用Ni-IDA-Sepharose CL-6B亲和层析柱纯化裂解细胞上清中的KCNN1,并用Western印迹鉴定纯化结果。结果:KCNN1在Sf9细胞中高效表达,通过亲和层析获得了纯化的KCNN1。结论:膜蛋白KCCN1在昆虫细胞Sf9中的表达与纯化,为深入研究其分子生物学功能提供了材料,也为全长膜蛋白的体外表达提供了一套可借鉴的实验方法。  相似文献   

11.
Synapsin IIa belongs to a family of neuron-specific phosphoproteins called synapsins, which are associated with synaptic vesicles in presynaptic nerve terminals. In order to examine the biochemical properties of synapsin IIa, and ultimately its physiological function, purified protein is required. Since attempts to purify significant quantities of synapsin IIa, an isoform of the synapsins, from mammalian brain have proven difficult, we undertook the production of recombinant synapsin IIa by utilizing the baculovirus expression system. Rat synapsin IIa cDNA was introduced into the baculovirus genome via homologous recombination, and the recombinant baculovirus was purified. Spodoptera frugiperda (Sf9) cells infected with this virus expressed synapsin IIa as 5% of the total cellular protein. The recombinant protein was extracted from the particulate fraction of the infected Sf9 cells with salt and a nonionic detergent and purified by immunoaffinity chromatography. The purified synapsin IIa was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase to a stoichiometry of 0.8 mol of phosphate/mol of protein. Metabolic labeling with [32P]Pi demonstrated synapsin IIa phosphorylation in infected Sf9 cells. Using a homogenate of uninfected Sf9 cells, a cAMP-dependent protein kinase activity which can phosphorylate synapsin IIa was detected. Limited proteolysis of recombinant synapsin IIa phosphorylated in vitro and in vivo resulted in identical phosphopeptide maps. Further, synapsin IIa, like synapsin I, binds with high affinity in a saturable manner to synaptic vesicles purified from rat cortex.  相似文献   

12.
Plasma kallikrein is a serine protease that has many important functions, including modulation of blood pressure, complement activation, and mediation and maintenance of inflammatory responses. Although plasma kallikrein has been purified for 40 years, its structure has not been elucidated. In this report, we described two systems (Pichia pastoris and baculovirus/Sf9 cells) for expression of the protease domain of plasma kallikrein, along with the purification and high resolution crystal structures of the two recombinant forms. In the Pichia pastoris system, the protease domain was expressed as a heterogeneously glycosylated zymogen that was activated by limited trypsin digestion and treated with endoglycosidase H deglycosidase to reduce heterogeneity from the glycosylation. The resulting protein was chromatographically resolved into four components, one of which was crystallized. In the baculovirus/Sf9 system, homogeneous, crystallizable, and nonglycosylated protein was expressed after mutagenizing three asparagines (the glycosylation sites) to glutamates. When assayed against the peptide substrates, pefachrome-PK and oxidized insulin B chain, both forms of the protease domain were found to have catalytic activity similar to that of the full-length protein. Crystallization and x-ray crystal structure determination of both forms have yielded the first three-dimensional views of the catalytic domain of plasma kallikrein. The structures, determined at 1.85 A for the endoglycosidase H-deglycosylated protease domain produced from P. pastoris and at 1.40 A for the mutagenically deglycosylated form produced from Sf9 cells, show that the protease domain adopts a typical chymotrypsin-like serine protease conformation. The structural information provides insights into the biochemical and enzymatic properties of plasma kallikrein and paves the way for structure-based design of protease inhibitors that are selective either for or against plasma kallikrein.  相似文献   

13.
Paucimannosidic glycans are often predominant in N-glycans produced by insect cells. However, a beta-N-acetylhexosaminidase responsible for the generation of paucimannosidic glycans in lepidopteran insect cells has not been identified. We report the purification of a beta-N-acetylhexosaminidase from the culture medium of Spodoptera frugiperda Sf9 cells (Sfhex). The purified Sfhex protein showed 10 times higher activity for a terminal N-acetylglucosamine on the N-glycan core compared with tri-N-acetylchitotriose. Sfhex was found to be a homodimer of 110 kDa in solution, with a pH optimum of 5.5. With a biantennary N-glycan substrate, it exhibited a 5-fold preference for removal of the beta(1,2)-linked N-acetylglucosamine from the Man alpha(1,3) branch compared with the Man alpha(1,6) branch. We isolated two corresponding cDNA clones for Sfhex that encode proteins with >99% amino acid identity. A phylogenetic analysis suggested that Sfhex is an ortholog of mammalian lysosomal beta-N-acetylhexosaminidases. Recombinant Sfhex expressed in Sf9 cells exhibited the same substrate specificity and pH optimum as the purified enzyme. Although a larger amount of newly synthesized Sfhex was secreted into the culture medium by Sf9 cells, a significant amount of Sfhex was also found to be intracellular. Under a confocal microscope, cellular Sfhex exhibited punctate staining throughout the cytoplasm, but did not colocalize with a Golgi marker. Because secretory glycoproteins and Sfhex are cotransported through the same secretory pathway and because Sfhex is active at the pH of the secretory compartments, this study suggests that Sfhex may play a role as a processing beta-N-acetylhexosaminidase acting on N-glycans from Sf9 cells.  相似文献   

14.
A novel endogenous beta-1,4-endoglucanase (Ag-EGase III) gene belonging to the glycoside hydrolase family (GHF) 5 was cloned from the mulberry longicorn beetle, Apriona germari. The Ag-EGase III gene spans 1061 bp and consists of a single exon coding for 325 amino acid residues. The Ag-EGase III showed 89% protein sequence identity to another beetle, Psacothea hilaris, cellulase belonging to GHF 5. The Ag-EGase III has the potential proton donor and nucleophile amino acids conserved in GHF 5 and two putative N-glycosylation sites. Northern blot and Western blot analyses showed that Ag-EGases were expressed in the gut; Ag-EGase III and Ag-EGase I were expressed in three gut regions, and no Ag-EGase II was found in hindgut, indicating that the foregut and midgut are the prime sites for cellulase synthesis in A. germari larvae. The cDNA encoding Ag-EGase III was expressed as a 47-kDa polypeptide in baculovirus-infected insect Sf9 cells and the enzyme activity of the purified recombinant Ag-EGase III was approximately 1037 U per mg of recombinant Ag-EGase III. The enzymatic property of the purified recombinant Ag-EGase III showed the highest activity at 55 degrees C and pH 6.0, and was stable at 60 degrees C at least for 10 min. In addition, the N-glycosylation of Ag-EGase III was revealed by treatment with tunicamycin of recombinant virus-infected insect Sf9 cells and with endoglycosidase F of purified recombinant Ag-EGase III, demonstrating that the carbohydrate moieties are not necessary for enzyme activity.  相似文献   

15.
Human NADPH-P450 oxidoreductase (OR) is an intrinsically membrane-bound flavoprotein that serves to transfer electrons from NADPH to cytochrome P450. OR is also involved in the metabolic activation of chemotherapeutic alkylating agents. The human OR cDNA was engineered into baculovirus and the recombinant virus was used to infect Spodoptera frugiperda (Sf9) cells. Approximately 3.3% of total protein of infected cells was human OR. The enzyme was purified by ion exchange and affinity chromatography to a specific activity of 20 units/mg protein. Baculovirus-expressed OR displayed an absolute spectrum typical of the protein purified from tissue sources. The purified enzyme was able to support P450 activity in a reconstituted lipid vesicle system where maximal P450 activity was achieved at an OR/P450 ratio of 2. When recombinant OR and P450 DNA-containing baculoviruses were used to coinfect Sf9 cells, the OR/P450 ratio needed to achieve half maximal P450 catalytic activity was less than 0.5. These studies demonstrate the utility of baculovirus to analyze the functional and structural relationship of OR and P450.  相似文献   

16.
17.
The mushrooms of diverse Lingzhi species have been traditionally consumed as luxurious functional food supplements in Chinese society. FIP-gts, a fungal immunomodulatory protein found in Song-Shan Lingzhi (Ganodera tsugae) has been proposed to possess therapeutic effects on cancer and autoimmune diseases. To produce active FIP-gts for evaluation of oral administration, a recombinant FIP-gts (rFIP-gts) fused with a 6His-tag at its C-terminus was expressed in Sf21 insect cells by the baculovirus expression system. High yield (about 70%) and purity (about 90%) of rFIP-gts was obtained by one-step nickel-affinity chromatography. The correctness of the harvested rFIP-gts was verified by Western blot and MALDI-MS analyses. Optimal expression of rFIP-gts was observed when the Sf21 cells were infected with multiplicity of infection of 10 for 72 h, and the yield was up to 47.2 microg/3 x 10(6) infected cells. The immunomodulatory activity of the purified rFIP-gts was detected as the induction of interleukin 2 released from murine splenocytes. Compared with the rFIP-gts produced in Escherichia coli cells, the rFIP-gts produced in Sf21 cells possessed evidently higher specific immunomodulatory activity.  相似文献   

18.
Like other nitric-oxide synthase (NOS) enzymes, neuronal NOS (nNOS) turnover and activity are regulated by the ubiquitous protein chaperone hsp90. We have shown previously that nNOS expressed in Sf9 cells where endogenous heme levels are low is activated from the apo- to the holo-enzyme by addition of exogenous heme to the culture medium, and this activation is inhibited by radicicol, a specific inhibitor of hsp90 (Billecke, S. S., Bender, A. T., Kanelakis, K. C., Murphy, P. J. M., Lowe, E. R., Kamada, Y., Pratt, W. B., and Osawa, Y. (2002) J. Biol. Chem. 278, 15465-15468). In this work, we examine heme binding by apo-nNOS to form the active enzyme in a cell-free system. We show that cytosol from Sf9 cells facilitates heme-dependent apo-nNOS activation by promoting functional heme insertion into the enzyme. Sf9 cytosol also converts the glucocorticoid receptor (GR) to a state where the hydrophobic ligand binding cleft is open to access by steroid. Both cell-free heme activation of purified nNOS and activation of steroid binding activity of the immunopurified GR are inhibited by radicicol treatment of Sf9 cells prior to cytosol preparation, and addition of purified hsp90 to cytosol partially overcomes this inhibition. Although there is an hsp90-dependent machinery in Sf9 cytosol that facilitates heme binding by apo-nNOS, it is clearly different from the machinery that facilitates steroid binding by the GR. hsp90 regulation of apo-nNOS heme activation is very dynamic and requires higher concentrations of radicicol for its inhibition, whereas GR steroid binding is determined by assembly of stable GR.hsp90 heterocomplexes that are formed by a purified five-chaperone machinery that does not activate apo-nNOS.  相似文献   

19.
The human UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyl-transferase 2 (GalNAc-T2) is one of the key enzymes that initiate synthesis of hinge-region O-linked glycans of human immunoglobulin A1 (IgA1). We designed secreted soluble form of human GalNAc-T2 as a fusion protein containing mouse immunoglobulin light chain kappa secretory signal and expressed it using baculovirus and mammalian expression vectors. The recombinant protein was secreted by insect cells Sf9 and human HEK 293T cells in the culture medium. The protein was purified from the media using affinity Ni-NTA chromatography followed by stabilization of purified protein in 50mM Tris-HCl buffer at pH 7.4. Although the purity of recombinant GalNAc-T2 was comparable in both expression systems, the yield was higher in Sf9 insect expression system (2.5mg of GalNAc-T2 protein per 1L culture medium). The purified soluble recombinant GalNAc-T2 had an estimated molecular mass of 65.8kDa and its amino-acid sequence was confirmed by mass-spectrometric analysis. The enzymatic activity of Sf9-produced recombinant GalNAc-T2 was determined by the quantification of enzyme-mediated attachment of GalNAc to synthetic IgA1 hinge-region peptide as the acceptor and UDP-GalNAc as the donor. In conclusion, murine immunoglobulin kappa secretory signal was used for production of secreted enzymatically active GalNAc-T2 in insect baculovirus expression system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号