首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the aim to select new olive cultivars with superior physical and chemical properties than the cultivar Chemlali Sfax, the present study focused on the comparison of the chemical composition and the sensory profile of the virgin olive oils (VOOs) of two wild olive trees (Oleasters K and M) with those of VOOs obtained from Chemlali Sfax and Neb Jmel olive cultivars, all growing in the coastal region of Tunisia. Despite the variability in the chemical composition (fatty acids, pigments, and phenolic and volatile compounds) and the organoleptic profile of the VOOs of the oleasters and the cultivars, the quality indices (free fatty acids, peroxide value, and spectrophotometric indices K232 and K270) as well as the fatty acid composition of all VOOs studied met the commercial standards. Both the α-tocopherol and phenol contents varied between the genotypes. The Neb Jmel and Oleaster K VOOs had more than two times higher total phenol levels than the Chemlali Sfax and Oleaster M VOOs. Also the contents of volatile compounds differed between the olive oils studied. Chemlali Sfax and Oleaster K oils were more abundant in aldehydes, whereas Oleaster M VOO had higher contents of alcohols. These results were confirmed by a sensorial analysis showing that the later oil was deprived for consumption despite its abundance in α-tocopherol. In conclusion, the oleasters studied revealed to be interesting, since they produced oils with good quality characteristics in terms of minor compounds (phenols and volatiles) compared to the Chemlali Sfax cultivar.  相似文献   

2.
Changes in photosynthetic performance, osmolyte accumulation and the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and polyphenol oxidase (PPO) were investigated in one-year-old olive cultivars (Chemlali, Meski and Picholine) subjected to contrasting water availability regimes under arid climatic conditions in Tunisia. Shoot elongation rates (SER) and photosynthetic performance were markedly reduced by the water deficit regime (WD) in all cultivars except for Chemlali, which proved to be superior to the other two cultivars with respect to drought tolerance. Higher photosynthetic performance (net photosynthesis (Pn), stomatal conductance (gs) and transpiration rates (E)) in the Chemlali and Meski cvs. compared to Picholine olive allowed them to maintain better plant water status and shoot elongation rates. Under WD conditions, Chemlali showed a greater capability for proline accumulation. Leaves grown under WD conditions showed signs of oxidative stress such as reduced chlorophyll and carotenoid concentrations. Nevertheless, different cultivars developed certain antioxidative defense mechanisms, including elevated SOD, APX and CAT activities. In contrast, PPO activity decreased under WD circumstances. Comparatively, Chemlali olive displayed better antioxidative enzyme activity, and thus better protection against oxidative stress. These results show that the ability of olive trees to up-regulate the enzymatic antioxidative system might be an important attribute linked to drought tolerance. These findings demonstrate that the association of higher Pn, proline accumulation and antioxidative defenses could be effective in a water-limited environment and may be useful selection criteria in breeding programs with the objective of improving drought tolerance and growth of olive trees, at least under the described environmental conditions.  相似文献   

3.
The composition of fatty acids (FAs) of symbiotic dinoflagellates isolated from the hermatypic coral Echinoporal lamellosa adapted to the irradiance of 95, 30, 8, and 2% PAR was studied. Polar lipids and triacylglycerols (TAG) differed between them in FA composition. Polar lipids were enriched in unsaturated FAs, whereas TAG, in saturated FAs. Light exerted a substantial influence on the FA composition in both polar lipids and TAG. The elevation of irradiance resulted in the accumulation of 16:0 acid in both lipid groups and 16:1(n-7) acid in TAG. It seems likely that de novo synthesis of 16:0 acid occurred actively in the cells of symbiotic dinoflagellates in high light. Since these processes are energy-consuming ones, they utilize excessive energy. When light intensity declined, 18:4(n-3) and 20:5(n-3) acids accumulated in polar lipids, which was accompanied by the increase in the content of chlorophyll a in the cells of zooxanthellae, whereas the levels of 22:6(n-3) and 20:4(n-6) acids reduced. Although the relative content of particular FAs varied substantially in dependence of irradiance, the balance between the sum of saturated and unsaturated FAs changed insignificantly. We concluded that the role of photoadaptation could not be limited only to changes in the degree of lipid unsaturation and membrane fluidity. It is supposed that light-induced changes in the FA composition reflect the interrelation between photosynthesis and FA biosynthesis.  相似文献   

4.
Photosynthetic gas exchange, vegetative growth, water relations and fluorescence parameters as well as leaf anatomical characteristics were investigated on young plants of two Olea europaea L. cultivars (Chemlali and Zalmati), submitted to contrasting water availability regimes. Two-year-old olive trees, grown in pots in greenhouse, were not watered for 2 months. Relative growth rate (RGR), leaf water potential (ΨLW) and the leaf relative water content (LWC) of the two cultivars decreased with increasing water stress. Zalmati showed higher values of RGR and LWC and lower decreased values of ΨLW than Chemlali, in response to water deficit, particularly during severe drought stress. Water stress also caused a marked decline on photosynthetic capacity and chlorophyll fluorescence. The net photosynthetic rate, stomatal conductance, transpiration rate, the maximal photochemical efficiency of PSII (F v/F m) and the intrinsic efficiency of open PSII reaction centres (F′ v/F′ m) decreased as drought stress developed. In addition, drought conditions, reduced leaf chlorophyll and carotenoids contents especially at severe water stress. However, Zalmati plants were the less affected when compared with Chemlali. In both cultivars, stomatal control was the major factor affecting photosynthesis under moderate drought stress. At severe drought-stress levels, the non-stomatal component of photosynthesis is inhibited and inactivation of the photosystem II occurs. Leaf anatomical parameters show that drought stress resulted in an increase of the upper epidermis and palisade mesophyll thickness as well as an increase of the stomata and trichomes density. These changes were more characteristic in cv. ‘Zalmati’. Zalmati leaves also revealed lower specific leaf area and had higher density of foliar tissue. From the behaviour of Zalmati plants, with a smaller reduction in relative growth rate, net assimilation rate and chlorophyll fluorescence parameters, and with a thicker palisade parenchyma, and a higher stomatal and trichome density, we consider this cultivar more drought-tolerant than cv. Chemlali and therefore, very promising for cultivation in arid areas.  相似文献   

5.
The comparative responses of two young olive trees (Olea europaea L. ‘Chemlali’ and ‘Chetoui’) to drought stress were investigated during 1 month. Three-month-old own-rooted plants were subjected to two irrigation treatments: WW (well watered plants that were irrigated with fresh water to maintain a soil water content close to field capacity), and WS (water stressed plants by withholding water). Leaf water potential, gas exchange and leaf lipid composition were studied. ‘Chemlali’ was able to maintain higher leaf CO2 assimilation rate and leaf stomatal conductance throughout the drought cycle compared to ‘Chetoui’. Water stress induced a larger decrease in the total lipid content in ‘Chetoui’ than in ‘Chemlali’. Interestingly, the constitution of different lipid classes was highly altered in ‘Chetoui’. Lipid changes in Chemlali, a drought tolerant cultivar, revealed more stability of its cellular membranes to drought stress as compared to the drought susceptible olive cultivar, Chétoui. Furthermore, in comparison to the controls, drought stressed plants showed an increase in the degree of unsaturation of leaf lipids in the two olive cultivars. Moreover, the results observed in Chemlali showed that besides changes in lipids composition this cultivar may have an efficient defence strategy which can be related on antioxidative production against oxidative stress.  相似文献   

6.
We used eight informative microsatellite markers for fingerprinting and evaluation of genetic similarity among 15 Tunisian olive (Olea europaea L.) cultivars and two feral unknown trees named Soulela 1 and Soulela 2. Thirty-one alleles were revealed, and the number of alleles per SSR varied from 2 (UDO12) to 6 (GAPU71A). Cluster analysis grouped cultivars into three main clusters. The two unknown varieties could not be reliably classified into any of these cultivar groups. SSR analysis indicated the presence of three erroneous denominations of cultivars. We resolved two synonymy cases (Zalmati and Chemlali; Rkhami and Chetoui) and one case of homonymy (Chemlali Tataouine). Genetic analyses of DNA extracted from leaves, oils, and embryos of the two unknown cultivars and the two major Tunisian olive cultivars (Chemlali and Chetoui) were also studied. We conclude that the reliable identification of these two feral cultivars needs to be addressed by a larger set of markers.  相似文献   

7.
Microalgae accumulate triacylglycerol (TAG) during nutrient deprivation and break it down after nutrient resupply, and these processes involve dramatic shifts in cellular carbon allocation. Due to the importance of algae in the global carbon cycle, and the potential of algal lipids as feedstock for chemical and fuel production, these processes are of both ecophysiological and biotechnological importance. However, the metabolism of TAG is not well understood, particularly the contributions of fatty acids (FAs) from different membrane lipids to TAG accumulation and the fate of TAG FAs during degradation. Here, we used isotopic labeling time course experiments on Chlamydomonas reinhardtii to track FA synthesis and transfer between lipid pools during nitrogen (N)-deprivation and resupply. When cells were labeled before N-deprivation, total levels of label in cellular FAs were unchanged during subsequent N-deprivation and later resupply, despite large fluxes into and out of TAG and membrane lipid pools. Detailed analyses of FA levels and labeling revealed that about one-third of acyl chains accumulating in TAG during N-deprivation derive from preexisting membrane lipids, and in total, at least 45% of TAG FAs passed through membrane lipids at one point. Notably, most acyl chains in membrane lipids during recovery after N-resupply come from TAG. Fluxes of polyunsaturated FAs from plastidic membranes into TAG during N-deprivation were particularly noteworthy. These findings demonstrate a high degree of integration of TAG and membrane lipid metabolism and highlight a role for TAG in storage and supply of membrane lipid components.

In Chlamydomonas, about a third of triacylglycerol (TAG) made during nitrogen deprivation is derived from preexisting membranes, and most membranes made after resupply are derived from TAG.  相似文献   

8.
Under bleaching conditions, corals lose their symbiotic zooxanthellae, and thus, the ability to synthesize fatty acids (FAs) from photosynthetically derived carbon. This study investigated the lipid content and FA composition in healthy and bleached corals from the Odo reef flat in Okinawa, southern Japan, following a bleaching event. It was hypothesized that the FA composition and abundance would change as algae are lost or die, and possibly microbial abundance would increase in corals as a consequence of bleaching. The lipid content and FA composition of three healthy coral species (Pavona frondifera, Acropora pulchra, and Goniastrea aspera) and of partially bleached and completely bleached colonies of P. frondifera were examined. The FA composition did not differ among healthy corals, but differed significantly among healthy, partially bleached, and completely bleached specimens of P. frondifera. Completely bleached corals contained significantly lower lipid and total FA content, as well as lower relative amounts of polyunsaturated FAs and higher relative amounts of saturated FAs, than healthy and partially bleached corals. Furthermore, there was a significantly higher relative concentration of monounsaturated FAs and odd-numbered branched FAs in completely bleached corals, indicating an increase in bacterial colonization in the bleached corals.  相似文献   

9.
Fatty acid (FA) composition of the blubber in free-ranging white whales (Delphinapterus leucas) from Svalbard's waters was determined and compared with the fatty acid composition of potential prey species in an attempt to assess diet. This methodology is based on the common assumption that unique arrays of FAs found within groups of organisms are transferred, largely unaltered, up marine food chains and thus may be useful for assessment of diet composition. Complete-column blubber biopsies were sampled from white whales (n=7) during the summers of 1996 and 1997. All captured animals were adult males. FAs were extracted from 2–4 replicates taken from an area about 10 cm in front of the mid-dorsal ridge. FA data from a total of 12 potential prey species from the Svalbard area were compared to the white-whale blubber samples. Twenty-two FAs were consistently found in relative amounts >0.5% of the total FA composition in white whales. These FAs accounted for 94–96% of the total FAs present. The blubber was composed almost entirely of triacylglycerols. The major saturated FAs were 14:0 and 16:0; 16:1(n-7), 18:1(n-9) and 20:1(n-9) were the major monounsaturated FAs and 20:5(n-3) and 22:6(n-3) were the major polyunsaturated FAs. Sixteen of the 22 FAs consistently found in the white-whale blubber were also found in considerable amounts (>0.5% of total FAs) in most of the potential species. Principal Component Analysis run on these 16 FAs suggests that polar cod (Boreogadus saida) had the most similar FA composition to the white-whale blubber, followed by capelin (Mallotus villosus), the copepod Calanus hyperboreus and the shrimp Pandalus borealis. Accepted: 27 November 1999  相似文献   

10.
Engineering of oilseed plants to accumulate unusual fatty acids (FAs) in seed triacylglycerol (TAG) requires not only the biosynthetic enzymes for unusual FAs but also efficient utilization of the unusual FAs by the host-plant TAG biosynthetic pathways. Competing pathways of diacylglycerol (DAG) and subsequent TAG synthesis ultimately affect TAG FA composition. The membrane lipid phosphatidylcholine (PC) is the substrate for many FA-modifying enzymes (desaturases, hydroxylases, etc.) and DAG can be derived from PC for TAG synthesis. The relative proportion of PC-derived DAG versus de novo synthesized DAG utilized for TAG synthesis, and the ability of each pathway to utilize unusual FA substrates, are unknown for most oilseed plants, including Arabidopsis thaliana. Through metabolic labeling experiments we demonstrate that the relative flux of de novo DAG into the PC-derived DAG pathway versus direct conversion to TAG is ~14/1 in wild-type Arabidopsis. Expression of the Ricinus communis FA hydroxylase reduced the flux of de novo DAG into PC by ~70%. Synthesis of TAG directly from de novo DAG did not increase, resulting in lower total synthesis of labeled lipids. Hydroxy-FA containing de novo DAG was rapidly synthesized, but it was not efficiently accumulated or converted to PC and TAG, and appeared to be in a futile cycle of synthesis and degradation. However, FA hydroxylation on PC and conversion to DAG allowed some hydroxy-FA to accumulate in sn-2 TAG. Therefore, the flux of DAG through PC represents a major bottleneck for the accumulation of unusual FAs in TAG of transgenic Arabidopsis seeds.  相似文献   

11.
Changes in the fatty acid (FA) composition of leaf and root lipids of heat-loving tobacco (Nicotiana tabacum L., cv. Samsun) plants during low-temperature hardening (8°C for 6 days) were studied. Hardening could improve leaf but not root cold tolerance. As this took place, the relative content of polyunsaturated (18:2n-6 and 18:3n-3) FAs increased and the proportion of saturated and monounsaturated FAs decreased. In contrast, in the roots hardening slightly increased the concentration of saturated FAs (16:0 and 18:0) and reduced the level of unsaturated FAs (18:1n-9, 18:2n-6, and 18:3n-3). At the same time, root lipids contained much C20–24 FAs, and their content increased during hardening. It was suggested that an increased FA saturation and elevated proportion of C20–24 FAs in the root lipids resulting in the lower membrane fluidity could be a reason for incapability of heat-loving tobacco plant roots of hardening and plant death at the lowtemperature stress.  相似文献   

12.
Information on lipids in forages is scarce, and effects of nitrogen (N) application level and regrowth period on the fatty acid (FA) concentration and composition of perennial ryegrass (Lolium perenne L.) were studied. N was applied at 0, 45 and 100 kg ha?1, and swards were cut after various regrowth periods, resulting in six treatments designed as randomised blocks with three replicates. The stages of development ranged from vegetative to elongating swards, with herbage yield levels from 1.9 to 4.2 t dry matter (DM) ha?1. Concentrations of individual FA were determined by gas chromatography, and canopy characteristics and herbage quality were assessed. The treatments resulted in canopies with contrasting DM yields and protein concentrations. Five FAs, representing 98% of total FAs, were studied in detail. On an average, the concentration of these major FAs in fresh grass was 15.1 g kg?1 DM, and 69% of the major FAs consisted of C18:3. Regrowth period affected (P < 0.05) the total FA concentration, and significantly (P < 0.01) lower concentrations of C18:3 and C16:1 were found after a longer period of regrowth. N application resulted in higher (P < 0.001) concentrations of all FAs. The FA composition was not affected by N application, but a longer regrowth period significantly (P < 0.001) decreased the proportion of C18:3 and increased those of C18:2 and C16:0. A strong, positive overall linear relation was found between the concentrations of total FAs and C18:3 with the crude protein concentration in the herbage. These studies demonstrate opportunities to affect the FA concentration and composition of FA in herbage through management strategies, which could affect milk FA composition.  相似文献   

13.
The milk fatty acid (FA) profile is far from the optimal fat composition in regards to human health. The natural sources of variation, such as feeding or genetics, could be used to increase the concentrations of unsaturated fatty acids. The impact of feeding is well described. However, genetic effects on the milk FA composition begin to be extensively studied. This paper summarizes the available information about the genetic variability of FAs. The greatest breed differences in FA composition are observed between Holstein and Jersey milk. Milk fat of the latter breed contains higher concentrations of saturated FAs, especially short-chain FAs. The variation of the delta-9 desaturase activity estimated from specific FA ratios could explain partly these breed differences. The choice of a specific breed seems to be a possibility to improve the nutritional quality of milk fat. Generally, the proportions of FAs in milk are more heritable than the proportions of these same FAs in fat. Heritability estimates range from 0.00 to 0.54. The presence of some single nucleotide polymorphisms could explain partly the observed individual genetic variability. The polymorphisms detected onSCD1 andDGAT1 genes influence the milk FA composition. TheSCD1 V allele increases the unsaturation of C16 and C18. TheDGAT1 A allele is related to the unsaturation of C18. So, a combination of the molecular and quantitative approaches should be used to develop tools helping farmers in the selection of their animals to improve the nutritional quality of the produced milk fat.  相似文献   

14.
As the human population has increased, so too has the demand for biotically pollinated crops. Bees (Apoidea) are essential for pollen transfer and fruit production in many crops, and their visit patterns can be influenced by floral morphology. Here, we considered the role of floral morphology on visit rates and behaviour of managed honey bees (Apis mellifera) and wild bumble bees (genus Bombus), for four highbush blueberry cultivars (Vaccinium corymbosum L.). We measured five floral traits for each cultivar, finding significant variation among cultivars. Corolla throat diameter may be the main morphological determinant of visit rates of honey bees, which is significantly higher on the wider flowers of cv. ‘Duke’ than on ‘Bluecrop’ or ‘Draper’. Honey bees also visited cv. ‘Duke’ legitimately but were frequent nectar robbers on the long, narrow flowers of cv. ‘Bluecrop’. Bumble bees were infrequent (and absent on cv. ‘Draper’) but all observed visits were legitimate. Crop yield was highest for the cultivar with the highest combined (honey bee + bumble bee) visit rate, suggesting that aspects of floral morphology that affect pollinator visit patterns should be considered in crop breeding initiatives.  相似文献   

15.
16.
Abstract The fatty acid (FA) compositions for total lipids from fat body, hemolymph and flight muscle of the armyworm moths, Mythirnna separata, at rest and after tethered flight for 1 h were determined by GC and GC-MS. The composition in these tissues comprises myristic acid (1%-2%), palmitic acid (more than 35%1, palmitoleic acid (9%-11%), stearic acid (less than 1%), oleic acid (about 32%), linoleic acid (12%-17%) and linolenic acid (3%-6%). After flight, FA level in the fat body, compared to that at rest, shows a significant decline at about 20 μg/mg tissue.h-1; the concentration of FAs in hemolymph rises evidently, but change of FA content in flight muscle appears to be small. From the changes of proportional composition of FAs in fat body, hemolymph and flight muscle, it is found that the FAs selectively utilized for flight in flight muscle are predominantly the palmitic acid and oleic acid.  相似文献   

17.
The dynamics of the fatty‐acid (FA) composition of neutral acylglycerols (NAGs) composed of 1,2,3‐triacyl‐sn‐glycerols (TAGs) and 3‐acetyl‐1,2‐diacyl‐sn‐glycerols (acDAGs) was determined in the fruit seeds and arils of three Euonymus L. species at three stages of their maturity. The NAG composition comprised 29 FAs, linoleic, oleic, palmitic, and α‐linolenic acids being predominant. Noticeable amounts of other FAs, such as lauric, myristic, hexadec‐9‐enoic, stearic, (Z)‐vaccenic, and arachidic acid, etc., could also be present. In the course of maturation, the qualitative composition of major FAs remained nearly unchanged, while the unsaturation index of FAs in seeds and in TAGs, as well as, but to a lesser extent, in arils and in acDAGs, respectively, always decreased. This decline was brought about by a sharp fall of the α‐linolenate level, a decrease of the linoleate content, and a corresponding rise in the oleate content. It is suggested that, in both seeds and arils, both classes of NAGs were formed at the expense of the same FA pool; the quantitative composition of this pool was characteristic of a given fruit part and strongly changed during maturation. The accumulation of TAGs in E. europaeus fruits was accompanied by a conversion of hexadec‐9‐enoic acid into (Z)‐vaccenic acid via the C2‐elongation reaction.  相似文献   

18.
The fatty acid (FA) composition of total lipids isolated from the marine sponge Halichondria panicea inhabiting Peter the Great Bay of the Sea of Japan was studied. GC and GC-MS techniques were used in identification of 63 FAs, with the main attention being paid to FAs with 14–22 carbon atoms. 4,8,12-Trimethyl-13:0 FA was for the first time identified as a main saturated FA, along with the branched FAs br-25:1, br-27:1, and br-27:2. The contents of arachidonic, eicosapentaenoic, docosapentaenoic, and the major demospongic acids [26:3(5,9,19), 26:3(5,9,17), 27:3(5,9,20), and 28:3(5,9,21)] considerably differed from those previously found for H. panicea, which may be due to seasonal changes in the species composition of organisms consumed by the sponge.  相似文献   

19.
The impacts of water deficit and melamine salt of bis(oximethyl)phosphonic acid (melaphen) on the fatty acid (FA) composition of membrane lipids and energy metabolism in mitochondria of 5-day-old pea (Pisum sativum L., cv. Flora-2) seedlings were studied. Insufficient watering resulted in the accumulation of saturated and a decrease in the content of unsaturated FAs with 18 and 20 carbon atoms. Seed treatment with 3 × 10?10 M melaphen prevented these changes in the FA composition in the mitochondrial membrane lipids. Changes in the FA compositions of membrane lipids were correlated with changes in energy metabolism in mitochondria: the efficiency of oxidative phosphorylation and the rate of NAD-dependent substrate oxidation in the presence of ADP and FCCP (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone) were reduced. A close correlation was observed between changes in the highest rates of NAD-dependent substrate oxidation and the relative content of FAs with 18 (r = 0.76489) and 20 (r = 0.9637) carbon atoms. The regulatory role of C18 and C20 unsaturated FAs in the mitochondrial energy metabolism of pea seedlings is discussed.  相似文献   

20.
Differences in abscisic acid (ABA) accumulation between two olive cultivars were studied by enzyme-linked immunosorbent assay in roots and leaves, leaf water potential (Ψl), stomatal conductance (g s) as well as photosynthetic rate (A) were also determined in well-watered (WW) and water-stressed (WS) plants of two olive cultivars ‘Chemlali’ and ‘Chetoui’. ‘Chemlali’ was able to maintain higher leaf CO2 assimilation rate and leaf stomatal conductance throughout the drought cycle when compared with ‘Chetoui’. Furthermore, leaf water potential of ‘Chemlali’ decreased in lower extent than in Chetoui in response to water deficit. Interestingly, significant differences in water-stress-induced ABA accumulation were observed between the two olive cultivars and reflect the degree of stress experienced. Chemlali, a drought tolerant cultivar, accumulated lower levels of ABA in their leaves to regulate stomatal control in response to water stress compared to the drought sensitive olive cultivar ‘Chetoui’ which accumulated ABA in large amount.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号