首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding nitrogen (N) removal and replenishment is crucial to crop sustainability under rising atmospheric carbon dioxide concentration ([CO2]). While a significant portion of N is removed in grains, the soil N taken from agroecosystems can be replenished by fertilizer application and N2 fixation by legumes. The effects of elevated [CO2] on N dynamics in grain crop and legume pasture systems were evaluated using meta‐analytic techniques (366 observations from 127 studies). The information analysed for non‐legume crops included grain N removal, residue C : N ratio, fertilizer N recovery and nitrous oxide (N2O) emission. In addition to these parameters, nodule number and mass, nitrogenase activity, the percentage and amount of N fixed from the atmosphere were also assessed in legumes. Elevated [CO2] increased grain N removal of C3 non‐legumes (11%), legumes (36%) and C4 crops (14%). The C : N ratio of residues from C3 non‐legumes and legumes increased under elevated [CO2] by 16% and 8%, respectively, but the increase for C4 crops (9%) was not statistically significant. Under elevated [CO2], there was a 38% increase in the amount of N fixed from the atmosphere by legumes, which was accompanied by greater whole plant nodule number (33%), nodule mass (39%), nitrogenase activity (37%) and %N derived from the atmosphere (10%; non‐significant). Elevated [CO2] increased the plant uptake of fertilizer N by 17%, and N2O emission by 27%. These results suggest that N demand and removal in grain cropping systems will increase under future CO2‐enriched environments, and that current N management practices (fertilizer application and legume incorporation) will need to be revised.  相似文献   

2.
Although fire is frequent in African savanna ecosystems and may cause considerable loss of nitrogen (N), N2-fixing herbaceous legumes—which could be expected to benefit from low N conditions—are usually not abundant. To investigate possible reasons for this scarcity, we conducted a pot experiment using two common plants of humid African savannas as model species, the legume Cassia mimosoides and the C4 grass Hyperthelia dissoluta. These species were grown at different levels of water, N and phosphorus (P), both in monoculture and in competition with each other. In the monocultures, yields were significantly increased by the combined addition of N and P in pots receiving high water supply. In pots with interspecific competition, the legume grew poorly unless P was added. Foliar δ15N values of legume plants grown in mixtures were considerably lower than those in monocultures, suggesting that rates of symbiotic N-fixation were higher in the presence of the grass. Grass δ15N values, however, were also lower in mixtures, while N concentrations were higher, indicating a rapid transfer of N from the legume to the grass. We conclude that the main reason for the low abundance of C. mimosoides is not low P availability as such, but a greater ability of H. dissoluta to compete for soil N and P, and a much higher N-use efficiency. If other C4 grasses have a similar competitive advantage, it could explain why herbaceous legumes are generally sparse in African savannas. We encourage others to test these findings using species from other types of savanna vegetation.  相似文献   

3.
Fox  Aaron  Suter  Matthias  Widmer  Franco  Lüscher  Andreas 《Plant and Soil》2020,447(1-2):497-506
Aims

We investigated the legacy effects of a previous ley’s legume proportion on the performance of a following grass crop in a rotation.

Methods

In April 2015, a pure Lolium multiflorum L. crop was sown after the removal of legume containing swards (0–100% legumes), and was harvested four times over the following one-year period (3 times in 2015 and once the following April 2016). Labeled 15N fertilizer (50 kg N ha−1) was applied during the 2nd and 3rd re-growth periods to determine N fluxes.

Results

Across the one-year period, a significant legume-legacy induced increase in biomass yield of L. multiflorum was observed over the entire range of previous legume proportions when compared against the non-legume ley, the effect being 2.15 and 1.73 t ha−1 (P ≤ 0.001 each) in swards with 50% and 100% previous legume proportion, respectively, or up to +31%. The legume-legacy effect on biomass yield was most pronounced at the 1st harvest (June) and persisted into the 2nd harvest in August (P ≤ 0.05 both, over the entire range of previous legume proportion), though was no longer evident at the 3rd harvest (September). Importantly, the legume-legacy effect returned in the 4th harvest in April (P ≤ 0.05). Examining the source of N contributing to N yield confirmed that more N was derived from the soil at harvest 1 and 2 for previous legume containing leys (P ≤ 0.001) compared to those which contained no legumes, with a significant increase still seen for legume mixtures at harvest 3 (P ≤ 0.01).

Conclusions

The results demonstrate a sustained soil-transferred performance-enhancing legacy effect on a following crop in a rotation, with previous legume proportions of 50% having a comparable effect compared with that of a previous legume monoculture.

  相似文献   

4.
Grassland ecosystems worldwide not only provide many important ecosystem services but they also function as a major source of the greenhouse gas nitrous oxide (N2O), especially in response to nitrogen deposition by grazing animals. To explore the role of plants as mediators of these emissions, we tested whether and how N2O emissions are dependent on grass species richness and/or specific grass species composition in the absence and presence of urine deposition. We hypothesized that: (i) N2O emissions relate negatively to plant productivity; (ii) four‐species mixtures have lower emissions than monocultures (as they are expected to be more productive); (iii) emissions are lowest in combinations of species with diverging root morphology and high root biomass; and (iv) the identity of the key species that reduce N2O emissions is dependent on urine deposition. We established monocultures and two‐ and four‐species mixtures of common grass species with diverging functional traits: Lolium perenne L. (Lp), Festuca arundinacea Schreb. (Fa), Phleum pratense L. (Php) and Poa trivialis L. (Pt), and quantified N2O emissions for 42 days. We found no relation between plant species richness and N2O emissions. However, N2O emissions were significantly reduced in specific plant species combinations. In the absence of urine, plant communities of Fa+Php acted as a sink for N2O, whereas the monocultures of these species constituted a N2O source. With urine application Lp+Pt plant communities reduced (P < 0.001) N2O emissions by 44% compared to monocultures of Lp. Reductions in N2O emissions by species mixtures could be explained by total biomass productivity and by complementarity in root morphology. This study shows that plant species composition is a key component underlying N2O emissions from grassland ecosystems. Selection of specific grass species combinations in the context of the expected nitrogen deposition regimes may therefore provide a key for mitigation of N2O emissions.  相似文献   

5.
Failures in reforestation are often attributed to nutrient limitation for tree growth. We compared tree performance and nitrogen and phosphorus relations in adjacent mixed-species plantings of contrasting composition, established for forest restoration on Ultisol soil, originally covered by tropical semi-deciduous Atlantic Forest in Southeast Brazil. Nutrient relations of four tree species occurring in both planting mixtures were compared between a legume-dominated, species-poor direct seeding mixture of early-successional species (“legume mixture”), and a species-diverse, legume-poor mixture of all successional groups (“diverse mixture”). After 7 years, the legume mixture had 6-fold higher abundance of N2-fixing trees, 177% higher total tree basal area, 22% lower litter C/N, six-fold higher in situ soil resin-nitrate, and 40% lower in situ soil resin-P, compared to the diverse mixture. In the legume mixture, non-N2-fixing legume Schizolobium parahyba (Fabaceae-Caesalpinioideae) had significantly lower proportional N resorption, and both naturally regenerating non-legume trees had significantly higher leaf N concentrations, and higher proportional P resorption, than in the diverse mixture. This demonstrate forms of plastic adjustment in all three non-N2-fixing species to diverged nutrient relations between mixtures. By contrast, leaf nutrient relations in N2-fixing Enterolobium contortisiliquum (Fabaceae-Mimosoideae) did not respond to planting mixtures. Rapid N accumulation in the legume mixture caused excess soil nitrification over nitrate immobilization and tighter P recycling compared with the diverse mixture. The legume mixture succeeded in accelerating tree growth and canopy closure, but may imply periods of N losses and possibly P limitation. Incorporation of species with efficient nitrate uptake and P mobilization from resistant soil pools offers potential to optimize these tradeoffs.  相似文献   

6.
Switchgrass (Panicum virgatum L.), a US Department of Energy model species, is widely considered for US biomass energy production. While previous studies have demonstrated the effect of climate and management factors on biomass yield and chemical characteristics of switchgrass monocultures, information is lacking on the yield of switchgrass grown in combination with other species for biomass energy. Therefore, the objective of this quantitative review is to compare the effect of climate and management factors on the yield of switchgrass monocultures, as well as on mixtures of switchgrass, and other species. We examined all peer‐reviewed articles describing productivity of switchgrass and extracted dry matter yields, stand age, nitrogen fertilization (N), temperature (growing degree days), and precipitation/irrigation. Switchgrass yield was greater when grown in monocultures (10.9 t ha?1, n=324) than when grown in mixtures (4.4 t ha?1, n=85); yield in monocultures was also greater than the total yield of all species in the mixtures (6.9 t ha?1, n=90). The presence of legume species in mixtures increased switchgrass yield from 3.1 t ha?1 (n=65) to 8.9 t ha?1 (n=20). Total yield of switchgrass‐dominated mixtures with legumes reached 9.9 t ha?1 (n=25), which was not significantly different from the monoculture yield. The results demonstrated the potential of switchgrass for use as a biomass energy crop in both monocultures and mixtures across a wide geographic range. Monocultures, but not mixtures, showed a significant positive response to N and precipitation. The response to N for monocultures was consistent for newly established (stand age <3 years) and mature stands (stand age ≥3 years) and for lowland and upland ecotypes. In conclusion, these results suggest that fertilization with N will increase yield in monocultures, but not mixtures. For monocultures, N treatment need not be changed based on ecotype and stand age; and for mixtures, legumes should be included as an alternative N source.  相似文献   

7.
In Mediterranean countries, forage grasses and legumes are commonly grown in mixture because of their ability to increase herbage yield and quality compared with monocrop systems. However, the benefits of intercropping over a monocrop system are not always realized because the efficiency of a grass–legume mixture is strongly affected by agronomic factors. The present study evaluated productivity, N2 fixation, N transfer, and N recovery of berseem clover (Trifolium alexandrinum) grown in pure stand and in mixture with annual ryegrass (Lolium multiflorum) under high or low defoliation frequencies and varying plant arrangements (sowing in the same row or in alternating rows). On average, the berseem–ryegrass mixtures resulted in a greater yield and N yield than the monocrops. When mixed together, ryegrass was more efficient than berseem at absorbing soil N, increasing the reliance of berseem on N2 fixation. Both defoliation management and plant arrangement affected forage yield and the quality of the mixture, modifying the proportion of the two components, the N content of the forage, and the symbiotic N2 fixation of the legume. Reducing the proximity between plants of the two species may benefit the weaker component of the mixture. No apparent transfer of fixed N from berseem to ryegrass was detected.  相似文献   

8.
Legumes are an important component of plant diversity that modulate nitrogen (N) cycling in many terrestrial ecosystems. Limited knowledge of legume effects on soil N cycling and its response to global change factors and plant diversity hinders a general understanding of whether and how legumes broadly regulate the response of soil N availability to those factors. In a 17‐year study of perennial grassland species grown under ambient and elevated (+180 ppm) CO2 and ambient and enriched (+4 g N m?2 year?1) N environments, we compared pure legume plots with plots dominated by or including other herbaceous functional groups (and containing one or four species) to assess the effect of legumes on N cycling (net N mineralization rate and inorganic N pools). We also examined the effects of numbers of legume species (from zero to four) in four‐species mixed plots on soil N cycling. We hypothesized that legumes would increase N mineralization rates most in those treatments with the greatest diversity and the greatest relative limitation by and competition for N. Results partially supported these hypotheses. Plots with greater dominance by legumes had greater soil nitrate concentrations and mineralization rates. Higher species richness significantly increased the impact of legumes on soil N metrics, with 349% and 505% higher mineralization rates and nitrate concentrations in four‐species plots containing legumes compared to legume‐free four‐species plots, in contrast to 185% and 129% greater values, respectively, in pure legume than nonlegume monoculture plots. N‐fertilized plots had greater legume effects on soil nitrate, but lower legume effects on net N mineralization. In contrast, neither elevated CO2 nor its interaction with legumes affected net N mineralization. These results indicate that legumes markedly influence the response of soil N cycling to some, but not all, global change drivers.  相似文献   

9.
Atmospheric N2 fixed symbiotically by associations between Rhizobium spp. and legumes represents a renewable source of N for agriculture. Contribution of legume N2 fixation to the N-economy of any ecosystem is mediated by: (i) legume reliance upon N2 fixation for growth, and (ii) the total amount of legume-N accumulated. Strategies that change the numbers of effective rhizobia present in soil, reduce the inhibitory effects of soil nitrate, or influence legume biomass all have potential to alter net inputs of fixed N. A range of management options can be applied to legumes growing in farming systems to manipulate N2 fixation and improve the N benefits to agriculture and agroforestry.  相似文献   

10.
Highly variable effects of legumes have been observed in biodiversity experiments, but little is known about plant diversity effects on N2 fixation of legume species. We used the 15N natural abundance method in a non-fertilized regularly mown 6-year biodiversity experiment (Jena Experiment) to quantify N2 fixation of 12 legume species. The proportion of legume N derived from the atmosphere (%Ndfa) differed significantly among legume species. %Ndfa values were lower in 2004 after setting-up the experiment (73?±?20) than in the later years (2006: 80?±?16; 2008: 78?±?12). Increasing species richness had positive effects on %Ndfa in 2004 and 2006, but not in 2008. High biomass production of legumes in 2004 and 2006 declined to lower levels in 2008. In 2006, legume positioning within the canopy best explained variation in %Ndfa values indicating a lower reliance of tall legumes on N2 fixation. In 2008, larger %Ndfa values of legumes were related to lower leaf P concentrations suggesting that the availability of phosphorus limited growth of legumes. In summary, diversity effects on N2 fixation depend on legume species identity, their ability to compete for soil nutrients and light and may vary temporally in response to changing resource availability.  相似文献   

11.
Grasses grown in mixture with nodulated legumes often are N-limited, but N fertilization may result in reductions of N2 fixation and legume stands. We studied N-fertilizer effects on N2 fixation for three binary legume-grass mixtures in Uruguay. Replicated swards of white clover (Trifolium repens L.) (WC), red clover (Trifolium pratense L.) (RC), or birdsfoot trefoil (Lotus corniculatus L.) (BT), each in combination with tall fescue (Festuca arundinacea Schreb) (TF) at two legume proportions were sown in 1983 (Exp. 1) and 1984 (Exp. 2). In the fall of 1984, N treatments at 100 kg ha−1 and controls were randomly assigned to subplots in Exp. 1 (established swards) and in Exp. 2 (at seeding). The soil for both experiments was a fine, montmorillonitic, mesic, Typic Argiudolls. Herbage fixed-N was estimated by 15N isotope-dilution with pure stands of TF as reference. In both experiments, N fertilization reduced the proportion of legume N derived from air (% Ndfa) and increased herbage yield only during the first 18 to 20 weeks after application. Fertilizer-N reduced annual fixed-N yield from 178 to 148 kg ha−1 in Exp. 1 and from 65 to 29 kg ha−1 in Exp. 2 Fixed-N yield for BT was markedly reduced by N in both experiments (33 to 53%), whereas for the clovers reduction was lesser in Exp. 1 (9 to 13%) than in Exp. 2 (46 to 64%). Negative effects of N on % Ndfa were more evident for the high legume proportion. We conclude that fertilization with 100 kg N ha−1 reduced % Ndfa only for the immediate 18 to 20 weeks after application. Fertilizer-induced reduction of fixed-N yields lasted longer because of a more prolonged depression of legume proportion, especially for BT and for newly seeded swards. Journal Paper no. J.-13327 of the Iowa Agric. and Home Econ. Exp. Stn., Ames, U.S.A. (Project 2281). Supported in part by the Facultad de Agronomía, Montevideo, Uruguay; and the International Atomic Energy Agency, Vienna, Austria (Project URU/5/012). Journal Paper no. J.-13327 of the Iowa Agric. and Home Econ. Exp. Stn., Ames, U.S.A. (Project 2281). Supported in part by the Facultad de Agronomía, Montevideo, Uruguay; and the International Atomic Energy Agency, Vienna, Austria (Project URU/5/012).  相似文献   

12.
Biological nitrogen fixation in mixed legume/grass pastures   总被引:18,自引:2,他引:16  
Biological nitrogen fixation (BNF) in mixed legume/grass pastures is reviewed along with the importance of transfer of fixed nitrogen (N) to associated grasses. Estimates of BNF depend on the method of measurement and some of the advantages and limitations of the main methods are outlined. The amounts of N fixed from atmospheric N2 in legume/grass pastures throughout the world is summarised and range from 13 to 682 kg N ha-1 yr-1. the corresponding range for grazed pastures, which have been assessed for white clover pastures only, is 55 to 296 kg N ha-1 yr-1.Biological nitrogen fixation by legumes in mixed pastures is influenced by three primary factors; legume persistence and production, soil N status, and competition with the associated grass(es). These factors and the interactions between them are discussed. Legume persistence, production and BNF is also influenced by many factors and this review centres on the important effects of soil moisture status, soil acidity, nutrition, and pests and disease.Soil N status interacts directly with BNF in the short and long term. In the short-term, increases in soil inorganic N occurs during dry conditions and where N fertiliser is used, and these will reduce BNF. In the long-term, BNF leads to accumulation of soil N, grass dominance, and reduced BNF. However, cyclical patterns of legume and grass dominance can occur due, at least in part, to temporal changes in plant-available N levels in soil. Thus, there is a dynamic relationship between legumes and grasses whereby uptake of soil N by grass reduces the inhibitory effect of soil N on BNF and competition by grasses reduces legume production and BNF. Factors affecting the competition between legumes and grasses are considered including grass species, grazing animals, and grazing or cutting management.Some fixed N is transferred from legumes to associated grasses. The amount of N transferred below-ground, predominantly through decomposition of legume roots and nodules, has been estimated at 3 to 102 kg N ha-1 yr-1 or 2 to 26% of BNF. In grazed pasture, N is also transferred above-ground via return in animal excreta and this can be of a similar magnitude to below-ground transfer.Increased BNF in mixed legume/grass pastures is being obtained through selection or breeding of legumes for increased productivity and/or to minimise effects of nutrient limitations, low soil moisture, soil acidity, and pests and disease. Ultimately, this will reduce the need to modify the pasture environment and increase the role of legumes in low-input, sustainable agriculture.  相似文献   

13.
Cereal-legume mixtures are frequently the best management decision for forage production instead of growing crops in pure stands. Nitrogen fertilization of cereal-legume mixtures is questionable since combined nitrogen could depress N2 fixation by legumes. The objectives of this study were (1) to examine the effect of N fertilization on N2 fixation by vetch and field peas in pure and in mixed stands with oats, and (2) to examine if there is any transfer of N from legumes to associated cereals. The field experiment was conducted for two growing seasons. The treatments were pure stands of vetch, pea and oats, and the mixtures of the two legumes with oats at the seeding ratios 90:10 and 75:25, fertilized with labelled15N at the rates of 15 and 90 kg N ha−1. Nitrogen fertilization of 90 kg N ha−1 suppressed N2 fixation in both legumes grown in pure and in mixed stands. Crops grown in mixtures in many instances had lower atom %15N excess. Whether this was due to high N2 fixation in the case of legume and transfer in the case of oat or the differences were due to practical problems of the15N technique is not clearly shown by the results, so based on the literature the aspect is discussed as well as the precautions which should be considered in using the15N technique in such studies.  相似文献   

14.
《Plant Ecology & Diversity》2013,6(2-3):131-140
Background: Nitrogen fixation has been quantified for a range of crop legumes and actinorhizal plants under different agricultural/agroforestry conditions, but much less is known of legume and actinorhizal plant N2 fixation in natural ecosystems.

Aims: To assess the proportion of total plant N derived from the atmosphere via the process of N2 fixation (%Ndfa) by actinorhizal and legume plants in natural ecosystems and their N input into these ecosystems as indicated by their 15N natural abundance.

Methods: A comprehensive collation of published values of %Ndfa for legumes and actinorhizal plants in natural ecosystems and their N input into these ecosystems as estimated by their 15N natural abundance was carried out by searching the ISI Web of Science database using relevant key words.

Results: The %Ndfa was consistently large for actinorhizal plants but very variable for legumes in natural ecosystems, and the average value for %Ndfa was substantially greater for actinorhizal plants. High soil N, in particular, but also low soil P and water content were correlated with low legume N2 fixation. N input into ecosystems from N2 fixation was very variable for actinorhizal and legume plants and greatly dependent on their biomass within the system.

Conclusions: Measurement of 15N natural abundance has given greater understanding of where legume and actinorhizal plant N2 fixation is important in natural ecosystems. Across studies, the average value for %Ndfa was substantially greater for actinorhizal plants than for legumes, and the relative abilities of the two groups of plants to utilise mineral N requires further study.  相似文献   

15.
Plant species richness and productivity often show a positive relationship, but the underlying mechanisms are not fully understood, especially at the plant species level. We examined how growing plants in species mixture influences intraspecific rates of short-term carbon (C-) translocation, and determined whether such short-term responses are reflected in biomass yields. We grew monocultures and mixtures of six common C3 grassland plant species in outdoor mesocosms, applied a 13C-CO2 pulse in situ to trace assimilated C through plants, into the soil, and back to the atmosphere, and quantified species-specific biomass. Pulse derived 13C enrichment was highest in the legumes Lotus corniculatus and Trifolium repens, and relocation (i.e. transport from the leaves to other plant parts) of the recently assimilated 13C was most rapid in T. repens grown in 6-species mixtures. The grass Anthoxanthum odoratum also showed high levels of 13C enrichment in 6-species mixtures, while 13C enrichment was low in Lolium perenne, Plantago lanceolata and Achillea millefolium. Rates of C loss through respiration were highest in monocultures of T. repens and relatively low in species mixtures, while the proportion of 13C in the respired CO2 was similar in monocultures and mixtures. The grass A. odoratum and legume T. repens were most promoted in 6-species mixtures, and together with L. corniculatus, caused the net biomass increase in 6-species mixtures. These plant species also had highest rates of 13C-label translocation, and for A. odoratum and T. repens this effect was greatest in plant individuals grown in species mixtures. Our study reveals that short-term plant C translocation can be accelerated in plant individuals of legume and C3 grass species when grown in mixtures, and that this is strongly positively related to overyielding. These results demonstrate a mechanistic coupling between changes in intraspecific plant carbon physiology and increased community level productivity in grassland systems.  相似文献   

16.
  • Shrubby legumes in Mediterranean‐type ecosystems face strong nutrient limitations that worsen in summer, when water is absent. Nitrogen‐fixing legumes are likely to be able to switch between soil N and atmospheric N (N2) sources to adjust the C costs of N acquisition in different seasons.
  • We investigated the utilisation of different inorganic N sources by two indigenous shrubby legumes (Cytisus multiflorus and Cytisus scoparius). Plant performance in terms of photosynthesis and biomass production was also analysed. Plants were cultivated in sterile river sand supplied with Hoagland nutrient solution, grown in N‐free nutrient solution and inoculated with effective rhizobial strains from nodules of adult plants of the same species. A second treatment consisted of plants given 500 μm NH4NO3 added into the nutrient solution. In a third treatment, plants were watered with another source of N (500 μm NH4NO3) as well as being inoculated with effective rhizobial strains.
  • The application of NH4NO3 to the legumes resulted in a larger increase in plant dry matter. Carbon construction costs were higher in plants supplied with mineral and symbiotic N sources and always higher in the endemic C. multiflorus. Differences in photosynthesis rates were only observed between species, regardless of the N source. Non‐fertilised inoculated plants had more effective root nodules and a clear dependence on N2 fixation.
  • We propose that the ability of C. scoparius to change N source makes it a plastic species, which would account for its broader distribution in nature.
  相似文献   

17.
Summary Three legume species (alfalfa, red clover, and birdsfoot trefoil) in combination with five grass species (timothy, bromegrass, red fescue, tall fescue, and orchardgrass) were used to study N transfer in mixtures, using the 15N dilution technique. The advantage of grass-legume mixtures was apparent. Total herbage and protein yields of grasses in mixtures were higher than those alone, especially at the later cuts. This benefit of mixed cropping is mainly due to N transfer from legumes to associated grasses. N2-fixation and N transfer by alfalfa rated highest, red clover intermediate, and birdsfoot trefoil lowest. The importance of each pathway of N transfer from legumes appeared to differ between species. Alfalfa and red clover excreted more N than trefoil, while the latter contributed more N from decomposition of dead nodule and root tissue. The greatest advantage from a grass-legume mixture, with respect to the utilization of N released from the legume, varied with early maturing tall fescue (Kentucky 31), orchardgrass (Juno), and bromegrass (Tempo), to intermediate timothy (Climax), and least with late maturing red fescue (Carlawn). Contribution no. 817 of the Ottawa Research Station.  相似文献   

18.
Summary Isotope dilution provides a method for measuring plant competition for mineral N and transfer of biologically fixed N from a legume to a grass. A plant growth medium was enriched with15N, and used to grow Siratro (Macropitilium atropurpureum D.C. Urb.) and Kleingrass 75 (Panicum coloratum L.) in 20 liter pots for 98 days in a glasshouse. The plants were grown in pure stand and in mixtures. When grown in 50∶50 mixture the grass obtained 59% of the labelled N and the legume obtained 41%. The grass produced nearly as much root mass as the legume even though biomass of the shoots were less than half that of the legume. Reducing the proportion of either plant species in the mixture reduced the proportion of the mineralized N absorbed by that species. The shoots of the grass were significantly more enriched (1.166 atom%15N excess) than the roots (1.036). The grass received 12% of its N as biologically fixed N from the legume.  相似文献   

19.
Rising atmospheric carbon dioxide partial pressure (pCO2) and nitrogen (N) deposition are important components of global environmental change. In the Swiss free air carbon dioxide enrichment (FACE) experiment, the effect of altered atmospheric pCO2 (35 vs. 60 Pa) and the influence of two different N‐fertilization regimes (14 vs. 56 g N m?2 a?1) on root colonization by arbuscular mycorrhizal fungi (AMF) and other fungi (non‐AMF) of Lolium perenne and Trifolium repens were studied. Plants were grown in permanent monoculture plots, and fumigated during the growth period for 7 years. At elevated pCO2 AMF and non‐AMF root colonization was generally increased in both plant species, with significant effects on colonization intensity and on hyphal and non‐AMF colonization. The CO2 effect on arbuscules was marginally significant (P=0.076). Moreover, the number of small AMF spores (≤100 μm) in the soils of monocultures (at low‐N fertilization) of both plant species was significantly increased, whereas that of large spores (>100 μm) was increased only in L. perenne plots. N fertilization resulted in a significant decrease of root colonization in L. perenne, including the AMF parameters, hyphae, arbuscules, vesicles and intensity, but not in T. repens. This phenomenon was probably caused by different C‐sink limitations of grass and legume. Lacking effects of CO2 fumigation on intraradical AMF structures (under high‐N fertilization) and no response to N fertilization of arbuscules, vesicles and colonization intensity suggest that the function of AMF in T. repens was non‐nutritional. In L. perenne, however, AM symbiosis may have amended N nutrition, because all root colonization parameters were significantly increased under low‐N fertilization, whereas under high‐N fertilization only vesicle colonization was increased. Commonly observed P‐nutritional benefits from AMF appeared to be absent under the phosphorus‐rich soil conditions of our field experiment. We hypothesize that in well‐fertilized agricultural ecosystems, grasses benefit from improved N nutrition and legumes benefit from increased protection against pathogens and/or herbivores. This is different from what is expected in nutritionally limited plant communities.  相似文献   

20.
Two experiments were carried out to determine the nutrient contents and relative preferences of maize stover and three legumes forages and their feeding on intake and digestibility of sheep. Maize stover was blended with three legumes, stylo (Stylosanthes guainensis), siratro (Macroptilium atropurpureum) and centro (Centrocema pubescens), to produce four treatments, namely, only maize stover (control), stover/stylo, stover/siratro and stover/centro mixtures. The first experiment evaluated the relative preference of the stover and the various stover/legume mixtures when offered to sheep. Six rams were offered pair combinations of the treatments in a 6×6 Latin square with a split plot arrangement such that each ram had access to two feeds at a time in each period of 6 days. The second experiment included measurements of intake and digestibility of the stover and stover/legume mixtures. Four intact and four castrated male sheep were used in two, 4×4 Latin squares with 21-day periods. The least (P<0.05) preferred feed was maize stover when it was offered as the sole feed. There were no significant differences in preference among the stover/legume mixtures. Dry matter intake (DMI) was highest (P<0.05) when sheep were offered the stover/centro mixture and lowest (P<0.05) when maize stover was fed as the sole feed. Dry matter digestibility did not differ significantly among treatments. Sheep that were offered maize stover only lost weight, those fed stover/centro gained weight and those that were fed either stover/siratro or stover/stylo maintained weight. However, these short-term weight changes may reflect changes in fill as much as changes in body tissue. Addition of legumes to maize stover improved the nutritive value, possibly by increasing the nitrogen content of the stover. The results suggest that maize stover, which is normally left to rot in the field, could be better utilised by intercropping with legumes and allowing animals access after grain harvest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号