首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate change treatments – winter warming, summer drought and increased summer precipitation – have been imposed on an upland grassland continuously for 7 years. The vegetation was surveyed yearly. In the seventh year, soil samples were collected on four occasions through the growing season in order to assess mycorrhizal fungal abundance. Mycorrhizal fungal colonisation of roots and extraradical mycorrhizal hyphal (EMH) density in the soil were both affected by the climatic manipulations, especially by summer drought. Both winter warming and summer drought increased the proportion of root length colonised (RLC) and decreased the density of external mycorrhizal hyphal. Much of the response of mycorrhizal fungi to climate change could be attributed to climate‐induced changes in the vegetation, especially plant species relative abundance. However, it is possible that some of the mycorrhizal response to the climatic manipulations was direct – for example, the response of the EMH density to the drought treatment. Future work should address the likely change in mycorrhizal functioning under warmer and drier conditions.  相似文献   

2.
Decadal‐ to multi‐decadal variations have been reported in many regional ecosystems in the North Pacific, resulting in an increasing demand to elucidate the link between long‐term climatic forcing and marine ecosystems. We detected phenological and quantitative changes in the copepod community in response to the decadal climatic variation in the western subarctic North Pacific by analyzing the extensive zooplankton collection taken since the 1950s, the Odate Collection. Copepod species were classified into five seasonal groups depending on the timing of the annual peak in abundance. The abundance of the spring community gradually increased for the period 1960–2002. The spring–summer community also showed an increasing trend in May, but a decadal oscillation pattern of quasi‐30‐year cycles in July. Phenological changes coincided with the climate regime shift in the mid‐1970s, indicated by the Pacific decadal oscillation index (PDO). After the regime shift, the timing of the peak abundance was delayed one month, from March–April to April–May, in the spring community, whereas it peaked earlier, from June–July to May–June, in the spring–summer community, resulting in an overlap of the high productivity period for the two communities in May. Wintertime cooling, followed by rapid summertime warming, was considered to be responsible for delayed initiation and early termination of the productive season after the mid‐1970s. Another phenological shift, quite different from the previous decade, was observed in the mid‐1990s, when warm winters followed by cool summers lengthened the productive season. The results suggest that climatic forcing with different decadal cycles may operate independently during winter–spring and spring–summer to create seasonal and interannual variations in hydrographic conditions; thus, combinations of these seasonal processes may determine the annual biological productivity.  相似文献   

3.
Arbuscular mycorrhizal (AM) fungi have a major influence on the structure, responses and below‐ground C allocation of plant communities. Our lack of understanding of the response of AM fungi to factors such as light and temperature is an obstacle to accurate prediction of the impact of global climate change on ecosystem functioning. In order to investigate this response, we divided a grassland site into 24 plots, each either unshaded or partly shaded with soil either unheated or heated by 3°C at 2 cm depth. In both short‐term studies in spring and autumn, and in a 1‐year‐long study, we measured root length colonization (LRC) by AM and non‐AM fungi. For selected root samples, DNA sequences were amplified by PCR with fungal‐specific primers for part of the small sub‐unit (SSU) rRNA gene. In spring, the total LRC increased over 6 weeks from 12% to 25%. Shading significantly reduced AM but increased non‐AM fungal colonization, while soil warming had no effect. In the year‐long study, colonization by AM fungi peaked in summer, whereas non‐AM colonization peaked in autumn, when there was an additive effect of shading and soil warming that reduced AM but increased non‐AM fungi. Stepwise regression revealed that light received within the 7 days prior to sampling was the most significant factor in determining AM LRC and that mean temperature was the most important influence on non‐AM LRC. Loglinear analysis confirmed that there were no seasonal or treatment effects on the host plant community. Ten AM fungal sequence types were identified that clustered into two families of the Glomales, Glomaceae and Gigasporaceae. Three other sequence types were of non‐AM fungi, all Ascomycotina. AM sequence types showed seasonal variation and shading impacts: loglinear regression analysis revealed changes in the AM fungal community with time, and a reduction of one Glomus sp. under shade, which corresponded to a decrease in the abundance of Trifolium repens. We suggest that further research investigating any impacts of climate change on ecosystem functioning must not only incorporate their natural AM fungal communities but should also focus on niche separation and community dynamics of AM fungi.  相似文献   

4.
A better understanding of stem growth phenology and its climate drivers would improve projections of the impact of climate change on forest productivity. Under a Mediterranean climate, tree growth is primarily limited by soil water availability during summer, but cold temperatures in winter also prevent tree growth in evergreen forests. In the widespread Mediterranean evergreen tree species Quercus ilex, the duration of stem growth has been shown to predict annual stem increment, and to be limited by winter temperatures on the one hand, and by the summer drought onset on the other hand. We tested how these climatic controls of Q. ilex growth varied with recent climate change by correlating a 40‐year tree ring record and a 30‐year annual diameter inventory against winter temperature, spring precipitation, and simulated growth duration. Our results showed that growth duration was the best predictor of annual tree growth. We predicted that recent climate changes have resulted in earlier growth onset (?10 days) due to winter warming and earlier growth cessation (?26 days) due to earlier drought onset. These climatic trends partly offset one another, as we observed no significant trend of change in tree growth between 1968 and 2008. A moving‐window correlation analysis revealed that in the past, Q. ilex growth was only correlated with water availability, but that since the 2000s, growth suddenly became correlated with winter temperature in addition to spring drought. This change in the climate–growth correlations matches the start of the recent atmospheric warming pause also known as the ‘climate hiatus’. The duration of growth of Q. ilex is thus shortened because winter warming has stopped compensating for increasing drought in the last decade. Decoupled trends in precipitation and temperature, a neglected aspect of climate change, might reduce forest productivity through phenological constraints and have more consequences than climate warming alone.  相似文献   

5.
Ectomycorrhizal fungi commonly associate with the roots of forest trees where they enhance nutrient and water uptake, promote seedling establishment and have an important role in forest nutrient cycling. Predicting the response of ectomycorrhizal fungi to environmental change is an important step to maintaining forest productivity in the future. These predictions are currently limited by an incomplete understanding of the relative significance of environmental drivers in determining the community composition of ectomycorrhizal (ECM) fungi at large spatial scales. To identify patterns of community composition in ECM fungi along regional scale gradients of climate and nitrogen deposition in Scotland, fungal communities were analysed from 15 seminatural Scots pine (Pinus sylvestris L.) forests. Fungal taxa were identified by sequencing of the ITS rDNA region using fungal‐specific primers. Nonmetric multidimensional scaling was used to assess the significance of 16 climatic, pollutant and edaphic variables on community composition. Vector fitting showed that there was a strong influence of rainfall and soil moisture on community composition at the species level, and a smaller impact of temperature on the abundance of ectomycorrhizal exploration types. Nitrogen deposition was also found to be important in determining community composition, but only when the forest experiencing the highest deposition (9.8 kg N ha?1 yr?1) was included in the analysis. This finding supports previously published critical load estimates for ectomycorrhizal fungi of 5–10 kg N ha?1 yr?1. This work demonstrates that both climate and nitrogen deposition can drive gradients of fungal community composition at a regional scale.  相似文献   

6.
Changes in rainfall availability will alter soil‐nutrient availability under a climate‐change scenario. However, studies have usually analyzed the effect of either drier or wetter soil conditions, despite the fact that both possibilities will coexist in many climatic regions of the world. Furthermore, its effect may vary across the different habitats of the ecosystem. We experimentally investigated the effect of three contrasting climatic scenarios on different carbon (C), nitrogen (N), and phosphorus (P) fractions in soil and microbial compartments among three characteristic habitats in a Mediterranean‐type ecosystem: forest, shrubland, and open areas. The climatic scenarios were dry summers, according to the 30% summer rainfall reduction projected in the Mediterranean; wet summer, simulating summer storms to reach the maximum historical records in the study area; and current climatic conditions (control). Sampling was replicated during two seasons (spring and summer) and 2 years. The climatic scenario did not affect the nutrient content in the litter layer. However, soil and microbial nutrients varied among seasons, habitats, and climatic scenarios. Soil‐nutrient fractions increased with lower soil‐moisture conditions (dry scenario and summer), whereas microbial nutrients increased under the wet summer scenario and spring. This pattern was consistent both studied years, although it was modulated by habitat, differences being lower with denser plant cover. Holm oak seedlings, used as live control of the experiment, tended to increase their N and P content (although not significantly) with water availability. Thus, the results support the idea that higher rainfall boosts microbial and plant‐nutrient uptake, and hence nutrient cycling. By contrast, a rainfall reduction leads to an accumulation of nutrients in the soil, increasing the risk of nutrient loss by leaching or erosion. These results show that the projected climate change will have significant effects on nutrient cycles, and therefore will have important implications on the ecosystem functioning.  相似文献   

7.
以西南亚高山针叶林建群种粗枝云杉(Picea asperata)为研究对象,采用红外加热模拟增温结合外施氮肥(NH4NO3 25 g N m-2 a-1)的方法,研究连续3a夜间增温和施肥对云杉幼苗外生菌根侵染率、土壤外生菌根真菌生物量及其群落多样性的影响。结果表明:夜间增温对云杉外生菌根侵染率的影响具有季节性及根级差异。夜间增温对春季(2011年5月)云杉1级根,夏季(2011年7月)和秋季(2010年10月)云杉2级根侵染率影响显著。除2011年7月1级根外,施氮对云杉1、2级根侵染率无显著影响。夜间增温对土壤中外生菌根真菌的生物量和群落多样性无显著影响,施氮及增温与施氮联合处理使土壤中外生菌根真菌生物量显著降低,但却提高了外生菌根真菌群落的多样性。这说明云杉幼苗外生菌根侵染率对温度较敏感,土壤外生菌根真菌生物量及其群落多样性对施氮较敏感。这为进一步研究该区域亚高山针叶林地下过程对全球气候变化的响应机制提供了科学依据。  相似文献   

8.
In contrast to most high elevation areas, plant growth at Mediterranean mountains is exposed to a summer drought period, which represents an additional climatic constraint to low temperatures. Although arboreal and shrubby conifers coexist at high altitudes, most dendroecological studies have focused on climatic responses of tree species, whereas those of shrubby species remain mostly unexplored. We built tree-ring width chronologies for two conifer species, a shrub (Juniperus sabina) and a tree (Pinus sylvestris), coexisting at three high-altitude localities of the Iberian System mountains, eastern Spain. We analyzed their climate–growth relationships for the period 1950–2009 using correlation analyses and multiple regressions. Coexisting species responded to year-to-year climatic variability in different ways. Radial growth in junipers and pines responded positively to April and May temperatures, respectively. Summer drought constrained growth in both cases, although its impact was stronger on junipers than on pines. Our findings suggest that junipers respond earlier than pines to spring temperatures due to their prostrate morphology which may enhance a fast warming of their cambial meristems after snowmelt. The higher dependence of J. sabina on summer rainfall as compared with co-occurring pines confirms that drought stress negatively impacts secondary growth in Mediterranean mountains. This sensitivity to water availability may be caused by the juniper shallow root systems, which mainly use superficial soil water. The climatic signal registered in J. sabina allows studying the response of other similar shrubby woody species growing in Mediterranean alpine areas to the ongoing climate warming, which could also reduce water availability.  相似文献   

9.
Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface‐incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open‐top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures.  相似文献   

10.
Assessing the potential future of current forest stands is a key to design conservation strategies and understanding potential future impacts to ecosystem service supplies. This is particularly true in the Mediterranean basin, where important future climatic changes are expected. Here, we assess and compare two commonly used modeling approaches (niche‐ and process‐based models) to project the future of current stands of three forest species with contrasting distributions, using regionalized climate for continental Spain. Results highlight variability in model ability to estimate current distributions, and the inherent large uncertainty involved in making projections into the future. CO2 fertilization through projected increased atmospheric CO2 concentrations is shown to increase forest productivity in the mechanistic process‐based model (despite increased drought stress) by up to three times that of the non‐CO2 fertilization scenario by the period 2050–2080, which is in stark contrast to projections of reduced habitat suitability from the niche‐based models by the same period. This highlights the importance of introducing aspects of plant biogeochemistry into current niche‐based models for a realistic projection of future species distributions. We conclude that the future of current Mediterranean forest stands is highly uncertain and suggest that a new synergy between niche‐ and process‐based models is urgently needed in order to improve our predictive ability.  相似文献   

11.
Abstract Water stress usually arrests growth of even the most deep‐rooted species during summer drought in Mediterranean‐type climates. However, scant evidence suggests that grasstrees may represent an unusual exception. We used weather data and plant water potential to investigate the relationship between leaf growth and season in the grasstree, Xanthorrhoea preissii Endl. (Xanthorrhoeaceae). Leaf production in two contrasting habitats revealed continuous annual growth, oscillating between maximum rates (2.5–3.2 leaves/d) in late‐spring to autumn, to a minimum rate of 0.5 leaf/d during winter but never stopping. While the rate of leaf production during the fast‐growth season was positively correlated with temperature above 17–18°C, leaf elongation commenced substantially earlier in the year (from 12°C). Leaf water potentials cycled annually, with predawn readings commonly measured as zero during winter–spring and as low as ?1.26 MPa during summer, but never indicating stress by exceeding the turgor loss point. Leaf death was synchronized with summer drought. The fast (summer) growth period was characterized by rapidly fluctuating leaf production, particularly in banksia woodland, where plant growth reliably responded quickly to >18 mm of rainfall. Within 24 h of 59 mm of simulated rainfall, grasstrees in banksia woodland showed a marked increase in water potential, and leaf production reached 7.5 times the controls, confirming their capacity to respond to temporary spasmodic summer rains. Rainfall was the best climatic variable for predicting woodland grasstree leaf production during summer, whereas leaf production of forest grasstrees was most closely correlated with daylength. This plastic response of grasstrees between seasonal weather extremes is relatively rare among other mediterranean floras, and has implications for a recently proposed technique for ageing grasstrees.  相似文献   

12.
Arbuscular mycorrhizal (AM) fungi in both soil and roots were examined in May (summer) and December (winter) under a 4-y drought experiment in a Chinese subtropical secondary forest. Drought significantly decreased AM fungal extra-radical hyphal density, spore density, and root colonization rate in both seasons. These AM parameters were significantly higher in summer than in winter in the control treatment, but only AM fungal extra-radical hyphal density exhibited the same seasonal trend in the drought treatment. In total, 45 AM fungal operational taxonomic units (OTUs) were obtained at a 97% sequence similarity level using Illumina sequencing of 18S rDNA. Drought and season had no significant effects on AM fungal OTU richness in soil and roots. AM fungal community composition in soil and roots was significantly affected by season but not by drought. This finding enhances our understanding of the response of AM fungi to global climate change in subtropical forest ecosystems.  相似文献   

13.
氮沉降对外生菌根真菌的影响   总被引:15,自引:4,他引:11  
综述了国外氮沉降对外生菌根真菌的影响研究现状 ,主要从菌根形成、形态 (菌丝体、菌根 )变化、子实体生产力和外生菌根真菌群落结构等方面对氮沉降的响应进行了综述 ,并初步探讨了氮饱和的临界负荷。研究表明 ,过量氮沉降会给外生菌根真菌在以下几个方面带来负影响 :(1)影响外生菌根真菌与寄主植物之间的养分分配和循环 ;(2 )降低子实体生产力 ;(3)减少菌丝 ;(4 )降低菌根量及其活力 ;(5 )降低外生菌根真菌丰富度 ;(6 )改变外生菌根真菌群落结构组成 ;(7)降低外生菌根真菌群落功能。还指出了未来该方面研究重点和方向  相似文献   

14.
Long-term responses in the phenology of Mediterranean macrofungi to climatic changes are poorly documented. Here, we address this issue by comparing the fruiting patterns of 159 fungal species in Southern France between the first half of the 19th century and the first decade of the 21st century. We used a trait-based approach to assess the influence of phenology and morphology of fungal fruit bodies and their site ecology and biogeography on the response to climate change. We show that early autumnal fruiters, epigeous species and species with affinities for cold climates now start to fruit on average 16.4, 17.3 and 17.3 d later compared to their emergence dates in the 19th century, while late fruiters, hypogeous species and Mediterranean-restricted species did not change their fruiting date. Among ecological guilds, saproxylic species and pine-associated mutualists delayed their autumnal emergence by 32.5 and 19.2 d, likely in response to a delayed rewetting of litter and woody debris after extended summer drought. Our results suggest that long-term climate warming in the Mediterranean was accompanied by contrasting changes in the emergence of fungal fruit bodies according to ecological guilds, sporocarp life-forms and forest types.  相似文献   

15.
Quantifying climate-growth associations is needed to evaluate how forest productivity will respond to climate change. Year-to-year fluctuations in forest productivity and radial growth are partly explained by local climatic conditions driven by large-scale atmospheric patterns. This is illustrated by Iberian forests in the western Mediterranean Basin, which are subjected to complex climatic and atmospheric influences such as Atlantic and Mediterranean cyclogenesis. The North Atlantic Oscillation (NAO) is one of the major atmospheric circulation patterns affecting Iberian forests since positive winter NAO phases lead to dry and warm conditions. The Western Mediterranean Oscillation (WeMO) may also explain Iberian forest growth in some areas since this index captures Mediterranean cyclogenesis and WeMO negative phases are linked to warm and wet spring to summer conditions. Here, we analyze the associations between atmospheric patterns, climate and tree growth and we determine if they are changing through time. We use dendrochronology to relate radial growth of four tree species (Pyrenean oak, Sweet chestnut, Maritime pine and Scots pine) growing in western Spain to climate conditions and the NAO and WeMO indices. Winter and early spring temperatures increased since the 1950s in the area whereas the negative association between winter precipitation and the NAO strengthened since then. However, mean temperature rise was particularly evident since the 1970s. Growth was reduced by dry conditions during the growing season (spring and summer), but also by cold and dry conditions during the previous autumn and winter. This explains why the NAO January and the WeMo April indices were negative to growth of three species excluding Pyrenean oak. The early 1970s reflected an inflection point in the instability of climate-growth associations in the study area. We conclude that the winter NAO is a relevant driver of forest growth in the western Iberian Peninsula forests but additional atmospheric patterns (WeMO) also affect, albeit to a minor extent, these forests.  相似文献   

16.
A paper published in Global Change Biology in 2006 revealed that phenological responses in 1971–2000 matched the warming pattern in Europe, but a lack of chilling and adaptation in farming may have reversed these findings. Therefore, for 1951–2018 in a corresponding data set, we determined changes as linear trends and analysed their variation by plant traits/groups, across season and time as well as their attribution to warming following IPCC methodology. Although spring and summer phases in wild plants advanced less (maximum advances in 1978–2007), more (~90%) and more significant (~60%) negative trends were present, being stronger in early spring, at higher elevations, but smaller for nonwoody insect‐pollinated species. These trends were strongly attributable to winter and spring warming. Findings for crop spring phases were similar, but were less pronounced. There were clearer and attributable signs for a delayed senescence in response to winter and spring warming. These changes resulted in a longer growing season, but a constant generative period in wild plants and a shortened one in agricultural crops. Phenology determined by farmers’ decisions differed noticeably from the purely climatic driven phases with smaller percentages of advancing (~75%) trends, but farmers’ spring activities were the only group with reinforced advancement, suggesting adaptation. Trends in farmers’ spring and summer activities were very likely/likely associated with the warming pattern. In contrast, the advance in autumn farming phases was significantly associated with below average summer warming. Thus, under ongoing climate change with decreased chilling the advancing phenology in spring and summer is still attributable to warming; even the farmers’ activities in these seasons mirror, to a lesser extent, the warming. Our findings point to adaptation to climate change in agriculture and reveal diverse implications for terrestrial ecosystems; the strong attribution supports the necessary mediation of warming impacts to the general public.  相似文献   

17.
Mushrooms are amongst the most important of non-timber forest products, with growing economic value in many rural areas of the Mediterranean region. At the same time, the effects of climate variability on fungal ecology and productivity are insufficiently understood, because the belowground life cycle of fungi is mediated in many different ways and observational field surveys at the community level are generally too short. Here, we assess records of 48, 348 mycorrhizal and saprotrophic fungal fruit bodies that were recorded at weekly intervals between 1995 and 2013 in Pinar Grande, the largest Spanish Scots pine forest. Autumnal fruiting was delayed by one week after 2004 compared with the period before, the mean annual number of sporocarps dropped from 2 880 to 2 045, and mean species richness declined from 55 to 51. Trends in the phenology and productivity of Boletus edulis and Lactarius spp., the most profitable edible species, were associated with decreasing Jul.–Sep. precipitation totals, whereas the mean fruit body weight of B. edulis significantly increased from 71 to 123 g (pre and post 2004). In tandem with declining Spanish tree growth and truffle harvest since the 1970s, this study reveals a strong dependency of drought-prone Iberian forest ecosystem productivity on hydroclimatic variability. In light of a predicted drier Mediterranean climate, our results further emphasize the importance of long and well-replicated field inventories at high spatiotemporal resolution for informing forest service and management strategies, as well as gastronomy and tourist industries.  相似文献   

18.
Two study plots, burned and control, were established in autumn 1998 in a Quercus ilex forest located in northern Spain, part of which had been affected by a low intensity fire in 1994. Soil samples for ectomycorrhizae (ECM) were taken over a 3-year period in each study plot in spring, summer, autumn and winter. ECM morphotypes were identified and the relative abundance of each morphotype in each soil sample calculated, along with species richness, Shannon diversity index and percentage of mycorrhization in each soil sample. The relative abundance of certain ECM morphotypes differed between burned and control plots, and the percentage of mycorrhizal tips was significantly lower in the burned than in the control plot. Nevertheless, there were no significant differences in the diversity, species richness or species composition of the ECM community in the burned and control plots. The dominant ECM morphotypes in both stands were Cenococcum geophilum and several thelephoroid fungi. Sphaerosporella brunnea and Pisolithus tinctorius thrived especially in the burned plot, whereas three ectomycorrhizal morphotypes assigned to the genus Hebeloma were especially abundant in the control plot. There was no significant variation in the relative abundance of the ECM morphotypes between seasons, but ECM community species richness was highest in autumn and lowest in summer. The percentage of mycorrhizal tips reached a maximum in winter, with its minimum in autumn. Collection of samples over the 3-year period also enabled us to detect a significant increase in percentage of ECM colonisation in the burned stand over time.  相似文献   

19.
Climate warming is leading to shrub expansion in Arctic tundra. Shrubs form ectomycorrhizal (ECM) associations with soil fungi that are central to ecosystem carbon balance as determinants of plant community structure and as decomposers of soil organic matter. To assess potential climate change impacts on ECM communities, we analysed fungal internal transcribed spacer sequences from ECM root tips of the dominant tundra shrub Betula nana growing in treatments plots that had received long‐term warming by greenhouses and/or fertilization as part of the Arctic Long‐Term Ecological Research experiment at Toolik Lake Alaska, USA. We demonstrate opposing effects of long‐term warming and fertilization treatments on ECM fungal diversity; with warming increasing and fertilization reducing the diversity of ECM communities. We show that warming leads to a significant increase in high biomass fungi with proteolytic capacity, especially Cortinarius spp., and a reduction of fungi with high affinities for labile N, especially Russula spp. In contrast, fertilization treatments led to relatively small changes in the composition of the ECM community, but increased the abundance of saprotrophs. Our data suggest that warming profoundly alters nutrient cycling in tundra, and may facilitate the expansion of B. nana through the formation of mycorrhizal networks of larger size.  相似文献   

20.

Aim

Efforts to predict the responses of soil fungal communities to climate change are hindered by limited information on how fungal niches are distributed across environmental hyperspace. We predict the climate sensitivity of North American soil fungal assemblage composition by modelling the ecological niches of several thousand fungal species.

Location

One hundred and thirteen sites in the United States and Canada spanning all biomes except tropical rain forest.

Major Taxa Studied

Fungi.

Time Period

2011–2018.

Methods

We combine internal transcribed spacer (ITS) sequences from two continental-scale sampling networks in North America and cluster them into operational taxonomic units (OTUs) at 97% similarity. Using climate and soil data, we fit ecological niche models (ENMs) based on logistic ridge regression for all OTUs present in at least 10 sites (n = 8597). To describe the compositional turnover of soil fungal assemblages over climatic gradients, we introduce a novel niche-based metric of climate sensitivity, the Sørensen climate sensitivity index. Finally, we map climate sensitivity across North America.

Results

ENMs have a mean out-of-sample predictive accuracy of 73.8%, with temperature variables being strong predictors of fungal distributions. Soil fungal climate niches clump together across environmental space, which suggests common physiological limits and predicts abrupt changes in composition with respect to changes in climate. Soil fungi in North American climates are more likely to be limited by cold and dry conditions than by warm and wet conditions, and ectomycorrhizal fungi generally tolerate colder temperatures than saprotrophic fungi. Sørensen climate sensitivity exhibits a multimodal distribution across environmental space, with a peak in climates corresponding to boreal forests.

Main Conclusions

The boreal forest occupies an especially precarious region of environmental space for the composition of soil fungal assemblages in North America, as even small degrees of warming could trigger large compositional changes characterized mainly by an influx of warm-adapted species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号