首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
《The Journal of cell biology》1988,106(5):1667-1678
Gap junctions between crayfish lateral axons were studied by combining anatomical and electrophysiological measurements to determine structural changes associated during uncoupling by axoplasmic acidification. In basal conditions, the junctional resistance, Rj, was approximately 60-80 k omega and the synapses appeared as two adhering membranes; 18-20-nm overall thickness, containing transverse densities (channels) spanning both membranes and the narrow extracellular gap (4- 6 nm). In freeze-fracture replicas, the synapses contained greater than 3 X 10(3) gap junction plaques having a total of approximately 3.5 X 10(5) intramembrane particles. "Single" gap junction particles represented approximately 10% of the total number of gap junction particles present in the synapse. Therefore, in basal conditions, most of the gap junction particles were organized in plaques. Moreover, correlations of the total number of gap junction particles with Rj suggested that most of the junctional particles in plaques corresponded to conducting channels. Upon acidification of the axoplasm to pH 6.7- 6.8, the junctional resistance increased to approximately 300 k omega and action potentials failed to propagate across the septum. Morphological measurements showed that the total number of gap junction particles in plaques decreased approximately 11-fold to 3.1 X 10(4) whereas the number of single particles dispersed in the axolemmae increased significantly. Thin sections of these synapses showed that the width of the extracellular gap increased from 4-6 nm in basal conditions to 10-20 nm under conditions where axoplasmic pH was 6.7- 6.8. These observations suggest that single gap junction particles dispersed in the synapse most likely represent hemi-channels produced by the dissasembly of channels previously arranged in plaques.  相似文献   

2.
We have examined the cytoskeletal architecture and its relationship with synaptic vesicles in synapses by quick-freeze deep-etch electron microscopy (QF.DE). The main cytoskeletal elements in the presynaptic terminals (neuromuscular junction, electric organ, and cerebellar cortex) were actin filaments and microtubules. The actin filaments formed a network and frequently were associated closely with the presynaptic plasma membranes and active zones. Short, linking strands approximately 30 nm long were found between actin and synaptic vesicles, between microtubules and synaptic vesicles. Fine strands (30-60 nm) were also found between synaptic vesicles. Frequently spherical structures existed in the middle of the strands between synaptic vesicles. Another kind of strand (approximately 100 nm long, thinner than the actin filaments) between synaptic vesicles and plasma membranes was also observed. We have examined the molecular structure of synapsin 1 and its relationship with actin filaments, microtubules, and synaptic vesicles in vitro using the low angle rotary shadowing technique and QF.DE. The synapsin 1, approximately 47 nm long, was composed of a head (approximately 14 nm diam) and a tail (approximately 33 nm long), having a tadpole-like appearance. The high resolution provided by QF.DE revealed that a single synapsin 1 cross-linked actin filaments and linked actin filaments with synaptic vesicles, forming approximately 30-nm short strands. The head was on the actin and the tail was attached to the synaptic vesicle or actin filament. Microtubules were also cross-linked by a single synapsin 1, which also connected a microtubule to synaptic vesicles, forming approximately 30 nm strands. The spherical head was on the microtubules and the tail was attached to the synaptic vesicles or to microtubules. Synaptic vesicles incubated with synapsin 1 were linked with each other via fine short fibrils and frequently we identified spherical structures from which two or three fibril radiated and cross-linked synaptic vesicles. We have examined the localization of synapsin 1 using ultracryomicrotomy and colloidal gold-immunocytochemistry of anti-synapsin 1 IgG. Synapsin 1 was exclusively localized in the regions occupied by synaptic vesicles. Statistical analyses indicated that synapsin 1 is located mostly at least approximately 30 nm away from the presynaptic membrane. These data derived via three different approaches suggest that synapsin 1 could be a main element of short linkages between actin filaments and synaptic vesicles, and between microtubules and synaptic vesicles, and between synaptic vesicles in the nerve terminals.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Summary The threedimensional ultrastructure of presynaptic dense bars was examined by serial section electron microscopy in the excitatory neuromuscular synapses of the accessory flexor muscle in the limbs of larval, juvenile, and adult lobsters. The cross-sectional profile of the dense bar resembles an asymmetric hourglass, the part contacting the presynaptic membrane being larger than that projecting into the terminal. The bar has a height of 55–65 nm and varies in length from 75–600 nm. In its dimensions it resembles the dense projections in the synapses of the CNS of insects and vertebrates. The usual location of these dense bars is at well defined synapses, though a few are found at extrasynaptic sites either in the axon or terminal. In the latter case the bars are close to synapse-bearing regions, particularly in the larval terminals, suggesting that the extrasynaptic bars denote early events in synapse formation. In all cases the bars are intimately associated with electron lucent, synaptic vesicles located on either side, in the indentation of its hourglass-shaped cross sectional profile. The vesicles occur along the length of the bar and contact the presynaptic membrane. Consequently the dense bar may serve to align the vesicles at the presynaptic membrane prior to exocytosis. A similar role has been suggested for the presynaptic dense bodies at the neuromuscular junction of the frog, where synaptic vesicles form a row on either side of this structure.Supported by Muscular Dystrophy Association of Canada and NSERCC. Generous use of laboratory facilities at Woods Hole was provided by the late Fred Lang  相似文献   

4.
The intramembrane particles on the presynaptic membrane and on the membrane of synaptic vesicles were studied at freeze-fractured neuromuscular junctions of the frog. The particles on the P face of the presynaptic membrane belong to two major classes: small particles with diameters less than 9 nm and large particles with diameters between 9 and 13 nm. In addition, there were a few extralarge particles with diameters greater than 13 nm. Indirect stimulation of the muscle, or the application of black widow spider venom, decreased the concentration of small particles on the presynaptic membrane but did not change the concentration of large particles. Three similar classes of particles were found on the P face of the membrane of the synaptic vesicles. The concentrations of large and extralarge particles on the vesicle membrane were comparable to the concentrations of these particles on the presynaptic membrane, whereas the concentration of small particles on the vesicle membrane was less than than the concentration of small particles on the presynaptic membrane. These results are compatible with the idea that synaptic vesicles fuse with the presynaptic membrane when quanta of transmitter are released. However, neither the large nor the extralarge particles on the P face of the presynaptic membrane can be used to trace the movement of vesicle membrane that has been incorporated into the axolemma.  相似文献   

5.
Summary Afferent and efferent synapses of hair cells in the organ of Corti of the guinea pig have been examined in freeze-fracture replicas.Afferent synapse In the inner hair cells, intramembranous particles 10 nm in diameter are aggregated on the ridge on the P-face of the presynaptic membrane directly beneath the synaptic rod. In the outer hair cells, in which the synaptic rod is located in the presynaptic cytoplasm underneath the presynaptic membrane, small aggregations of intramembranous particles 10 nm in diameter can be found on the P-face of the presynaptic membrane corresponding to the site of the presynaptic dense projection. Intramembranous particles 10 nm in diameter are also densely aggregated on the P-face of the postsynaptic membrane of the outer hair cells.Efferent synapse of the outer hair cells Large intramembranous particles 13 nm in diameter are distributed in clusters composed of four to ten particles on the P-face of the presynaptic membrane. In the P-face of the postsynaptic membrane, disc-like aggregations of intramembranous particles 9 nm in diameter are found. The subsynaptic cistern covers the cytoplasmic surface of the postsynaptic membrane of the efferent synapse; it may cover more than one postsynaptic membrane when several efferent synapses are in close proximity to one another.  相似文献   

6.
Piccolo, a presynaptic zinc finger protein structurally related to bassoon   总被引:4,自引:0,他引:4  
Piccolo is a novel component of the presynaptic cytoskeletal matrix (PCM) assembled at the active zone of neurotransmitter release. Analysis of its primary structure reveals that Piccolo is a multidomain zinc finger protein structurally related to Bassoon, another PCM protein. Both proteins were found to be shared components of glutamatergic and GABAergic CNS synapses but not of the cholinergic neuromuscular junction. The Piccolo zinc fingers were found to interact with the dual prenylated rab3A and VAMP2/Synaptobrevin II receptor PRA1. We show that PRA1 is a synaptic vesicle-associated protein that is colocalized with Piccolo in nerve terminals of hippocampal primary neurons. These data suggest that Piccolo plays a role in the trafficking of synaptic vesicles (SVs) at the active zone.  相似文献   

7.
Summary The three-dimensional structure of synaptic ribbons in photoreceptor cells of the frog retina was studied with freeze-etching and freeze-substitution methods, combined with a rapid-freezing technique. Although the synaptic ribbon consisted of two electron-dense plaques bisected by an electron-lucent layer in conventional thin sections, such lamellar nature was not so evident in freeze-etched replicas. The cytoplasmic surfaces of the synaptic ribbon presented an extremely regular arrangements of small particles 4–6 nm in diameter. Fine filaments 8–10 nm in diameter and 30–50 nm in length connected synaptic vesicles and the ribbon surface. These connections were mediated by large particles on both ends of the filaments. Approximately 3–5 filaments attached to one synaptic vesicle. Synaptic ribbons were anchored to a characteristic meshwork underlying the presynaptic membrane via another group of similar fine filaments. The meshwork seemed to be an etched replicated image of the presynaptic archiform density observed in thin sections.  相似文献   

8.
Gangliosides were isolated from four subcellular fractions of the electric organ ofTorpedo marmorata: synaptosomes, presynaptic membranes, postsynaptic membranes, and synaptic vesicle membranes. This exploited a principal advantage offered by this tissue: facile separation of pre-and postyynaptic elements. Total ganglioside concentration in presynaptic membranes was approximately twice that of synaptosomes and 15 times that of postsynaptic membranes (47.7, 24.4, and 3.21 g of lipid sialic acid per mg protein, respectively). Synaptic vesicle membranes had the highest overall concentration (78.9) relative to protein, but a concentration approximately comparable to that of presynaptic membranes when expressed relative to phospholipid. The thin-layer patterns of these two fractions were similar, both in terms of total pattern and the specific pattern of gangliotetraose structures as revealed by overlay with cholera toxin B subunit; these were notable for the paucity of monosialo structures and the virtual absence of GM1. Postsynaptic membranes, on the other hand, had a significantly higher content of monosialogangliosides including the presence of GM1. The synaptosomal pattern resembled that of the presynaptic membranes and synaptic vesicles. Thus, a clear difference in ganglioside pattern could be discerned between the pre- and postsynaptic elements of the electric organ.Abbreviations SVs synaptic vesicles - TLC thin-layer chromatography - cholera B-HRP B subunit of cholera toxin linked to horseradish peroxidase  相似文献   

9.
Summary Synaptic junctions in intact rat cerebral cortex have been examined following glutaraldehyde fixation and phosphotungstic acid (PTA) staining. In the presynaptic ending the network has a hexagonal arrangement, while the dense projections are regularly placed along the presynaptic membrane. Cleft densities occupy the intracleft region. The postsynaptic thickening extends uninterrupted along the length of the junction. Qualitatively, the majority of junctions fall into the discontinuous-continuous category, in which the internal coat of the presynaptic membrane together with its associated dense projections is discontinuous along the length of the junction, whereas the postsynaptic thickening is continuous. By contrast, a small number of junctions are continuous-continuous.In an attempt to analyze the junctions quantitatively, nine indices were measured. Histograms of the size distributions of seven of these appear to be bimodal, and from this it is concluded that two junction populations may be distinguishable on quantitative grounds. It is also shown that the distance separating dense projections at the presynaptic membrane is of the order of 10–15 nm. This surprisingly low value has consequences for current ideas on the relationship between synaptic vesicles and dense projections, and these are discussed at length.We would like to acknowledge the technical assistance of Mrs. C. Blackshaw, Mrs. G. Kay and Mr. D. Stuart.  相似文献   

10.
smg p25A is a small G protein which has been suggested to regulate neurotransmitter release from the synapses. We investigated here the ultrastructural localization of this small G protein in the rat neuromuscular junction by an immunoperoxidase method. The results showed that smg p25A was distributed non-uniformly on the presynaptic plasma membrane and among the synaptic vesicles with the focal accumulation on the discrete presynaptic sites which corresponded to the active zones, the regions of the presynaptic plasma membrane specialized for the exocytosis of the synaptic vesicles. This unique distribution of smg p25A suggests that it plays an important role in the attachment and fusion of the synaptic vesicles with the active zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号