首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The collagenolytic protease from Uca pugilator was studied with respect to its catalytic properties on collagen types I-V. The crab protease degraded all five collagen types, producing multiple cleavages in the triple helix of each native collagen at 25 degrees C. The major early cleavage in the alpha 1 polypeptide chain of collagen types I-III occurred at a 3/4:1/4 locus, resulting in fragments electrophoretically similar to the TCA and TCB products of mammalian collagenase action. Interestingly, a propensity toward this same cleavage was observed even following thermal denaturation of the substrates. The ability of the crab protease to degrade all native collagen types and to catalyze cleavages at multiple loci in the triple helix distinguishes its action from that of mammalian collagenases. The collagenolytic activity of the crab protease was also examined on fibrillar collagen and compared to that of human skin fibroblast collagenase. Enzyme concentrations of fibroblast collagenase which resulted in the saturation of available substrate sites failed to show such an effect in the case of the crab protease. Binding studies of the crab protease to fibrillar collagen likewise indicated substantially reduced levels of enzyme binding in comparison to fibroblast collagenase. These data suggest that the affinity of the crab protease for native collagen is considerably less than the affinity of mammalian collagenase for this substrate.  相似文献   

2.
H G Welgus  G A Grant 《Biochemistry》1983,22(9):2228-2233
The collagenolytic properties of a trypsin-like protease from the hepatopancreas of the fiddler crab Uca pugilator have been examined. All collagen types, I-V, were attacked by this enzyme. Types III and IV were degraded much more rapidly than types I, II, and V. Crab protease produced multiple cleavages in the triple helix of each collagen at 25 degrees C; only in the case of type III collagen, however, was a major cleavage observed at a 3/4:1/4 locus that corresponded to the region of collagen susceptibility to mammalian collagenase action. Additionally, both the affinity and the specific activity of the crab protease for native collagen were lower than those which characterize mammalian collagenase. The results of this study, in conjunction with a previous report on the collagenolytic activity of another serine protease from the fiddler crab [Welgus, H. G., Grant, G. A., Jeffrey, J. J., & Eisen, A. Z. (1982) Biochemistry 21, 5183], suggest that the following properties distinguish the action of these invertebrate collagenolytic enzymes from the metalloenzyme collagenases of mammals: (1) broad substrate specificity, including both noncollagenous proteins and collagen types I-V; (2) ability to cleave the native triple helix of collagen at multiple loci; (3) reduced affinity or higher Km for collagen; and (4) lower specific activity on collagen fibrils.  相似文献   

3.
Purified polymorphonuclear leukocyte elastase degraded native human liver type III collagen at 27 degrees C by making a cleavage through the triple helix. The enzyme had no effect on human type I collagen. The reaction was inhibited by phenylmethanesulfonyl fluoride (PhCH2SO2F) but not by EDTA. The collagen reaction products were identical with those generated by human rheumatoid synovial collagenase when analyzed by polyacrylamide gel electrophoresis and gel filtration. NH2-trminal sequence analysis indicated that the enzyme cleaved at an isoleucyl-threonyl bond located 4 residues on the carboxyl side of the established cleavage site for animal collagenases. Therefore, it is likely that in pathologic states, type III collagen can be selectively depleted from the matrix by this enzyme.  相似文献   

4.
Glucosylation of galactosylhydroxylysyl residues in various collagen polypeptide chains and in small peptides prepared from collagen was studied in vitro using collagen glucosyltransferase purified about 200 to 500-fold from extract prepared from chick embryos. When various denatured polypeptide or peptide chains were compared as substrates for the enzyme, no significant differences were found between citrate-soluble collagens from normal or lathyritic rats and isolated alpha1 and alpha2 chains. In contrast, gelatinized insoluble calf skin collagen, and peptides prepared from collagen and having an average molecular weight of about 500 were clearly less effective substrates as judged from their Km and V values. A marked difference was found between native and heat-denatured citrate-soluble collagen in that no synthesis of glucosylgalactosylhydroxylysine was observed with the native collagen when the reaction was studied at 30 degrees C with different times, enzyme concentrations, and substrate concentrations. When the reaction was studied as a function of temperature, little glucosylation of native collagen was observed below 37 degrees C, but there was a sharp transition in the rate of glucosylation of native collagen at temperatures above 37 degrees C, similar to that observable in the melting curve of collagen. The data suggest that triple-helical conformation of collagen prevents that glucosylation of galactosylhydroxylysyl residues.  相似文献   

5.
1. The neutral collagenase released into the culture medium by explants of human skin tissue was purified by ultrafiltration and column chromatography. The final enzyme preparation had a specific activity against thermally reconstituted collagen fibrils of 32mug of collagen degraded/min per mg of enzyme protein, representing a 266-fold increase over that of the culture medium. Electrophoresis in polyacrylamide disc gels showed it to migrate as a single protein band from which enzyme activity could be eluted. Chromatographic and polyacrylamide-gel-elution experiments provided no evidence for the existence of more than one active collagenase. 2. The molecular weight of the enzyme estimated from gel filtration and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis was approx. 60000. The purified collagenase, having a pH optimum of 7.5-8.5, did not hydrolyse the synthetic collagen peptide 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-d-Arg-OH and had no non-specific proteinase activity when examined against non-collagenous proteins. 3. It attacked undenatured collagen in solution at 25 degrees C, producing the two characteristic products TC(A)((3/4)) and TC(B)((1/4)). Collagen types I, II and III were all cleaved in a similar manner by the enzyme at 25 degrees C, but under similar conditions basement-membrane collagen appeared not to be susceptible to collagenase attack. At 37 degrees C the enzyme attacked gelatin, producing initially three-quarter and one-quarter fragments of the alpha-chains, which were degraded further at a lower rate. As judged by the release of soluble hydroxyproline peptides and electron microscopy, the purified enzyme degraded insoluble collagen derived from human skin at 37 degrees C, but at a rate much lower than that for reconstituted collagen fibrils. 4. Inhibition of the skin collagenase was obtained with EDTA, 1,10-phenanthroline, cysteine, dithiothreitol and sodium aurothiomaleate. Cartilage proteoglycans did not inhibit the enzyme. The serum proteins alpha(2)-macroglobulin and beta(1)-anti-collagenase both inhibited the enzyme, but alpha(1)-anti-trypsin did not. 5. The physicochemical and enzymic properties of the skin enzyme are discussed in relation to those of other human collagenases.  相似文献   

6.
J C Chien  W B Wise 《Biochemistry》1975,14(12):2786-2792
Natural abundance Fourier transform 13C nuclear magnetic resonance (13C NMR) were obtained for enzyme solubilized collagen at 1 degrees intervals through the transition region. The transition of collagen molecules from the rigid triple helical state to single-stranded, random-coil state is accompanied by a change from broadened carbon resonances unobservable under high-resolution conditions to narrow line spectra. Thus distinction can be made between helical and random-coil states of individual residues. The transition is monophasic, as determined by examination of 14 different carbon resonances, and the entire structure is found to melt cooperatively over a temperature interval of 5 +/- 1 degrees. All the residues seem to be involved in the unfolding process concurrently. The transition was also studied by examining the changes in the circular dichroism spectrum brought about by heating. The experiments corroborated the observation that the transition proceeded cooperatively over a temperature interval of 4 degrees. Enzyme soluble collagen is seen to melt less cooperatively than native collagen. The enthalpy change was determined by assuming an equilibrium between three random coil gelatin chains and tropocollogen molecules. From the enthalpy, the average length of the tripeptide sequences (70-85) involved in the transition can be estimated. The shortening of the cooperative unit could arise as a result of some alteration of the native conformation through proctase treatment.  相似文献   

7.
1. A specific collagenase from the culture medium of rabbit synovial fibroblasts was purified by gel filtration and ion-exchange chromatography. 2. The enzyme was homogenous on polyacrylamide-gel electrophoresis and showed only traces of contaminants when tested in gels with a non-specific antiserum. 3. The rabbit fibroblast collagenase could hydrolyse collagen both in solution and in fibrillar form. Viscometry showed that at 35 degrees C the purified enzyme could hydrolyse greater than 50 nmol of collagen/min per mg of enzyme. 4. The purified collagenase cleaved collagen in solution at either 24 degrees or 35 degrees C into the characteristic 1/4 and 3/4-length fragments. However, as compared with the impure enzyme, the purified enzyme at 35 degrees C had a much decreased capacity to further degrade the initial specific cleavage products. 5. The specific rabbit collagenase had a mol. wt. of approx. 32000 as estimated by sodium dodecyl sulphate-polyacrylamide-gel electrophoresis, and 35000 by gel filtration.  相似文献   

8.
A highly sensitive assay for vertebrate collagenase has been developed using [14C]proline- or [3H]proline-labeled collagen as soluble substrate. The substrate was easy to prepare, gave high specific activity (1.4 X 10(6) cpm/mg collagen), and was stable at -20 degrees C for a long period. The digestion reaction for the assay was done at 21 degrees C to minimize the cleavage of collagen by proteases other than collagenase and to protect the 3/4 and 1/4 cleavage fragments of collagen from being further attacked by proteases. The cleaved products were denatured and then separated from undigested native collagen by precipitation with 1 M NaCl at pH 3.5. The conditions selected for denaturation and separation gave better discrimination between the cleaved products and uncleaved substrate than did conditions used in some other assays. The digestion products can be examined further by gel electrophoresis at the end of the assay to confirm the activity of vertebrate collagenase. This assay can also be adapted to assess telopeptidase activity independently of collagenase activity.  相似文献   

9.
The collagenase from the larvae Hypoderma lineatum, with a molecular weight of 24 000 and isoelectric point of 4.1, was obtained in homogeneous form by ion-exchange chromatography. It is stoichiometrically inhibited by diisopropylfluorophosphate. On the other hand it is unaffected by ethylenediaminetetraacetate, p-chloromercuribenzoate, dithiothreitol, N-tosyllysine chloromethyl ketone, N-tosylphenylalanine chloromethyl ketone and ovomucoid trypsin inhibitor. The enzyme which degrades native collagen in its helical parts, has a specific activity on thermally reconstituted collagen fibrils of 150 micrograms collagen degraded x min-1 x (mg enzyme)-1 at 37 degrees C. It hydrolyses casein but has no esterolytic activity characteristic of trypsin, chymotrypsin nor elastase. It has no action on the synthetic peptide 4-phenylazobenzyloxycarbonyl-L-prolyl-L-leucyl-L-glycyl-L-prolyl-D-arginine. The amino acid composition of Hypoderma collagenase indicates a distinct similarity with the serine proteinases of the trypsin family and with another athropode serine collagenase, that of the fiddler crab Uca pugilator. This suggests that eucaryotic collagenases with digestive rather than morphogenic function represent a new category of members of the trypsin family.  相似文献   

10.
High-level expression of recombinant collagen by genetic engineering is urgently required. Recombinant collagen is different from natural collagen in its hydroxyproline (Hyp) content and thermal stability. To obtain hydroxylated collagen for applications in biomedicine and biomaterials, the human collagen α1(III) chain was co-expressed with the viral prolyl 4-hydroxylase A085R in Escherichia coli. Unlike previous reports using human prolyl 4-hydroxylase, this study examined the hydroxylation of full-length human collagen α1(III) chain (COL3A1) by viral prolyl 4-hydroxylase. The genes encoding these two proteins were controlled by different promoters, Ptac and PRPL, on a recombinant pKK223-3 plasmid. The sequencing results verified that the target genes were successfully inserted into the recombinant vector. Based on quantitative PCR, SDS–PAGE, and western blotting, successful expression by E. coli BL21(DE3) was detected at the mRNA and protein levels for both loci. Liquid chromatography–mass spectrometry (LC–MS/MS) results suggested that the highest Hyp yield was obtained when the two proteins were induced with 0.5 mM IPTG and heat-shock treatment at 50?°C, corresponding to high enzyme expression and low human collagen α1(III) chain expression levels. A biological activity analysis indicated that the recombinant collagen with the highest hydroxylation level supported the growth of baby hamster kidney cells, similar to observations for native collagen. The production of hydroxylated collagen in this study establishes a new method for collagen hydroxylation and provides a basis for the application of recombinant collagen expressed in E. coli.  相似文献   

11.
The similarities in the structure and properties of C1q and collagen prompted us to examine the susceptibility of C1q to human polymorphonuclear leukocyte collagenase. Incubation of C1q with a collagenase preparation resulted in no change in (1) the binding of C1q to immunoglobulin aggregates, (2) the hemolytic function of C1q as measured by reconstitution of C1q-depleted serum in immune hemolysis, or (3) the structural properties of C1q as revealed by gel electrophorettic patterns of the whole molecule or its polypeptide chains. In contrast, rapid inactivation and degradation of C1q was caused by leukocyte elastase.The collagenase preparation was, however, capable of cleaving reduced and carboxamidomethylated C1q into discrete fragments. This activity was attributed to a gelatinase present in the enzyme preparation since (1) the cleavage reaction was inhibited by denatured collagen but not by native collagen and (2) a collagenase fraction free of gelatinolytic activity could not degrade reduced and carboxamidomethylated C1q, while a gelatinase fraction devoid of collagenase activity retained the capacity to effect reduced and carboxamidomethylated C1q. Both collagenase and gelatinase activities were activated from the latent form by trypsin, and inhibited by EDTA.Therefore, it appears that native C1q lacks the structural features present in collagen which are recognized by leukocyte collagenase for hydrolytic action even though the denatured molecule still contains that region capable of being cleaved by gelatinase.  相似文献   

12.
H Sage  P Bornstein 《Biochemistry》1979,18(17):3815-3822
A novel collagen chain, termed alpha C, has been isolated from human placenta by limited pepsin digestion. The collagen containing the alpha C chain copurifies with placental AB collagen during selective salt precipitation but is virtually absent from fetal birth membranes, which contain relatively larger amounts of AB. Both native AB and alpha C-containing collagens are resistant to human skin collagenase under conditions that support cleavage of type I by greater than 90%. The alpha C chain was separated from alpha B by phosphocellulose chromatography and subsequently from alpha P by chromatography on CM-cellulose. Its amino acid composition is distinct from alpha A and alha B although all three chains posses compositional features in common; the carbohydrate content of the alpha C chain was intermediate between those of alpha A and alpha B. Analysis by NaDodSO4-polyacrylamide gel electrophoresis of peptides produced by CNBr cleavage and by limited digestion with the enzyme mast cell protease indicated different and unique products for the alpha A, alpha B, and alpha C chains. The data support the existence of another collagen chain which is related to the alpha A and alpha B chains but which is structurally unique. The proteins containing these chains may in turn comprise a subfamily of collagen isotypes which represents a divergence from and/or specialization of the type IV basement membrane collagens.  相似文献   

13.
Collagenase of human basal cell epithelioma was purified by sequential ammonium sulfate precipitation, Sephadex gel filtration and affinity chromatography on collagen-polyacrylamide gel. The collagenase, when partially purified, was found to have an approximate molecular weight of 50,000. The purified enzyme contained no caseinolytic activity. On polyacrylamide gel electrophoresis, the purified enzyme gave a single protein band. The purified collagenase cleaved native acid-soluble guinea pig skin collagen at 37 degrees C with a pH optimum of 8. The enzyme was inhibited by EDTA, cysteine, and human serum but not by soybean trypsin inhibitor. Heparin did not stimulate the enzyme activity. Purified collagenase reduced the specific viscosity of native acid-soluble guinea pig skin collagen to 50 per cent of its original value at 27 degrees C. Polyacrylamide gel disc electrophoresis of the reaction products showed bands corresponding to alphaA, betaA, and alphaB fragments. Electron microscopic examination of SLS aggregates of the reaction products showed that the cleavage site by the enzyme was at a point 75 per cent from the "A" end (TCA75) and 25 per cent from the "B" end (TCB25) of the collagen molecule.  相似文献   

14.
The gelatinolytic activity of rat uterus collagenase   总被引:6,自引:0,他引:6  
The collagenase produced by rat uterine cells in culture has been examined for its ability to degrade denatured collagen. Acting as a gelatinase, rat uterus collagenase was able to successfully degrade the denatured chains of collagen types I through V. In addition, the enzyme produced multiple cleavages in these chains and displayed values for Km of 4-5 microM, compared to values of 1-2 microM when native collagen was used as substrate. Furthermore, rat uterus collagenase degraded the alpha 2 chain of denatured type I collagen at a significantly faster rate than the alpha 1 chain, as previously observed for human skin fibroblast collagenase. In contrast to the action of human skin collagenase, however, the rat uterus enzyme was found to be a markedly better gelatinase than a collagenase, degrading the alpha chains of denatured type I guinea pig skin collagen at rates some 7-15-fold greater than native collagen. Human skin collagenase degrades the same denatured chains at rates ranging from 13-44% of its rate on native collagen. Rat uterus collagenase, then, is approximately 50 times better a gelatinase than is human skin collagenase. In addition to its ability to cleave denatured collagen chains at greater rates than native collagen, the rat uterus collagenase also attacked a wider spectrum of peptide bonds in gelatin than does human skin collagenase. In addition to cleaving the Gly-Leu and Gly-Ile bonds characteristic of its action on native collagen, rat uterus collagenase readily catalyzed the cleavage of Gly-Phe bonds in gelatin. The rat enzyme was also capable of cleaving Gly-Ala and Gly-Val bonds, although these bonds were somewhat less preferred by the enzyme. The cleavage of peptide bonds other than Gly-Leu and Gly-Ile appears to be a property of the collagenase itself and not a contaminating protease. Thus, it appears that the collagenase responsible for the degradation of collagen during the massive involution of the uterus might also act as a gelatinase to further degrade the initial products of collagenolysis to small peptides suitable for further metabolism.  相似文献   

15.
A neutral proteinase, capable of degrading gelatin, has been found in both an active and a latent form in the medium from the culture of rat mesangial cells. The latent form had an Mr of 80,000-100,000 and could be activated with either 4-aminophenylmercuric acetate or prolonged incubation at neutral pH. The active form of the enzyme was extensively purified. The estimated Mr of the purified enzyme on gel filtration was approximately 200,000, indicating that the active enzyme formed aggregates. However, analysis by SDS/polyacrylamide-gel electrophoresis under reducing conditions showed two protein bands, with Mr 68,000 and 66,000. Both proteins were found to contain proteolytic activity when run on SDS/substrate gels. The enzyme was inhibited by EDTA and 1,10-phenanthroline, but not by inhibitors for cysteine, serine or aspartic proteinases. The enzyme did not digest fibronectin, bovine serum albumin, proteoglycan or interstitial collagen. The enzyme degraded pepsin-solubilized placental type V collagen at 31 degrees C, whereas similarly solubilized type IV collagen was only degraded at higher temperatures. In addition, the neutral proteinase degraded native soluble type IV collagen. It also had activity on insoluble type IV collagen of glomerular basement membrane. The above properties suggest that the mesangial neutral proteinase belongs to the gelatinase group of metalloproteinases and that it may play a role in the normal turnover of extracellular glomerular matrix.  相似文献   

16.
Proteolysis of Nereis cuticle collagen by two bacterial collagenases was investigated using viscosimetry, enzyme kinetics, sodium dodecyl sulfate polyacrylamide gel electrophoresis, and ion exchange chromatography of collagenolytic peptides. Collagenase of the marine Vibrio B-30 completely degrades native cuticle collagen at 7 degress C with a turnover number 50 times greater than that of the clostridial collagenase. Although turnover numbers for the two enzymes are comparable when using denatured cuticle collagen as substrate, the vibrial collagenase appears to cleave twice as many peptide bonds per mg of cuticle collagen as does the clostridial enzyme. Sodium dodecyl sulfate gel electrophoresis of collagenase-digested native cuticle collagen reflects the resistance of the collagen to clostridial collagenase; however, the vibrial enzyme completely degrades the cuticle collagen with the formation of one transient intermediate (Mr 400,000). Peptide analysis of fully digested denatured cuticle collagen reveals that the two enzymes have a number of qualitative and quantitative similarities. Despite these, however, only the vibrial collagenase seems capable of extensively degrading native cuticle collagen.  相似文献   

17.
Cathepsin B1. A lysosomal enzyme that degrades native collagen   总被引:26,自引:11,他引:15  
1. Experiments were made to determine whether the purified lysosomal proteinases, cathepsins B1 and D, degrade acid-soluble collagen in solution, reconstituted collagen fibrils, insoluble collagen or gelatin. 2. At acid pH values cathepsin B1 released (14)C-labelled peptides from collagen fibrils reconstituted at neutral pH from soluble collagen. The purified enzyme required activation by cysteine and EDTA and was inhibited by 4-chloromercuribenzoate, by the chloromethyl ketones derived from tosyl-lysine and acetyltetra-alanine and by human alpha(2)-macroglobulin. 3. Cathepsin B1 degraded collagen in solution, the pH optimum being pH4.5-5.0. The initial action was cleavage of the non-helical region containing the cross-link; this was seen as a decrease in viscosity with no change in optical rotation. The enzyme also attacked the helical region of collagen by a mechanism different from that of mammalian neutral collagenase. No discrete intermediate products of a specific size were observed in segment-long-spacing crystalloids (measured as native collagen molecules aligned with N-termini together along the long axis) or as separate peaks on gel filtration chromatography. This suggests that once an alpha-chain was attacked it was rapidly degraded to low-molecular-weight peptides. 4. Cathepsin B1 degraded insoluble collagen with a pH optimum below 4; this value is lower than that found for the soluble substrate, and a possible explanation is given. 5. The lysosomal carboxyl proteinase, cathepsin D, had no action on collagen or gelatin at pH3.0. Neither cathepsin B1 nor D cleaved Pz-Pro-Leu-Gly-Pro-d-Arg. 6. Cathepsin B1 activity was shown to be essential for the degradation of collagen by lysosomal extracts. 7. Cathepsin B1 may provide an alternative route for collagen breakdown in physiological and pathological situations.  相似文献   

18.
A specific collagenase from rabbit fibroblasts in monolayer culture   总被引:33,自引:15,他引:18  
1. Explants of rabbit skin and synovium in tissue culture secreted a specific collagenase into their culture media. Primary cultures of fibroblast-like cells, which were obtained from these tissues and maintained in culture for up to 14 subculture passages, also secreted high activities of a specific collagenase into serum-free culture medium. Secretion of enzyme activity from the cell monolayer was at constant rate for over 100h and continued for up to 8 days in serum-free culture medium. The enzymic activity released was proportional to the number of cells in the monolayer. 2. The fibroblast collagenase was maximally active between pH7 and 8. At 24 degrees C the collagenase decreased the viscosity of collagen in solution by 60%. The collagen molecule was cleaved into three-quarters and one-quarter length fragments as demonstrated by electron microscopy of segment-long-spacing crystallites (measured as native collagen molecules aligned with N-termini together along the long axis), and by polyacrylamide-gel electrophoresis of the denatured products. The collagenase hydrolysed insoluble collagen, reconstituted collagen fibrils and gelatin, but had no effect on haemoglobin or Pz-Pro-Leu-Gly-Pro-d-Arg (where Pz=4-phenylazobenzyloxycarbonyl). 3. The fibroblast collagenase was partially purified by gel filtration and the molecular weight was estimated as 38000. The activity of the partially purified enzyme was stimulated by 4-chloromercuribenzoate, inhibited by EDTA, cysteine, 1,10-phenanthroline and serum, but was unaffected by di-isopropyl phosphorofluoridate, Tos-LysCH(2)Cl and pepstatin. 4. Long-term cell cultures originating from rabbit skin or synovium from rabbits with experimentally induced arthritis also secreted specific collagenase. Human fibroblasts released only very small amounts of collagenase.  相似文献   

19.
1. The neutral collagenase released into the culture medium by explants of ehrumatoid synovial tissue has been purified by ultrafiltration and column chromatography, utilising Sephadex G-200, Sephadex QAE A-50 and Sephadex G-100 superfine. 2. The final collagenase preparation had a specific activity against thermally reconstituted collagen fibrils of 312 mug collagen degraded min-1 mg enzyme protein-1, representing more than a 1000-fold increase over that of the active culture medium. 3. Electrophoresis in polyacrylamide disc-gels with and without sodium dodecyl sulphate showed the enzyme to migrate as a single protein band. Elution experiments from polyacrylamide gels and chromatography columns have provided no evidence for the existence of more than one collagenase. 4. The molecular weight of the enzyme, as determined by dodecylsulphate-polyacrylamide gel electrophoresis, was 33000. 5. Data obtained from sutdies with the ion-exchange resin and from gel electrophoresis in acid and alkaline buffer systems suggested a basically charged enzyme. 6. It did not hydrolyse the synthetic collagen peptide Pz-Pro-Leu-Gly-Pro-D-Arg and non-specific protease activity was absent. 7. The collagenase attacked undenatured collagen in solution at 25 degrees C resulting in a 58% loss of viscosity and producing the two characteristic products TCA(3/4) and TCB(1/4). 8. At 37 degrees C and pH 8.0 both reconstituted collagen fibrils and gelatin were degraded to peptides of less than 10000 molecular weight. 9. As judged by the release of soluble hydroxyproline peptides and electron microscopic appearances the enzyme degraded human insoluble collagens derived from tendon and soft juxta-articular tissues although rates of attack were less than with reconstituted fibrils. 10. The data suggests that pure rheumatoid synovial collagenase at 37 degrees C and neutral pH can degrade gelatin, reconstituted fibrils and insoluble collagens without the intervention of non-specific proteases. 11. The different susceptibilities of various collagenous substrates to collagenase attack are discussed.  相似文献   

20.
Two kinds of gelatinases (or type IV collagenases), 90-kDa and 64-kDa gelatinases, were purified in a tissue inhibitor of metalloproteinases (TIMP)- or TIMP-2-free form from the serum-free conditioned medium of human schwannoma YST-3 cells, and their activities on extracellular matrix proteins were compared. Sequential chromatographies on a gelatin-Sepharose column, an LCA-agarose column, and a gel filtration column in the presence of 5 M urea yielded 600 micrograms of the 64-kDa enzyme and 45 micrograms of the 90-kDa enzyme from 2.8 liters of the conditioned medium. The purified enzymes showed high gelatinolytic activities without activation by p-aminophenyl mercuric acetate (APMA), indicating that 5 M urea used in the final chromatography not only dissociated the inhibitors from the progelatinases but also activated the proenzymes. The inhibitor-free gelatinases showed a much higher activity than the APMA-activated inhibitor-bound enzymes. The specific activity of the 90-kDa enzyme was nearly 25 times higher than that of the 64-kDa enzyme. The 90-kDa gelatinase hydrolyzed type I collagen as well as native and pepsin-treated type IV collagens at 30 degrees C, while at 37 degrees C it potently hydrolyzed types I, III, and IV collagens but not fibronectin or laminin. The 64-kDa gelatinase showed a similar substrate specificity to that of the 90-kDa enzyme, except that it did not hydrolyze type I collagen and native type IV collagen at 30 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号