首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
蛋白激酶C与吗啡耐受   总被引:1,自引:0,他引:1  
Huo YP  Hong YG 《生理科学进展》2011,42(6):423-426
蛋白激酶C(protein kinase C,PKC)属于AGC蛋白激酶家族(即PKA/PKG/PKC激酶家族),在吗啡介导的μ-阿片受体脱敏及吗啡耐受中具有重要作用,因此研究PKC的细胞信号传导机制对吗啡耐受的治疗具有重要的临床意义。本文综述了PKC在吗啡耐受中的作用。  相似文献   

3.
蛋白质精氨酸甲基化是真核生物中一种广泛存在并在进化上保守的蛋白质翻译后修饰,由蛋白质精氨酸甲基转移酶(PRMT)催化完成。动物中的研究表明,PRMT通过催化多种RNA结合蛋白的精氨酸甲基化而参与调控细胞多种重要的生命过程,如RNA代谢、细胞增殖以及信号转导等。概述真核生物中精氨酸甲基化对不同的RNA结合蛋白的功能调控,并重点阐述该翻译后修饰在转录后加工过程中的重要作用;介绍高等植物拟南芥中蛋白质精氨酸甲基转移酶参与转录后调控的最新研究进展,并对精氨酸甲基化修饰参与调控植物RNA结合蛋白的功能及今后可能的研究方向进行讨论。  相似文献   

4.
瞬时受体势(transient receptor potential,TRP)通道广泛分布于神经和非神经系统中,响应温度、化学和机械等多种刺激,在机体对外界环境的精确感知中发挥重要功能.根据蛋白质序列的相似性,哺乳动物中TRP通道家族的27个成员分属TRPA、TRPC、TRPM、TRPML、TRPP和TRPV 6个亚家族.其中TRPV亚家族包含了6个成员,分别为温度敏感型的TRPV1~4通道,以及对Ca2+具有高选择通透能力的TRPV5和TRPV6通道.研究结果表明,TRPV亚家族通道参与调控细胞内的离子稳态和信号传导,在温度感知和血管扩张等生理过程中发挥作用,并与癌症、心血管等多种疾病的发生和发展密切相关.翻译后修饰(post-translational modifications,PTMs)是翻译中或者翻译后在蛋白质特定氨基酸上添加或删减修饰官能团的过程.越来越多的研究结果表明,TRPV亚家族通道同样可以发生翻译后修饰,并对通道功能产生重要影响.本文综述了目前已报道的磷酸化、糖基化、泛素化、SUMO化和共价修饰等多种翻译后修饰调控TRPV亚家族成员功能的主要研究进展,以期为进一步研究翻译后修饰对TRPV通道的功能调节提供参考,丰富我们对蛋白质翻译后修饰与生理或病理活动相关性的认识.  相似文献   

5.
6.
蛋白激酶B的PH结构域可溶性表达与纯化及其二级结构分析   总被引:1,自引:0,他引:1  
蛋白激酶B(亦称为Akt)是一种蛋白质丝氨酸 苏氨酸激酶 ,因其与蛋白激酶A(PKA)和蛋白激酶C(PKC)具有相对高的同源性 ,而被命名为PKB .作为磷脂酰肌醇 3激酶 (PI3 kinase)的下游分子 ,它广泛参与细胞各种功能的调节 .PKB对代谢的影响主要表现为促进蛋白质的合成 ,促进糖原的转运[1] .同时 ,PKB还在细胞增殖与调控中发挥重要作用[2 ] .PH结构域 (pleckstrinhomologydomain)是一种存在于多种信号蛋白质和细胞骨架相关蛋白质中的功能性区域 .它通常由 7个反向平行的 β片层和C末端的一个α螺旋构成 .PH结构域的配体具有一定的多样性…  相似文献   

7.
刘舒婷  苏杨  姚玉峰 《微生物学报》2017,57(11):1698-1707
蛋白质翻译后修饰是调控蛋白质生物学功能的重要步骤之一。甲基化修饰作为蛋白质翻译后修饰的一种重要形式,参与了真核生物和原核生物的多种细胞进程。本文综述了目前蛋白质甲基化的研究进展,包括真核生物、原核生物,组蛋白和非组蛋白,以及多种氨基酸位点的甲基化修饰。这些发现丰富了人们对蛋白质甲基化修饰的认识,对深入了解蛋白质翻译后修饰的功能具有重要意义。  相似文献   

8.
精子发生由一系列多阶段、复杂的生物学事件所组成,受到多因素的调控。精子发生过程存在翻译延迟的现象,因此转录和蛋白表达水平变化不完全一致。蛋白质的翻译后修饰作为蛋白质功能的重要调控方式,在精子发生过程中起着重要调控作用。近年来,蛋白质组学(proteomics)的发展促进了蛋白质翻译后修饰的解析和功能研究。本文综述了精子发生过程中多种翻译后修饰的蛋白质组学研究进展,并讨论了它们在精子发生、精子功能和男性生育能力中的作用以及它们在未来临床诊疗中的价值。  相似文献   

9.
PKCδ是nPKC家族成员,参与细胞凋亡调控,其激活机制与特异性位点的磷酸化和半胱天冬酶3(caspase-3)的剪切密切联系.PKCδ激活后可通过多种途径介导细胞凋亡:激活多种蛋白激酶级联启动细胞凋亡信号,转位至线粒体诱导细胞色素C等凋亡因子的释放,核转位启动核内凋亡通路诱导细胞凋亡.本文综述了PKCδ的分子结构、激活机制以及调控细胞凋亡的最新研究进展.  相似文献   

10.
蛋白质翻译后修饰系统几乎参与了细胞所有的正常生命活动过程,并发挥着重要的调控作用。目前,基于生物质谱技术进行蛋白质翻译后修饰的规模化分析鉴定,已经成为蛋白质组学研究的核心内容之一。近年来的研究表明,蓝藻细胞中存在着复杂的蛋白质翻译后修饰系统,如磷酸化,乙酰化,甲基化,糖基化,氧化等,这些翻译后修饰在蓝藻细胞的代谢过程中可能发挥着重要的调控作用。本文主要针对蓝藻细胞中蛋白质翻译后修饰的发现与鉴定,以及翻译后修饰潜在的生物学功能展开简要综述。  相似文献   

11.
SUMO化修饰具有广泛的功能,包括调控神经突触的形成和传递。神经突触和免疫突触共享某些特性,而蛋白激酶Cθ(protein kinase Cθ,PKCθ)是蛋白激酶C(protein kinase C,PKC)家族中唯一能在抗原刺激后定位于免疫突触中央超分子活化簇的一员。为了探讨SUMO化修饰对免疫突触的影响,该文采用"Ubc9融合介导的SUMO化修饰系统(Ubc9 fusion-directed SUMOylation system,UFDS)"方法检测Ubc9-PKCθ与SUMO的相互作用;应用体外定点突变技术构建多个SUMO化修饰位点突变的Ubc9-PKCθ;通过荧光显微镜观察Raji B-Jurkat T细胞之间的接触面。结果显示,Ubc9-PKCθ能被SUMO化修饰,且抗原刺激后能在免疫突触聚集;而当多个SUMO化修饰位点突变后,Ubc9-PKCθ的SUMO化水平显著下调,抗原刺激后虽然还是被招募到免疫突触上,但呈现弥散状态。综上所述,Ubc9融合表达时SUMO化修饰影响PKCθ在免疫突触的聚集。  相似文献   

12.
蛋白激酶C的分子异质性   总被引:1,自引:0,他引:1  
蛋白激酶C(PKC)是由多种亚类组成的蛋白质大家族;这个家族成员具有各自独立的酶学特性、不同的组织表达及胞内定位;在加工与调节对外来信号起反应的生理与病理应答过程中,不同亚类的激酶有不同的功能。  相似文献   

13.
蛋白质翻译后修饰是实现蛋白质多样化功能的一种重要的调控方式,泛素化和SUMO化作为重要的蛋白质翻译后修饰在转录调节、染色质结构及基因组稳定性维持以及DNA修复中扮演重要角色。由于泛素(ubiquitin,Ub)、小泛素相关修饰物(small ubiquitin-related modifier,SUMO)都是修饰目标蛋白质上的赖氨酸,因此在通常情况下,二者对于同一个蛋白质的翻译后修饰存在拮抗或协同作用,但具体调控机理目前研究还不多。DNA损伤与肿瘤的发生发展密切相关。DNA损伤若未能得到及时修复或者修复过程中出现异常,将会导致肿瘤的发生,甚至会产生致死型突变。近年来,对于DNA损伤修复过程中涉及到的蛋白质翻译后修饰的研究已成为研究热点。本文旨在阐明泛素化、SUMO化对DNA损伤修复过程中关键因子的调控作用,为了解多种翻译后修饰对DNA修复过程的调控提供新视角。  相似文献   

14.
巯基亚硝基化(S-nitrosylation)修饰是一种一氧化氮(nitric oxide, NO)介导的氧化还原依赖的、可逆性蛋白质翻译后修饰。生理条件下,S-nitrosylation通过调控蛋白质的稳定性、蛋白质活性、亚细胞定位及蛋白质-蛋白质相互作用,在维持细胞稳态中发挥重要作用。而在多种病理条件下,蛋白质S-nitrosylation及其产物表现出异常的升高或降低。转录因子又称反式作用因子,通过识别并结合调控元件而影响基因转录。本文简要综述转录因子的S-nitrosylation修饰的研究进展及其生理学意义。  相似文献   

15.
钟晴  申玉龙  黄奇洪 《微生物学报》2017,57(9):1383-1391
磷酸化是蛋白质翻译后修饰(post-translational modification)的主要方式,可由蛋白激酶、磷酸转移酶、磷酸化酶等多种方式催化进行。其中,由蛋白激酶(protein kinases)/磷酸酶(protein phosphatases)介导的可逆的蛋白磷酸化是细胞中信号转导的重要机制,在DNA复制、转录、蛋白质翻译、DNA损伤修复等生命过程中起广泛的调节作用。目前,古菌中蛋白激酶的研究尚属于初期阶段。虽然磷酸化蛋白质组学研究表明,古菌中存在大量的磷酸化蛋白质,但是我们对其具体催化作用的酶及调控机制尚不清楚。本文总结了古菌中已报道的蛋白激酶所参与的生命过程,包括古菌的DNA代谢、细胞代谢、细胞周期和运动机制等四个方面,并对今后的研究提出展望。  相似文献   

16.
有丝分裂期间蛋白质的翻译后修饰对于有丝分裂顺利完成以及细胞功能发挥具有重要的调控作用。常见的修饰类型包括磷酸化修饰、糖基化修饰、SUMO化修饰、乙酰化修饰、甲基化修饰。这些翻译后修饰可以维持染色体结构、促进后期染色体分离、协助末期核膜重新形成。本文对有丝分裂过程中相关蛋白质翻译后修饰的最新类型和功能进行了系统总结,以期能为肿瘤基础研究提供新的方向。  相似文献   

17.
细胞内信号分子传导的研究进展   总被引:7,自引:0,他引:7  
近年来有关细胞内信号传导的研究,着重体现在Ca2+信号传导途径及相应的蛋白质分子如蛋白激酶C(PKC)、钙调素(CaM)、钙调素激酶Ⅱ(CaMKⅡ),同时也对Ras途径中出现的Vav、Rap、Crk、C3G等蛋白质分子以及cAMP和NF-κB途径作了有益的补充与修改.细胞外信号分子通过以上4种途径及其相互通讯(cross-talk),激活了某些蛋白激酶,调控了基因转录及其他相关功能,其中磷酸化对蛋白激酶及转录因子活性的调节起到了非常重要的作用.  相似文献   

18.
β-拘留蛋白2(β-arrestin2)是arrestins家族的一个成员,广泛表达于全身组织,其不仅可以调节大多数G蛋白偶联受体(G-protein coupled receptors,GPCRs)的脱敏、内化,还能调节多种非GPCRs的内化,或作为支架蛋白质参与MAPK、PI3K/AKT等信号通路。越来越多的研究发现,β-arrestin2在肿瘤、自身免疫性疾病、纤维化疾病、心血管疾病、代谢性疾病等多种疾病进展过程中表达异常,提示其可能在疾病的病理过程中发挥重要的调控作用。β-arrestin2功能的发挥不仅与其在细胞中的表达水平有关,更依赖于对其活性的调控。但对于β-arrestin2的活性如何被调控,以及其活性如何影响其生物学功能的关注较少。近年来,陆续有研究报道了β-arrestin2可发生磷酸化、泛素化、SUMO化、S-亚硝基化等翻译后修饰,探讨了其翻译后修饰的可能位点,并发现翻译后修饰可影响β-arrestin2的细胞定位、调节受体内吞的作用、β-arrestin2与信号分子的相互作用及下游信号通路,对了解β-arrestin2活性调控在细胞中的作用具有重要意义。本文在介绍β-arrestin2的结构特征及其参与的信号转导通路的基础上,对近年来β-arrestin2的翻译后修饰等活性调节机制的研究进展进行综述,以期为以β-arrestin2为可能靶点的药物开发提供参考。  相似文献   

19.
翻译后修饰(post-translational modification,PTM)可以调节蛋白质的结构、稳定性和功能。作为一种PTM,赖氨酸乙酰化修饰被发现存在于三界生物中,参与了包括中心代谢、转录调控、蛋白质合成、细胞形态、细胞周期、信号通路调控、应激反应、病原微生物感染调控等多个重要的生理学进程。近年来,高分辨率质谱、高亲和泛乙酰化蛋白抗体的富集纯化等多种技术的发展和运用逐渐揭开了原核生物中蛋白质乙酰化修饰的面纱。乙酰化修饰在原核生物中广泛存在,且起着功能调控的作用。现简要介绍蛋白质乙酰化修饰的研究历史和原核生物中乙酰化修饰的调节机制,并重点总结若干已有具体研究的乙酰化修饰蛋白质,探讨原核生物蛋白质乙酰化修饰研究中今后需要解决的问题。  相似文献   

20.
蛋白质在生物体的生理调控过程中发挥着重要的功能。在体内,蛋白质的合成、降解、活性与功能受到多种翻译后修饰的调控,其中泛素化修饰尤为重要。发现和阐明一些关键蛋白质的泛素化调控机制对理解蛋白质功能、细胞信号调控、疾病发病机理等都有着重要的作用。在这篇综述中,我们围绕与疾病相关的m TORC1和Hippo等关键信号通路,综述泛素化修饰在疾病相关信号通路中的重要作用。理解和阐明这些信号通路中关键蛋白的翻译后修饰调控机制将会进一步拓展我们对于细胞信号网络的认知。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号