首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高寒草甸植被细根生产和周转的比较研究   总被引:1,自引:0,他引:1  
植物根系是陆地生态系统重要的碳汇和养分库,细根周转过程是陆地生态系统地下部分碳氮循环的核心环节,在陆地生态系统如何响应全球变化中起着关键作用。在全球变化敏感地区之一的青藏高原,对该地区的主要植被类型矮嵩草草甸同时采用根钻法、内生长袋法和微根管法3种观测方法研究细根生产和周转速率,并探讨了极差法、积分法、矩阵法和Kaplan-Meier法等数据处理方法对计算值的影响。研究结果显示:在估算细根净初级生产力时,根钻法宜采用积分法,内生长袋法宜选用矩阵法;由此进一步以最大细根生物量为基础,根钻法和内生长袋法估测的细根年周转速率分别为0.36 a-1和0.52 a-1,内生长袋法的估算结果是根钻法的1.44倍。对于微根管法,将其观测得到的细根长度转换为单位面积的生物量值后,采用积分法计算出细根周转速率为0.84 a-1,远高于传统方法的估算结果;若采用Kaplan-Meier生存分析方法,则计算出的细根周转速率更高达3.41 a-1。  相似文献   

2.
The isotope decay method of estimating belowground net primary production (BNPP) has the potential to overcome the assumptions and biases associated with traditional methods. Isotope loss through in situ decomposition after pulse-labeling is considered the inverse of production, and turnover times are estimated by regression to time of zero remaining isotope. Method development and estimates of production were previously published using 4 years of data, which showed a clear linear loss rate over time. A slow, distinctly different phase in isotope loss developed 5–10 years postlabeling. We assess reasons for the two-phase loss functions and the implications for estimates of BNPP and compare the isotope decay method with standard coring methods over a 13-year period. Reasons for the two-phase dynamics of carbon 14 (14C) loss could include various biological and/or methodological factors. Results suggest that 14C in soil embedded in roots as they grow, a small proportion of roots that live for a much longer time than the majority of roots, and method of separating roots from soil organic matter may influence estimates of BNPP by isotope methods. Remobilization of label in structural tissue or reuptake of label from the soil did not appear to be responsible for the slow, second phase of loss dynamics. Isotope decay produced more reliable estimates than standard coring methods. Estimates using harvest sum of increments were zero in 6 of 13 years. Thirteen years of root biomass data showed no predictable trend over winter or consistent seasonal pattern, although longer-term cycles were evident. Aboveground:belowground ratios were generally smaller during dry periods, but root biomass was not as responsive as aboveground biomass to annual precipitation. Received 31 May 2000; accepted 3 November 2000.  相似文献   

3.
Root dynamics in plant and ratoon crops of sugar cane   总被引:1,自引:0,他引:1  
The root system of a sugar cane crop on an Ultisol in northeastern Brazil was examined throughout the plant and first ratoon crop cycles, using both coring and minirhizotron methods. Total root masses (living plus dead, 0.9–1.1 kg m-2) and live root lengths (14.0–17.5 km m-2) were greater during the ratoon cycle than at the end of the plant cane cycle (0.75 kg m-2 and 13.8 km m-2, respectively). Root die-back during the two weeks following ratoon harvest was estimated to be 0.15 kg m-2, about 17% of the total root mass. Root die-back after the plant cane harvest was lower because fire was not used at this harvest and soil humidity was higher under the accumulated litter. A small amount of fine roots proliferated in the litter layer, amounting to 1% of the total mass and 3% of the total length. Root turnover could not be accurately assessed from minirhizotron observations due to variation in the relationship between coring data and the minirhizotron data with both time and soil depth.  相似文献   

4.
Measuring Fine Root Turnover in Forest Ecosystems   总被引:13,自引:1,他引:12  
Development of direct and indirect methods for measuring root turnover and the status of knowledge on fine root turnover in forest ecosystems are discussed. While soil and ingrowth cores give estimates of standing root biomass and relative growth, respectively, minirhizotrons provide estimates of median root longevity (turnover time) i.e., the time by which 50% of the roots are dead. Advanced minirhizotron and carbon tracer studies combined with demographic statistical methods and new models hold the promise of improving our fundamental understanding of the factors controlling root turnover. Using minirhizotron data, fine root turnover (y−1) can be estimated in two ways: as the ratio of annual root length production to average live root length observed and as the inverse of median root longevity. Fine root production and mortality can be estimated by combining data from minirhizotrons and soil cores, provided that these data are based on roots of the same diameter class (e.g., < 1 mm in diameter) and changes in the same time steps. Fluxes of carbon and nutrients via fine root mortality can then be estimated by multiplying the amount of carbon and nutrients in fine root biomass by fine root turnover. It is suggested that the minirhizotron method is suitable for estimating median fine root longevity. In comparison to the minirhizotron method, the radio carbon technique favor larger fine roots that are less dynamics. We need to reconcile and improve both methods to develop a more complete understanding of root turnover.  相似文献   

5.
森林生态系统根系生物量研究进展   总被引:90,自引:14,他引:76  
在森林生态系统功能过程研究中,特别是在生产力和生物地化学循环方面,根系的作用不容忽视,但是,由于研究方法和研究者的观念等方面的限制,对于根系的研究还远不及地上部分受到重视。而关于细根生物量,周转率和生产力等方面的是很少有人问津。为推动我国根系生物学研究的发展,本一面地介绍了9种典型的测度细根生物量的方法。包括:收获法、钻土芯法、内生长土芯法、平衡法、根观测实验室法、土壤碳平衡法、挖土块法、间接法和  相似文献   

6.
微根管在细根研究中的应用   总被引:17,自引:1,他引:16  
细根(直径≤2 mm)的周转在植物生态系统碳分配过程中具有重要意义.已往细根周转研究主要采用根钻法、分室模型法和内生长法等.这些方法由于不能直接观测到细根生长动态,导致细根周转估计不准确.微根管法是一种非破坏性野外观察细根动态的方法.本文从微根管的发展、功能、安装步骤、图像采集、参数计算、影响观测因素和存在问题等方面逐一进行介绍,并通过水曲柳和落叶松微根管细根观测实例介绍在细根周转过程研究中的应用. 结果表明,微根管可以比较精确地估计出细根长度、单位面积上根长密度、单位体积上根长密度、细根生长量、细根死亡量和细根周转等.微根管是一个观察细根生长、衰老、死亡和分解过程的有效工具.微根管观测精度主要取决于微根管安装的质量和数量、微根管取样间隔期和取样数量、微根管图像分析技术等.此外,土壤质地、石砾多少、微根管材料选择、减少光系统对根系的干扰等也是影响微根管测定精度的因素.如何提高微根管测定精度将成为今后微根管在细根研究中的主要问题.  相似文献   

7.
植物地下生物量研究进展   总被引:75,自引:3,他引:72  
在生物量的研究过程中,地下部分生物量十分重要却又多被忽视本文首先比较了当前地下生物量研究中较为常用的4种研究方法:挖土块法、钻土芯法、内生长土芯法和微根区管法.然后总结了地下生物量在空间和时间上变化规律的研究成果.最后又讨论了环境因素诸如水分、温度和开垦、放牧对地下生物量的影响以及地下生物量的周转.  相似文献   

8.
植物地下生物量研究进展   总被引:4,自引:0,他引:4  
在生物量的研究过程中,地下部分生物量十分重要却又多被忽视本文首先比较了当前地下生物量研究中较为常用的4种研究方法:挖土块法、钻土芯法、内生长土芯法和微根区管法.然后总结了地下生物量在空间和时间上变化规律的研究成果.最后又讨论了环境因素诸如水分、温度和开垦、放牧对地下生物量的影响以及地下生物量的周转.  相似文献   

9.
The root system of permanent grasslands is of outstanding importance for resource acquisition. Particularly under semi-arid conditions, the acquisition of water and nutrients is highly variable during the vegetation growth period and between years. Additionally, grazing is repeatedly disturbing the functional equilibrium between the root system and the transpiring leaf canopy. However, very few data is available considering grazing effects on belowground net primary productivity (BNPP) and root-shoot dry mass allocation in natural grassland systems. We hypothesise that grazing significantly reduces BNPP due to carbon reallocation to shoot growth. Root biomass and BNPP were estimated by soil coring in 2004, 2005 and 2006 and from ingrowth cores in 2005 and 2006 at one site which has been protected from grazing since 1979 (UG79), at one winter grazing (WG), and one heavily grazed (HG) site. BNPP was estimated from the summation of significant increments of total and live root biomass and from accumulated root biomass of ingrowth cores. Belowground biomass varied from 1,490–2,670 g m?2 and was significantly lower under heavy grazing than at site UG79. Root turnover varied from 0.23 to 0.33 year?1 and was not significantly different between sites. Heavy grazing significantly decreased live root biomass and BNPP compared to site UG79. Taking BNPP estimates from live root biomass dynamics and ingrowth cores as the most reliable values, the portion of dry mass allocated belowground relative to total net primary productivity (BNPP/NPP) varied between 0.50–0.66 and was reduced under heavy grazing in 2005, but not in 2006. The positive correlation between cumulative root length density of ingrowth cores and leaf dry matter suggests that the ingrowth core method is suitable for studying BNPP in this semi-arid steppe system. Grazing effects on BNPP and BNPP/NPP should be considered in regional carbon models and estimates of belowground nutrient cycling.  相似文献   

10.
This paper examines uncertainties in the interpretation of isotope signals when estimating fine root longevity, particularly in forests. The isotope signals are depleted δ13C values from elevated CO2 experiments and enriched Δ14C values from bomb 14C in atmospheric CO2. For the CO2 experiments, I explored the effects of six root mortality patterns (on–off, proportional, constant, normal, left skew, and right skew distributions), five levels of nonstructural carbohydrate (NSC) reserves, and increased root growth on root δ13C values after CO2 fumigation. My analysis indicates that fitting a linear equation to δ13C data provides unbiased estimates of longevity only if root mortality follows an on–off model, without dilution of isotope signals by pretreatment NSC reserves, and under a steady state between growth and death. If root mortality follows the other patterns, the linear extrapolation considerably overestimates root longevity. In contrast, fitting an exponential equation to δ13C data underestimates longevity with all the mortality patterns except the proportional one. With either linear or exponential extrapolation, dilution of isotope signals by pretreatment NSC reserves could result in overestimation of root longevity by several‐fold. Root longevity is underestimated if elevated CO2 stimulates fine root growth. For the bomb 14C approach, I examined the effects of four mortality patterns (on–off, proportional, constant, and normal distribution) on root Δ14C values. For a given Δ14C value, the proportional pattern usually provides a shorter estimate of root longevity than the other patterns. Overall, we have to improve our understanding of root growth and mortality patterns and to measure NSC reserves in order to reduce uncertainties in estimated fine root longevity from isotope data.  相似文献   

11.
Applications and limitations of the minirhizotron technique (non-destructive) in relation to two frequently used destructive methods (soil coreing and ingrowth cores) is discussed. Sequential coreing provides data on standing crop but it is difficult to obtain data on root biomass production. Ingrowth cores can provide a quick estimate of relative fine-root growth when root growth is rapid. One limitation of the ingrowth core is that no information on the time of ingrowth and mortality is obtained.The minirhizotron method, in contrast to the destructive methods permits simultaneous calculation of fine-root length production and mortality and turnover. The same fine-root segment in the same soil space can be monitored for its life time, and stored in a database for processing. The methodological difficulties of separating excavated fine roots into living and dead vitality classes are avoided, since it is possible to judge directly the successive ageing of individual roots from the images. It is concluded that the minirhizotron technique is capable of quantifying root dynamics (root-length production, mortality and longevity) and fine-root decomposition. Additionally, by combining soil core data (biomass, root length and nutrient content) and minirhizotron data (length production and mortality), biomass production and nutrient input into the soil via root mortality and decomposition can be estimated.  相似文献   

12.
Root production and turnover were studied using sequential core sampling and observations in permanent minirhizotrons in the field in three dry heathland stands dominated by the evergreen dwarfshrub Calluna vulgaris and the grasses Deschampsia flexuosa and Molinia caerulea, respectively. Root biomass production, estimated by core sampling, amounted to 160 (Calluna), 180 (Deschampsia) and 1380 (Molinia) g m-2 yr-1, respectively. Root biomass turnover rate in Calluna (0.64 yr-1) was lower compared with the grasses (Deschampsia: 0.96 yr-1; Molinia 1.68yr-1)). Root length turnover rate was 0.75–0.77 yr-1 (Deschampsia) and 1.17–1.49 yr-1 (Molinia), respectively. No resorption of N and P from senescing roots was observed in either species. Input of organic N into the soil due to root turnover, estimated using the core sampling data, amounted to 1.8 g N m-2 yr-1(Calluna), 1.7 g N m-2 yr-1 (Deschampsia) and 19.7 g N m-2 yr-1 (Molinia), respectively. The organic P input was 0.05, 0.07 and 0.55 g P M-2 yr-1, respectively. Using the minirhizotron turnover estimates these values were20–22% (Deschampsia) and 11–30% (Molinia) lower.When the biomass turnover data were used, it appeared that in the Molinia stand root turnover contributed 67% to total litter production, 87% to total litter nitrogen loss and 84% to total litter phosphorus loss. For Calluna and Deschampsia these percentages were about three and two times lower, respectively.This study shows that (1) Root turnover is a key factor in ecosystem C, N, and P cycling; and that (2) The relative importance of root turnover differs between species.  相似文献   

13.
A modified root ingrowth method was developed to minimize destructive sampling in experiments with limited space, and used to estimate belowground net primary production and root tissue quality in a native semiarid grassland exposed to elevated CO2 for five years. Increases in root production of over 60% were observed with elevated CO2 during years of intermediate levels of precipitation, with smaller effects in a very wet year and no effects in a very dry year. Aboveground to belowground production ratios, and the depth distribution of root production, did not differ between ambient and elevated CO2 treatments. Root soluble concentrations increased an average of 11% and lignin concentrations decreased an average of 6% with elevated CO2, while nitrogen concentrations decreased an average of 21%. However, most tissue quality responses to CO2 varied greatly among years, and C:N ratios were higher in only one year (22 ambient vs. 33 elevated). Among years, root nitrogen concentrations declined with increasing aboveground plant nitrogen yield, and increased over the study period. Estimates of root production by the ingrowth donut method were much lower than previous estimates in the shortgrass steppe based on 14C decay. We discuss reasons why all ingrowth methods will always result in relative rather than absolute estimates of root production.  相似文献   

14.
Root production and root turnover in two dominant species of wet heathlands   总被引:6,自引:0,他引:6  
Summary Root biomass production, root length production and root turnover of Erica tetralix and Molinia caerulea were estimated by sequential core sampling and by observations in permanent minirhizotrons in the field. Root biomass production, estimated by core sampling, was 370 (Erica) and 1080 (Molinia) g m-2 yr-1. This was for both species equal to aboveground production. Assuming steady-state conditions for the root system, root biomass turnover rates (yr-1), estimated by core sampling, were 1.72 (Erica) and 1.27 (Molinia). Root length production of both species, estimated by minirhizotron observations, varied significantly with observation depth. Root length turnover rate (yr-1) of both species did not vary significantly with observation depth and averaged 0.92 in Erica and 2.28 in Molinia. Reasons are given for the discrepancy between the results of the two types of turnover measurements. The data suggest that the replacement of Erica by Molinia in a wet heathland, which occurs when nutrient availability increases, leads to an increased flow of carbon and nutrients into the soil-system. Therefore, there may be a positive feedback between dominance of Molinia and nutrient availability.  相似文献   

15.
应用微根管法测定细根指标方法评述   总被引:7,自引:0,他引:7  
李俊英  王孟本  史建伟 《生态学杂志》2007,26(11):1842-1848
树木细根(直径<2mm)在森林生态系统能量流动和物质循环中起着重要的作用。原有的细根生产周转研究中常采用的土钻法、内生长法、挖掘法、根室法和土柱法等,均不能直接观察到细根的动态变化。微根管法是一种非破坏性、可定点直接观察和研究植物根系的方法,为研究细根的生长、衰老、死亡、分解和再生长的过程提供了有效的工具,尤其适用于细根周转、寿命和分解等方面的研究。但该技术不能直接测定单位面积的细根生物量、细根化学组成及细根周转对土壤碳和养分循环的影响,需要与土钻法结合。本文就运用微根管法对细根生物量、生产、周转和寿命等指标的研究方法进行了评述。  相似文献   

16.
Root systems are important for global models of below‐ground carbon and nutrient cycling. Notoriously difficult sampling methods and the fractal distribution of root diameters in the soil make data being used in these models especially susceptible to error resulting from under‐sampling. We applied the concept of species accumulation curves to root data to quantify the extent of under‐sampling inherent to minirhizotron and soil coring sampling for both root uptake and carbon content studies. Based on differences in sample size alone, minirhizotron sampling missed approximately one third of the root diameters observed by soil core sampling. Sample volumes needed to encounter 90% of root diameters averaged 2481 cm3 for uptake studies and 5878 cm3 for root carbon content studies. These results show that small sample volumes encounter a non‐representative sample of the overall root pool, and provide future guidelines for determining optimal sample volumes in root studies.  相似文献   

17.
Root research has been hampered by a lack of good methods and by the amount of time involved in making measurements. The use of the minirhizotron as a quantitative tool requires comparison with conventional destructive methods. This study was conducted in the greenhouse to compare the minirhizotron technique with core and monolith methods in quantifying barley (Hordeum vulgare L.) and fababean (Vicia faba L.) root distribution. Plants were grown in boxes (80 cm long × 80 cm wide × 75 cm deep) in a hexagonal arrangement to minimize the effects of rooting anistrophy. Minirhizotron observations and destructive sampling to a depth of 70 cm using core and monolith methods were performed at the ripening growth stage. Total root length for the entire depth interval was generally higher in barley (159–309 m) than fababean (110–226 m). Significant correlation coefficients between monolith and core methods for root length density (RLD, cm cm–3) was observed in both crops (p 0.01). A method and depth interaction showed no significant differences in fababean RLD distribution measured by core and monolith methods. However, the RLD was different for the uppermost 40 cm depth in barley. The relationship for RLD between minirhizotron and core methods was significant only in barley (r=0.77*). For both crops, estimates of RLD in the top 10-cm layer by the minirhizotron technique were lower than those by core and monolith techniques. In contrast, estimates of RLD were higher in fababean at a depth >30 cm. Destructive sampling still remains the method to quantify root growth in the 0–10 cm soil layer. ei]B E Clothier  相似文献   

18.
Root growth of potato (Solanum tuberosum L.) is sensitive to soil conditions. A reduced root system size can result in reduced uptake of water and/or nutrients, leading to impaired crop growth. To understand the mechanisms by which soil conditions affect crop growth, study of temporal and spatial development of roots is required.In field experiments, effects of soil temperature, soil compaction and potato cyst nematodes (Globodera pallida) on root growth of potato cultivars were studied using two methods: core sampling and vertically oriented minirhizotrons.Minirhizotrons showed relatively more roots in deeper soil layers than core sampling, probably because of preferential root growth along the tube. Spatial distribution of roots should therefore be analysed by core sampling.To eliminate differences in spatial distribution, total root systems as measured by both methods were compared. Nematodes, cultivars and time did not affect the relationship between both methods. Soil compaction, however, affected it because of a strong response of root length in bulk soil and small differences in root number against the minirhizotron, suggesting that soil coring has to be used to study effects of different bulk densities.With both methods, sequential measurements of roots give the net effect of root growth and decay. Data on root turnover can only be obtained with minirhizotrons by comparing video recordings of different dates. Other information obtained with minirhizotrons is the average orientation of roots. Moreover, the minirhizotron method has the advantage of demanding less labour.  相似文献   

19.
Advancing fine root research with minirhizotrons   总被引:2,自引:0,他引:2  
Minirhizotrons provide a nondestructive, in situ method for directly viewing and studying fine roots. Although many insights into fine roots have been gained using minirhizotrons, a review of the literature indicates a wide variation in how minirhizotrons and minirhizotron data are used. Tube installation is critical, and steps must be taken to insure good soil/tube contact without compacting the soil. Ideally, soil adjacent to minirhizotrons will mimic bulk soil. Tube installation causes some degree of soil disturbance and has the potential to create artifacts in subsequent root data and analysis. We therefore recommend a waiting period between tube installation and image collection of 6-12 months to allow roots to recolonize the space around the tubes and to permit nutrients to return to pre-disturbance levels. To make repeated observations of individual roots for the purposes of quantifying their dynamic properties (e.g. root production, turnover or lifespan), tubes should be secured to prevent movement. The frequency of image collection depends upon the root parameters being measured or calculated and the time and resources available for collecting images and extracting data. However, long sampling intervals of 8 weeks or more can result in large underestimates of root dynamic properties because more fine roots will be born and die unobserved between sampling events. A sampling interval of 2 weeks or less reduces these underestimates to acceptable levels. While short sample intervals are desirable, they can lead to a potential trade-off between the number of minirhizotron tubes used and the number of frames analyzed per tube. Analyzing fewer frames per minirhizotron tube is one way to reduce costs with only minor effects on data variation. The quality of minirhizotron data should be assessed and reported; procedures for quantifying the quality of minirhizotron data are presented here. Root length is a more sensitive metric for dynamic root properties than the root number. To make minirhizotron data from separate experiments more easily comparable, idiosyncratic units should be avoided. Volumetric units compatible with aboveground plant measures make minirhizotron-based estimates of root standing crop, production and turnover more useful. Methods for calculating the volumetric root data are discussed and an example presented. Procedures for estimating fine root lifespan are discussed.  相似文献   

20.
Summary Estimates of belowground net primary production (BNP) obtained by using traditional soil core harvest data are subject to a variety of potentially serious errors. In a controlled growth chamber experiment, we examined the aboveground-belowground, labile to structural tissue, and plant to soil dynamics of carbon to formulate a14C dilution technique for potential successful application in the field and to quantify sources of error in production estimates.Despite the fact that the majority of net14C movement between above- and belowground plant parts occurred between the initial labeling and day 5, significant quantities of14C were incorporated into cell-wall tissue throughout the growing period. The rate of this increase at late sampling dates was greater for roots than for shoots. Total loss of assimilated14C was 47% in wheat and 28% in blue grama. Exudation and sloughing in wheat and blue grama, respectively, was 15 and 6% of total uptake and 22 and 8% of total plant production.When root production estimates by14C dilution were corrected for the quantities of labile14C incorporated into structural carbon between two sampling dates, good agreement with actual production was found. The error associated with these estimates was ±2% compared with a range of –119 to –57% for the uncorrected estimates. Our results suggest that this technique has potential field application if sampling is performed the year after labelling.Sources of errors in harvest versus14C dilution estimates of BNP are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号