首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphorylation of the Ca2(+)-pump ATPase of cardiac sarcolemmal vesicles by exogenously added protein kinases was examined to elucidate the molecular basis for its regulation. The Ca2(+)-pump ATPase was isolated from protein kinase-treated sarcolemmal vesicles using a monoclonal antibody raised against the erythrocyte Ca2(+)-ATPase. Protein kinase C (C-kinase) was found to phosphorylate the Ca2(+)-ATPase. The stoichiometry of this phosphorylation was about 1 mol per mol of the ATPase molecule. The C-kinase activation resulted in up to twofold acceleration of Ca2+ uptake by sarcolemmal vesicles due to its effect on the affinity of the Ca2+ pump for Ca2+ in both the presence and absence of calmodulin. Both the phosphorylation and stimulation of ATPase activity by C kinase were also observed with a highly-purified Ca2(+)-ATPase preparation isolated from cardiac sarcolemma with calmodulin-Sepharose and a high salt-washing procedure. Thus, C-kinase appears to stimulate the activity of the sarcolemmal Ca2(+)-pump through its direct phosphorylation. In contrast to these results, neither cAMP-dependent protein kinase, cGMP-dependent protein kinase nor Ca2+/calmodulin-dependent protein kinase II phosphorylated the Ca2(+)-ATPase in the sarcolemmal membrane or the purified enzyme preparation, and also they exerted virtually no effect on Ca2+ uptake by sarcolemmal vesicles.  相似文献   

2.
We examined the effect of protein kinase C (PKC)-dependent phosphorylation on Ca2+ uptake and ATP hydrolysis by microsomal as well as purified sarcolemmal Ca2(+)-ATPase preparations isolated from bovine aortic smooth muscle. The phosphorylation was performed by treating these preparations with PKC and saturating concentrations of ATP (or ATP-gamma S), Ca2+, and 12-O-tetradecanoyl phorbol-13-acetate (TPA) at 37 degrees C for 10 min. In microsomes, treatment with PKC enhanced a portion of the Ca2+ uptake activity inhibitable by 10 microM vanadate, by up to about 30%. On the other hand, Ca2(+)-dependent ATPase activity in the purified Ca2(+)-ATPase preparation was stimulated by up to twofold. Up to twofold stimulation by PKC was also observed for the Ca2+ uptake by proteoliposomes reconstituted from purified sarcolemmal Ca2(+)-ATPase and phospholipids. Since these effects were evident only at Ca2+ concentrations between 0.1 to 1.0 microM, we concluded that it was the affinity of the Ca2(+)-ATPase for Ca2+ that was increased by the PKC treatment. Under conditions in which PKC increased Ca2+ pump activity, the sarcolemmal Ca2(+)-ATPase was phosphorylated to a level of about 1 mol per mol of the enzyme. There was good parallelism between the ATPase phosphorylation and the extent of enzyme activation. These results strongly suggest that the activity of the sarcolemmal Ca2+ pump in vascular smooth muscle is regulated through its direct phosphorylation by PKC.  相似文献   

3.
The (Ca2+ + Mg2+) ATPase of dog heart sarcolemma (Caroni, P., and Carafoli, E. (1980) Nature 283, 765-767) has been characterized. The enzyme possesses an apparent Km (Ca2+) of 0.3 +/- 02 microM, a Vmax of Ca2+ transport of 31 nmol of Ca2+/mg of protein/min, and an apparent Km (ATP) of 30 microM. It is only slightly influenced by monovalent cations and is highly sensitive to orthovanadate (Ki = 0.5 +/- 0.1 microM). The high vanadate sensitivity has been used to distinguish the sarcolemmal and the contaminating sarcoplasmic reticulum Ca2+-dependent ATPase in heart microsomal fractions. Calmodulin has been shown to be present in heart sarcolemma. Its depletion results in the transition of the Ca2+-pumping ATPase to a low Ca2+ affinity; readdition of calmodulin reverses this effect. The Na+/Ca2+ exchange system was not affected by calmodulin. The results of calmodulin extraction can be duplicated by using the calmodulin antagonist trifluoperazine. The calmodulin-depleted Ca2+-ATPase has been solubilized from the sarcolemmal membrane and "purified" on a calmodulin affinity chromatography column. One major (Mr = 150,000) and 3 minor protein bands could be eluted from the column with ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA). The major protein band (72%) has Ca2+-dependent ATPase activity and can be phosphorylated by [gamma]32P]ATP in a Ca2+-dependent reaction.  相似文献   

4.
The effects of purified protein kinase C (PKC) on the Ca(2+)-pumping ATPase of cardiac sarcolemma were investigated. The addition of PKC to sarcolemmal vesicles resulted in a significant increase in ATP-dependent Ca2+ uptake, by increasing the calcium affinity by 2.8-fold (Km 0.14 vs. 0.4 microM for control) and by increasing Vmax from 5 to 6.8 nmol.mg protein-1.min-1. The addition of PKC also stimulated Ca2+ ATPase activity in sarcolemmal preparations. This activity was increased further upon the addition of calmodulin. These results suggest that PKC stimulates Ca2+ ATPase through a kinase-directed phosphorylation. The addition of PKC to a purified preparation of Ca2+ ATPase in the presence of [gamma-32P]ATP resulted in a 100% increase in phosphorylation that was dependent on the presence of Ca2+, phosphatidylserine, and phorbol 12,13-dibutyrate. These results demonstrate that the Ca2+ ATPase of canine cardiac muscle can be phosphorylated by PKC in vitro, resulting in increased affinity of the Ca2+ ATPase for Ca2+ and increase in the Ca2+ pump pumping rate. The results suggest that the Ca(2+)-pumping ATPase in heart tissue can be stimulated by PKC, thereby regulating the intracellular Ca2+ levels in whole heart.  相似文献   

5.
The Ca2+-pumping ATPase has been isolated from calf heart sarcolemma by calmodulin affinity chromatography (Caroni, P., and Carafoli, E. (1981) J. Biol. Chem. 256, 3263-3270) as a polypeptide of Mr about 140,000. The purified enzyme has high affinity for Ca2+ in the presence of calmodulin (Km about 0.4 microM) but shifts to a low affinity state (Km about 20 microM) in its absence. Calmodulin increases also the Vmax of the enzyme. The effects of calmodulin are mimicked by phosphatidylserine and by a limited proteolytic treatment of the enzyme with trypsin. The purified ATPase can be reconstituted in asolectin liposomes, where it pumps Ca2+ with an approximate stoichiometry to ATP of 1. The purified (and reconstituted) enzyme is not phosphorylated by added ATP and cAMP-dependent protein kinase under conditions where the enzyme in situ is stimulated concomitant with the phosphorylation of the sarcolemmal membrane (Caroni, P., and Carafoli, E. (1981) J. Biol. Chem. 256, 9371-9373). Hence, the target of the regulatory phosphorylation system is not the ATPase molecule. The purified ATPase cross-reacts with an antibody raised against the erythrocyte Ca2+-pumping ATPase. Under the same conditions, the purified sarcoplasmic reticulum Ca2+-ATPase does not react. The proteolytic splitting pattern of the purified heart sarcolemma and erythrocyte enzymes are similar but not identical.  相似文献   

6.
Purified protein kinase (cyclic AMP-dependent) inhibitor (PKI) from bovine heart stimulated Ca(2+)+Mg(2+)-stimulated ATPase activity in human erythrocytes, the stimulation being maximal at 2mug/0.6ml. By contrast, PKI from rabbit skeletal muscle had no effect. Bovine heart PKI stimulated Ca(2+)+Mg(2+)-stimulated ATPase by increasing the Ca(2+)-sensitivity of the enzyme. This contrasted with the stimulation by calmodulin, which increased the maximum velocity of the Ca(2+)+Mg(2+)-dependent ATPase in addition to its effect on the Ca(2+)-sensitivity. Both membrane-bound and Triton X-100-solubilized Ca(2+)+Mg(2+)-stimulated ATPase activities were stimulated by PKI, indicating that the stimulation did not require an intact membrane structure. At low Ca(2+) concentration the stimulation by PKI and saturating concentrations of calmodulin were additive, suggesting that the two effectors acted by distinct mechanisms. Although 5mum-cyclic AMP inhibited Ca(2+)+Mg(2+)-stimulated ATPase activity by about 20% when measured at low ATP concentrations, probably by stimulation of phosphorylation by an endogenous protein kinase, the stimulation by PKI (about 100%) was not solely due to its antagonism of the protein kinase. This interpretation was supported by a number of observations. First, modification of arginine residues of bovine heart PKI abolished its inhibition of cyclic AMP-dependent protein kinase, but had no effect on the stimulation of Ca(2+)+Mg(2+)-stimulated ATPase. Secondly, trifluoperazine (20mum) antagonized the stimulation of Ca(2+)+Mg(2+)-dependent ATPase by PKI, similarly to its antagonism of calmodulin stimulation, but it did not affect the inhibition of protein kinase by PKI. We conclude that different mechanisms are involved in the inhibition of protein kinase and the stimulation of Ca(2+)+Mg(2+)-stimulated ATPase by PKI.  相似文献   

7.
A severalfold activation of calcium transport and (Ca2+ + Mg2+)-activated ATPase activity by micromolar concentrations of calmodulin was observed in sarcoplasmic reticulum vesicles obtained from canine ventricles. This activation was seen in the presence of 120 mM KCl. The ratio of moles of calcium transported per mol of ATP hydrolyzed remained at about 0.75 when calcium transport and (Ca2+ + Mg2+)-activated ATPase activity were measured in the presence and absence of calmodulin. Thus, the efficiency of the calcium transport process did not change. Stimulation of calcium transport by calmodulin involves the phosphorylation of one or more proteins. The major 32P-labeled protein, as determined by sodium dodecyl sulfate slab gel electrophoresis, was the 22,000-dalton protein called phospholamban. The Ca2+ concentration dependency of calmodulin-stimulated microsomal phosphorylation corresponded to that of calmodulin-stimulated (Ca2+ + Mg2+)-activated ATPase activity. Proteins of 11,000 and 6,000 daltons and other proteins were labeled to a lesser extent. A similar phosphorylation pattern was obtained when microsomes were incubated with cAMP-dependent protein kinase and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. Phosphorylation produced by added cAMP-dependent protein kinase and calmodulin was additive. These studies provided further evidence for Ca2+-dependent regulation of calcium transport by calmodulin in sarcoplasmic reticulum that could play a role in the beat-to-beat regulation of cardiac relaxation in the intact heart.  相似文献   

8.
The hepatic microsomal fraction contains tightly bound calmodulin as demonstrated by affinity chromatography. When this calmodulin was partially removed by EGTA treatment (0.5 mM-EGTA), the uptake of 45Ca2+ by the microsomal vesicles was stimulated by added calmodulin and inhibited by trifluoperazine (TFP). The Ca2+-dependent ATPase was partially purified on a calmodulin column. This partial purification resulted in a 500-fold increase in the specific activity of the enzyme when measured in the presence of added calmodulin. Antibodies prepared against calmodulin prevented this stimulatory effect. The fraction eluted from the calmodulin column contained several protein bands indicating that the specific activity of the Ca2+-dependent ATPase is probably still underestimated. There are likely to be other calmodulin-sensitive processes present in the hepatic microsomal fraction.  相似文献   

9.
Plasma membrane (Ca2+-Mg2+)ATPase purified from bovine aortic microsomes by calmodulin affinity chromatography was incorporated into soybean phospholipid liposomes. In the reconstituted proteoliposomes, a protein corresponding to the ATPase was phosphorylated by [gamma-32P]ATP in the presence of cGMP and cGMP-dependent protein kinase. Both the affinity for Ca2+ and the maximum Ca2+ uptake activity by the proteoliposomes were increased by the cGMP-dependent phosphorylation, and there was good parallelism between the Ca2+-uptake rate and the extent of phosphorylation. These results strongly suggest that the Ca2+-transport ATPase of the vascular smooth muscle plasma membrane is regulated through its cGMP-dependent phosphorylation.  相似文献   

10.
Although acute alterations in Ca2+ fluxes may mediate the skeletal responses to certain humoral agents, the processes subserving those fluxes are not well understood. We have sought evidence for Ca2+-dependent ATPase activity in isolated osteoblast-like cells maintained in primary culture. Two Ca2+-dependent ATPase components were found in a plasma membrane fraction: a high affinity component (half-saturation constant for Ca2+ of 280 nM, Vmax of 13.5 nmol/mg per min) and a low affinity component, which was in reality a divalent cation ATPase, since Mg2+ could replace Ca2+ without loss of activity. The high affinity component exhibited a pH optimum of 7.2 and required Mg2+ for full activity. It was unaffected by potassium or sodium chloride, ouabain or sodium azide, but was inhibited by lanthanum and by the calmodulin antagonist trifluoperazine. This component was prevalent in a subcellular fraction which was also enriched in 5'-nucleotidase and adenylate cyclase activities, suggesting the plasma membrane as its principal location. Osteosarcoma cells, known to resemble osteoblasts in their biological characteristics and responses to bone-seeking hormones, contained similar ATPase activities. Inclusion of purified calmodulin in the assay system caused small non-reproducible increases in the Ca2+-dependent ATPase activity of EGTA-washed membranes. Marked, consistent calmodulin stimulation was demonstrated in membranes exposed previously to trifluoperazine and then washed in trifluoperazine-free buffer. These results indicate the presence of a high affinity, calmodulin-sensitive Ca2+-dependent ATPase in osteoblast-like bone cells. As one determinant of Ca2+ fluxes in bone cells, this enzyme may participate in the hormonal regulation of bone cell function.  相似文献   

11.
A high degree of ATP hydrolytic activity present in purified rat pancreatic acinar cells was localized to plasma membranes. This activity was stimulated almost equally by Mg2+ or Ca2+. Kinetic analysis revealed that the enzyme had a higher affinity for Ca2+ (Kd = 1.73 microM) than Mg2+ (Kd = 2.98 microM) but a similar maximal rate of activity. A comparison of substrate requirements revealed very similar profiles for the Mg2+- and Ca2+-stimulated activities. Combinations of saturating concentrations of Mg2+ or Ca2+ produced the same degree of maximal activity. Investigation of the partial reactions of the ATPase activity revealed two phosphoprotein intermediates (Mr = 115,000 and 130,000) in the presence of Ca2+ and Mg2+. A significant stimulation of the Ca2+-ATPase activity by calmodulin was observed (Kd = 0.7 microM). Calmodulin increased the Ca2+-sensitivity of this enzyme system; Mg2+ appeared to be required for this effect. The Ca2+-ATPase activity was also stimulated by acidic phospholipids. Using an 125I-labeled calmodulin gel overlay technique, calmodulin was shown to bind in a Ca2+-dependent fashion to 133,000- and 230,000-dalton proteins present in the plasma membrane-enriched fraction. Under conditions that favor Ca2+-dependent kinase activity, calmodulin enhanced the phosphorylation of a 30,000- and 19,000-dalton protein. The major ATP hydrolytic activity in pancreatic acinar plasma membranes was present as an ectoenzyme.  相似文献   

12.
Antibodies directed against the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase [(Ca2+ + Mg2+)-dependent ATPase] from pig erythrocytes and from smooth muscle of pig stomach (antral part) were raised in rabbits. Both the IgGs against the erythrocyte (Ca2+ + Mg2+)-ATPase and against the smooth-muscle (Ca2+ + Mg2+)-ATPase inhibited the activity of the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase from smooth muscle. Up to 85% of the total (Ca2+ + Mg2+)-ATPase activity in a preparation of KCl-extracted smooth-muscle membranes was inhibited by these antibodies. The (Ca2+ + Mg2+)-ATPase activity and the Ca2+ uptake in a plasma-membrane-enriched fraction from this smooth muscle were inhibited to the same extent, whereas in an endoplasmic-reticulum-enriched membrane fraction the (Ca2+ + Mg2+)-ATPase activity was inhibited by only 25% and no effect was observed on the oxalate-stimulated Ca2+ uptake. This supports the hypothesis that, in pig stomach smooth muscle, two separate types of Ca2+-transport ATPase exist: a calmodulin-binding ATPase located in the plasma membrane and a calmodulin-independent one present in the endoplasmic reticulum. The antibodies did not affect the stimulation of the (Ca2+ + Mg2+)-ATPase activity by calmodulin.  相似文献   

13.
(CaMg)ATPase [(Ca2+ + Mg2+)-dependent ATPase] was partially purified from a microsomal fraction of the smooth muscle of the pig stomach (antrum). Membranes were solubilized with deoxycholate, followed by removal of the detergent by dialysis. The purified (CaMg)ATPase has a specific activity (at 37 degrees C) of 157 +/- 12.1 (7)nmol.min-1.mg-1 of protein, and it is stimulated by calmodulin to 255 +/- 20.9 (7)nmol.min.mg-1. This purification of the (CaMg)ATPase resulted in an increase of the specific activity by approx. 18-fold and in a recovery of the total enzyme activity of 55% compared with the microsomal fraction. The partially purified (CaMg)ATPase still contains some Mg2+-and (Na+ + K+)-dependent ATPase activities, but their specific activities are increased relatively less than that of the (CaMg)ATPase. The ratios of the (CaMg)ATPase to Mg2+- and (Na+ + K+)-dependent ATPase activities increase from respectively 0.14 and 0.81 in the crude microsomal fraction to 1.39 and 9.07 in the purified preparation. During removal of the deoxycholate by dialysis, vesicles were reconstituted which were capable of ATP-dependent Ca2+ transport.  相似文献   

14.
Electrophorus electroplax microsomes were examined for Ca2+- and Mg2+-dependent ATPase activity. In addition to the previously reported low-affinity ATPase, a high-affinity (Ca2+,Mg2+)-ATPase was found. At low ATP and Mg2+ concentrations (200 microM or less), the high-affinity (Ca2+,Mg2+)-ATPase exhibits an activity of 18 nmol Pi mg-1 min-1 with 0.58 microM Ca2+. At higher ATP concentrations (3 mM), the low-affinity Ca2+-ATPase predominates, with an activity of 28 nmol Pi mg-1 min-1 with 1 mM Ca2+. In addition, Mg2+ can also activate the low-affinity ATPase (18 nmol Pi mg-1 min-1). The high-affinity ATPase hydrolyzes ATP at a greater rate than it does GTP, ITP, or UTP and is insensitive to ouabain, oligomycin, or dicyclohexylcarbodiimide inhibition. The high-affinity enzyme is inhibited by vanadate, trifluoperazine, and N-ethylmaleimide. Added calmodulin does not significantly stimulate enzyme activity; rinsing the microsomes with EGTA does not confer calmodulin sensitivity. Thus the high-affinity ATPase from electroplax microsomes is similar to the (Ca2+,Mg2+)-ATPase reported to be associated with Ca2+ transport, based on its affinity for calcium and its response to inhibitors. The low-affinity enzyme hydrolyzes all tested nucleoside triphosphates, as well as diphosphates, but not AMP. Vanadate and N-ethylmaleimide do not inhibit the low-affinity enzymes. The low-affinity enzyme reflects a nonspecific nucleoside triphosphatase, probably an ectoenzyme.  相似文献   

15.
The Ca2+-pumping ATPase has been purified in a functional form from human erythrocytes by calmodulin affinity chromatography. The purified enzyme has a specific activity at least 300-fold higher than the membrane bound enzyme. It consists of one major protein band of 140000 Dalton, and after reconstitution in liposomes it transports Ca2+ with an efficiency of at least 1 Ca2+/ATP. In the presence of calmodulin, the affinity of the enzyme for Ca2+, and its specific activity, are greatly increased. Acidic phospholipids have an unexpected effect on the isolated enzyme: ATPase isolated or reconstituted in acidic phospholipids behaves as if calmodulin were present. Acidic phospholipids mimic the effect of calmodulin.  相似文献   

16.
1. A sarcolemmal fraction was isolated from hamster hind-leg skeletal muscles by successive treatment with lithium bromide and potassium chloride. The membranous fraction was observed to contain a highly active Ca(2+)-stimulated ATPase (adenosine triphosphatase), a Mg(2+)-stimulated ATPase, and an Na(+)+K(+)-stimulated Mg(2+)-dependent ouabain-sensitive ATPase. 2. The Ca(2+)-stimulated ATPase activity was pH-dependent, the optimum being pH7.6. 3. Optimum activation of this enzyme was obtained with 3-4mm-Ca(2+) when 4mm-ATP was present as a substrate, and was not influenced by Na(+), K(+) or ouabain, whereas 2,4-dinitrophenol, sodium azide, oligomycin, sodium fluoride and ethanedioxybis(ethylamine)tetra-acetate were inhibitory. 4. The Ca(2+)-stimulated ATPase was markedly inhibited by thiol-blocking reagents, and cysteine was able to reverse this inhibition. 5. Various bivalent cations stimulated ATP hydrolysis by the sarcolemmal fraction in the following decreasing order of potency: Mg(2+), Ca(2+), Mn(2+), Co(2+), Sr(2+), Ba(2+), Zn(2+), Cu(2+).  相似文献   

17.
Calponin isolated from chicken gizzard smooth muscle inhibits the actin-activated MgATPase activity of smooth muscle myosin in a reconstituted system composed of contractile and regulatory proteins. ATPase inhibition is not due to inhibition of myosin phosphorylation since, at calponin concentrations sufficient to cause maximal ATPase inhibition, myosin phosphorylation was unaffected. Furthermore, calponin inhibited the actin-activated MgATPase of fully phosphorylated or thiophosphorylated myosin. Although calponin is a Ca2(+)-binding protein, inhibition did not require Ca2+. Furthermore, although calponin also binds to tropomyosin, ATPase inhibition was not dependent on the presence of tropomyosin. Calponin was phosphorylated in vitro by protein kinase C and Ca2+/calmodulin-dependent protein kinase II, but not by cAMP- or cGMP-dependent protein kinases, or myosin light chain kinase. Phosphorylation of calponin by either kinase resulted in loss of its ability to inhibit the actomyosin ATPase. The phosphorylated protein retained calmodulin and tropomyosin binding capabilities, but actin binding was greatly reduced. The calponin-actin interaction, therefore, appears to be responsible for inhibition of the actomyosin ATPase. These observations suggest that calponin may be involved in regulating actin-myosin interaction and, therefore, the contractile state of smooth muscle. Calponin function in turn is regulated by Ca2(+)-dependent phosphorylation.  相似文献   

18.
A Ca2(+)-ATPase with a high affinity for free Ca2+ (apparent Km of 0.13 microM) was found and characterized in membrane fractions from porcine aortic and coronary artery smooth muscles in comparison with the plasma membrane Ca2(+)-pump ATPase purified from porcine aorta by calmodulin affinity chromatography. The activity of the high-affinity Ca2(+)-ATPase became enriched in a plasma membrane-enriched fraction, suggesting its localization in the plasma membrane. The enzyme was fully active in the absence of exogenously added Mg2+, but required a minute amount of Mg2+ for its activity as evidenced by the findings that it was fully active in the presence of 0.1 microM free Mg2+ but lost the activity in a reaction mixture containing trans-cyclohexane-1,2-diamine-N,N,N',N'-tetraacetic acid as a divalent cation chelator which has, unlike EGTA, high affinities for both Ca2+ and Mg2+. It was able to utilize a variety of nucleoside di- and triphosphates as substrates, such as ADP, GDP, ATP, GTP, CTP, and UTP, showing a broad substrate specificity. The activity of the enzyme was not modified by calmodulin (5, 10 micrograms/ml). Trifluoperazine, a calmodulin antagonist, had a partial inhibitory effect on the activity at 30 to 240 microM, but this inhibition could not be reproduced by a more specific calmodulin antagonist, W-7, indicating that this inhibition by trifluoperazine was not specific. Furthermore, the high-affinity Ca2(+)-ATPase activity was not modified either by low concentrations (0.5-9 microM) of vanadate or by 1-100 microM p-chloromercuribenzoic acid. Cyclic GMP, nitroglycerin, and nicorandil did not have any effect on the enzyme activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
An acid-stable phosphoprotein was formed in a microsomal membrane fraction isolated from bovine aortic smooth muscle in the presence of Mg2+ + ATP and Ca2+. The microsomes also showed Ca2+ uptake activity. The Ca2+ dependence of phosphoprotein formation and of Ca2+ uptake occurred over the same range of Ca2+ concentration (1-10 microM), and resembled similar findings from rabbit skeletal microsomes. The molecular weight of the phosphorylated protein, estimated by SDS-gel electrophoresis, was approximately 105,000. The phosphoprotein was labile at alkaline pH, and its decomposition was accelerated by hydroxylamine. Half-maximum incorporation of 32P in the presence of 10 microM Ca2+ occurred at 60 nM ATP. The calcium-dependent phosphoprotein formation was not affected by 5 mM NaN3, but was inhibited in a dose-dependent fashion by ADP with a 50% inhibition occurring at 180 microM. Fifty mM MgCl2 was required for the maximal phosphorylation. The rate of phosphoprotein decomposition after adding 2 mM EGTA was accelerated by varying the Mg2+ concentration from 10 microM to 3 mM. Alkaline pH (9.0) slowed the rate of phosphoprotein decay. Optimal Ca2+-dependent phosphoprotein occurred at 15 degrees C over a broad pH range (6.4 to 9.0). The activation energy of EGTA-induced phosphoprotein decomposition was 25.6 kcal/mol between 0 and 16 degrees C and 14.6 kcal/mol between 16 and 30 degrees C. The phosphoprotein formed by aortic microsomes was thus quite similar to the acid-stable phosphorylated intermediate of the Ca2+-transport ATPase of sarcoplasmic reticulum from skeletal and cardiac muscle. These data suggest that the Ca2+-dependent phosphoprotein is a reaction intermediate of the Ca2+,Mg2+-ATPase of the aortic microsomes.  相似文献   

20.
Plasma membrane enriched fraction isolated from the fundus smooth muscle of rat stomach displayed Ca2+-stimulated ATPase activity in the absence of Mg2+. The Ca2+ dependence of such an ATPase activity can be resolved into two hyperbolic components with a high affinity (Km = 0.4 microM) and a low affinity (Km = 0.6 mM) for Ca2+. Distribution of these high-affinity and low-affinity Ca2+-ATPase activities parallels those of several plasma membrane marker enzyme activities but not those of endoplasmic reticulum and mitochondrial membrane marker enzyme activities. Mg2+ also stimulates the ATPase in the absence of Ca2+. Unlike the Mg2+-ATPase and low-affinity Ca2+-ATPase, the plasmalemmal high-affinity Ca2+-ATPase is not sensitive to the inhibitory effect of sodium azide or Triton X-100 treatment. The high-affinity Ca2+-ATPase is noncompetitively inhibited by Mg2+ with respect to Ca2+ stimulation. Such an inhibitory effect of Mg2+ is potentiated by Triton X-100 treatment of the membrane fraction. Calmodulin has little effect on the high-affinity Ca2+-ATPase activity of the plasma membrane enriched fraction with or without EDTA pretreatment. Findings of this novel, Mg2+-independent, high-affinity Ca2+-ATPase activity in the rat stomach smooth muscle plasma membrane are discussed with those of Mg2+-dependent, high-affinity Ca2+-ATPase activities previously reported in other smooth muscle plasma membrane preparations in relation to the plasma membrane Ca2+-pump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号