首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A membrane-bound phospholipase D (PLD) has been identified and isolated in a soluble form from an actinomycete, Streptoverticillium cinnamoneum. The enzyme has a monomeric structure with a molecular size of about 37 kDa, being the smallest among the enzymes so far reported. The enzyme catalyzes the hydrolysis of phosphatidylethanolamine and phosphatidylserine as preferred substrates, but not the transphosphatidylation reaction of their phospholipid groups to ethanol. Together with the absence of immunochemical cross-reactivity, these enzymatic properties demonstrate that the membrane-bound enzyme is distinct from the extracellular enzyme recently characterized and cloned from the same bacterial strain [C. Ogino et al., J. Biochem. 125 (1999) 263-269] and is therefore regarded as a novel prokaryotic PLD.  相似文献   

2.
Phospholipase D (PLD) plays various roles in important biological processes and physiological functions, including cell signaling. Streptomyces PLDs show significant sequence similarity and belong to the PLD superfamily containing two catalytic HKD motifs. These PLDs have conserved catalytic regions and are among the smallest PLD enzymes. Therefore, Streptomyces PLDs are thought to be suitable models for studying the reaction mechanism among PLDs from other sources. Furthermore, Streptomyces PLDs present advantages related to their broad substrate specificity and ease of enzyme preparation. Moreover, the tertiary structure of PLD has been elucidated only for PLD from Streptomyces sp. PMF. This article presents a review of recently reported studies of the mechanism of the catalytic reaction, substrate recognition, substrate specificity and stability of Streptomyces PLD using various protein engineering methods and surface plasmon resonance analysis.  相似文献   

3.
The Dictyostelium discoideum membrane-bound and extracellular cyclic nucleotide phosphodiesterases (EC 3.1.4.17) shear several properties including the ability to react with a specific glycoprotein inhibitor and small inhibitory molecules. We have partialy purified the membrane-bound enzyme and compared its properties to those of the extracellular form. The kinetic properties of the two forms were similar except that, while associated with membrane particles, the membrane-bound form exhibited non-linear kinetics when assayed ove a broad substrate range. The isoelectric point of the membrane-bound phosphodiesterase was identical to that of the extracellular enzyme when isoelectrofocusing was done in the presence of 6 M urea. The molecular weights of membrane-bound and extracellular enzyme, determined by gel filtration, were the same following isoelectrofocusing in the presence of 6 M urea. When precipitated with an antiserum prepared against purified extracellular phosphodiesterase, the partially purified membrane-bound enzyme preparation was shown to contain a Mr 50 000 polypeptide comigrating with the extracellular enzyme during SDS polyacrylamide gel electrophoresis. When the iodinated extracellular enzyme and the iodinated Mr 50 000 polypeptide from membrane-bound enzyme were subjected to partial proteolytic digestion, similar profiles were obtained indicating extensive regions of homology.  相似文献   

4.
We have recently shown that two flexible loops of Streptomyces phospholipase D (PLD) affect the catalytic reaction of the enzyme by a comparative study of chimeric PLDs. Gly188 and Asp191 of PLD from Streptomyces septatus TH-2 (TH-2PLD) were identified as the key amino acid residues involved in the recognition of phospholipids. In the present study, we further investigated the relationship between a C-terminal loop of TH-2PLD and PLD activities to elucidate the reaction mechanism and the recognition of the substrate. By analyzing chimeras and mutants in terms of hydrolytic and transphosphatidylation activities, Ala426 and Lys438 of TH-2PLD were identified as the residues associated with the activities. We found that Gly188 and Asp191 recognized substrate forms, whereas residues Ala426 and Lys438 enhanced transphosphatidylation and hydrolysis activities regardless of the substrate form. By substituting Ala426 and Lys438 with Phe and His, respectively, the mutant showed not only higher activities but also higher thermostability and tolerance against organic solvents. Furthermore, the mutant also improved the selectivity of the transphosphatidylation activity. The residues Ala426 and Lys438 were located in the C-terminal flexible loop of Streptomyces PLD separate from the highly conserved catalytic HxKxxxxD motifs. We demonstrated that this C-terminal loop, which formed the entrance of the active well, has multiple functional roles in Streptomyces PLD.  相似文献   

5.
Phospholipase D (PLD), an important enzyme involved in signal transduction in mammals, is also secreted by many microorganisms. A highly conserved HKD motif has been identified in most PLD homologs in the PLD superfamily. However, the Ca(2+)-dependent PLD from Streptomyces chromofuscus exhibits little homology to other PLDs. We have cloned (using DNA isolated from the ATCC type strain), overexpressed in Escherichia coli (two expression systems, pET-23a(+) and pTYB11), and purified the S. chromofuscus PLD. Based on attempts at sequence alignment with other known Ca(2+)-independent PLD enzymes from Streptomyces species, we mutated five histidine residues (His72, His171, His187, His200, His226) that could be part of variants of an HKD motif. Only H187A and H200A showed dramatically reduced activity. However, mutation of these histidine residues to alanine also significantly altered the secondary structure of PLD. Asparagine replacements at these positions yielded enzymes with structure and activity similar to the recombinant wild-type PLD. The extent of phosphatidic acid (PA) activation of PC hydrolysis by the recombinant PLD enzymes differed in magnitude from PLD purified from S. chromofuscus culture medium (a 2-fold activation rather than 4-5-fold). One of the His mutants, H226A, showed a 12-fold enhancement by PA, suggesting this residue is involved in the kinetic activation. Another notable difference of this bacterial PLD from others is that it has a single cysteine (Cys123); other Streptomyces Ca(2+)-independent PLDs have eight Cys involved in intramolecular disulfide bonds. Both C123A and C123S, with secondary structure and stability similar to recombinant wild-type PLD, exhibited specific activity reduced by 10(-5) and 10(-4). The Cys mutants still bound Ca(2+), so that it is likely that this residue is part of the active site of the Ca(2+)-dependent PLD. This would suggest that S. chromofuscus PLD is a member of a new class of PLD enzymes.  相似文献   

6.
Jeon H  Kwak D  Noh J  Lee MN  Lee CS  Suh PG  Ryu SH 《Cellular signalling》2011,23(8):1320-1326
Phospholipase D (PLD) is involved in diverse cellular processes including cell movement, adhesion, and vesicle trafficking through cytoskeletal rearrangements. However, the mechanism by which PLD induces cytoskeletal reorganization is still not fully understood. Here, we describe a new link to cytoskeletal changes that is mediated by PLD2 through direct nucleotide exchange on RhoA. We found that PLD2 induces RhoA activation independent of its lipase activity. PLD2 directly interacted with RhoA, and the PX domain of PLD2 specifically recognized nucleotide-free RhoA. Finally, we found that the PX domain of PLD2 has guanine nucleotide-exchange factor (GEF) activity for RhoA in vitro. In addition, we verified that overexpression of the PLD2-PX domain induces RhoA activation, thereby provoking stress fiber formation. Together, our findings suggest that PLD2 functions as an upstream regulator of RhoA, which enables us to understand how PLD2 regulates cytoskeletal reorganization in a lipase activity-independent manner.  相似文献   

7.
A partially purified rat brain membrane phospholipase D (PLD) activity was characterized in a mixed micellar system consisting of l-palmitoyl-2-[6-N-(7-nitrobenzo-2-oxa-1,3-diazol-4-yl)-amino]caproyl-phosphatidylcholine (NBD-PC) and Triton X-100, under conditions where Triton X-100 has a surface dilution effect on PLD activity and the catalytic rate is dependent on the surface concentration (expressed in terms of molar ratio) of NBD-PC. PLD activity was specifically activated by phosphatidylinositol 4,5-bisphosphate (PIP2), and the curve of activation versus PIP2 molar ratio fitted a Michaelis-Menten equation with a Kact value between molar ratios of 0.001–0.002. Maximal activation was observed at a PIP2 molar ratio of 0.01. Similar values were obtained when activities of partially purified PLD as well as membrane-bound PLD were determined towards pure NBD-PC micelles. In the mixed micellar system PIP2 was shown to elevate by 6–22 fold the specificity constant of PLD towards NBD-PC (KA, which is proportional to Vmax/Km). Kinetic analysis of PLD trans-phosphatidylation activity towards ethanol, 1-propanol and 1-butanol revealed a Michaelis-Menten type dependence on alcohol concentration up to 1000, 200 and 80 mM, respectively. While Vmax values were similar towards all three alcohols, enzyme affinity increased as the alcohol was longer, and Km values for ethanol, 1-propanol and 1-butanol were 291, 75 and 16 mM (respectively). PLD specificity constants (KA) towards ethanol, 1-propanol and 1-butanol were shown to be respectively 260, 940 and 5,920 times higher than to water, the competing substrate. 1-Propanol and 1-butanol inhibited PLD activity above 400 and 100 mM, respectively. The present results indicate that partially purified PLD obeys surface dilution kinetics with regard to its phospholipid substrate PC and its cofactor PIP2, and that in the presence of alcohols, its transphosphatidylation activity may be analyzed as a competitive reaction to the hydrolysis reaction.  相似文献   

8.
This review is focusing on an industrially important enzyme, phospholipase D (PLD), exhibiting both transphosphatidylation and hydrolytic activities for various phospholipids. The transphosphatidylation activity of PLD is particularly useful for converting phosphatidylcholine (PC) into other phospholipids. During the last decade, the genes coding for PLD have been identified from various species including mammals, plants, yeast, and bacteria. However, detailed basic and applied enzymological studies on PLD have been hampered by the low productivity in these organisms. Efficient production of a recombinant PLD has also been unsuccessful so far. We recently isolated and characterized the PLD gene from Streptoverticillium cinnamoneum, producing a secretory PLD. Furthermore, we constructed an overexpression system for the secretory enzyme in an active and soluble form using Streptomyces lividans as a host for transformation of the PLD gene. The Stv. cinnamoneum PLD was proven to be useful for the continuous and efficient production of phosphatidylethanolamine (PE) from phosphatidylcholine. Thus, the secretory PLD is a promising catalyst for synthesizing new phospholipids possessing various polar head groups that show versatile physiological functions and may be utilized in food and pharmaceutical industries.  相似文献   

9.
The activation of mTOR signaling is essential for mechanically induced changes in skeletal muscle mass, and previous studies have suggested that mechanical stimuli activate mTOR (mammalian target of rapamycin) signaling through a phospholipase D (PLD)-dependent increase in the concentration of phosphatidic acid (PA). Consistent with this conclusion, we obtained evidence which further suggests that mechanical stimuli utilize PA as a direct upstream activator of mTOR signaling. Unexpectedly though, we found that the activation of PLD is not necessary for the mechanically induced increases in PA or mTOR signaling. Motivated by this observation, we performed experiments that were aimed at identifying the enzyme(s) that promotes the increase in PA. These experiments revealed that mechanical stimulation increases the concentration of diacylglycerol (DAG) and the activity of DAG kinases (DGKs) in membranous structures. Furthermore, using knock-out mice, we determined that the ζ isoform of DGK (DGKζ) is necessary for the mechanically induced increase in PA. We also determined that DGKζ significantly contributes to the mechanical activation of mTOR signaling, and this is likely driven by an enhanced binding of PA to mTOR. Last, we found that the overexpression of DGKζ is sufficient to induce muscle fiber hypertrophy through an mTOR-dependent mechanism, and this event requires DGKζ kinase activity (i.e. the synthesis of PA). Combined, these results indicate that DGKζ, but not PLD, plays an important role in mechanically induced increases in PA and mTOR signaling. Furthermore, this study suggests that DGKζ could be a fundamental component of the mechanism(s) through which mechanical stimuli regulate skeletal muscle mass.  相似文献   

10.
Plant phospholipases D (PLDs) occur in a large variety of isoenzymes, which differ in Ca(2+) ion requirement, phosphatidylinositol-4,5-bisphosphate (PIP(2)) activation and substrate selectivity. In the present study a membrane-bound PLD has been identified in the microsomal fractions of poppy seedlings (Papaver somniferum). The maximum PLD activity is found after 2 days of germination in endosperms and after 3 days in developing seedlings. In contrast to the four poppy PLD isoenzymes described hitherto, the membrane-bound form is active at lower Ca(2+) ion concentrations (in the micromolar instead of millimolar range) and needs PIP(2) for hydrolytic activity. Remarkable differences are also observed in head group exchange reactions. The reaction rates of the transphosphatidylation of phosphatidylcholine by various acceptor alcohols follow the sequence glycerol>serine>myo-inositol>ethanolamine, whereas ethanolamine is preferred by most other PLDs. Despite the biocatalytic differences, the membrane-bound PLD interacts with polyclonal antibodies raised against α-type PLD, which reveals some structural similarities between these two enzymes.  相似文献   

11.
Phospholipase D (PLD) has been detected in seedlings of Papaver somniferum L. cv. Lazúr (Papaveraceae). Purification of the enzyme revealed the existence of two forms of PLD (named as PLD-A and PLD-B). The two enzymes strongly differ in their catalytic properties. The pH optima were found at pH 8.0 for PLD-A and at pH 5.5 for PLD-B. While both enzymes show hydrolytic activity toward phosphatidylcholine (PC) and phosphatidyl-p-nitrophenol (PpNP), PLD-B only was able to catalyze the exchange of choline in PC by glycerol. Both enzymes were activated by Ca2+ ions with an optimum concentration of 10 mM. In contrast to PLDs from other plants, PLD-B was still more activated by Zn2+ ions with an optimum concentration of 5 mM. The apparent molecular masses of PLD-A and PLD-B, derived from sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE), were estimated to be 116.4 and 114.1 kDa. N-terminal protein sequencing indicated N-terminal blockage in both cases. The isoelectric points were found to be 8.7 for PLD-A and 6.7 for PLD-B. Both enzymes were shown to be N-linked glycoproteins. This paper is the first report on PLD in poppy and indicates some important differences of the two enzyme forms to other PLDs known so far.  相似文献   

12.
13.
MTLn3 cells are highly invasive breast adenoacarcinoma cells. The relative level of the epidermal-growth-factor-stimulated invasion of this cell line is greater than two other breast cancer cell lines (MDA-MB-231 and MCF-7) and one non-small cell lung cancer cell line (H1299). We have determined that the mechanism of cancer cell invasion involves the presence of an enzymatically active phospholipase D (PLD), with the PLD2 isoform being more relevant than PLD1. PLD2 silencing abrogated invasion, whereas ectopic expression of PLD2 augmented cell invasion in all four cell lines, with an efficacy (MTLn3 ± MDA-MB-231 > H1299 ± MCF-7) that correlated well with their abilities to invade Matrigel in vitro. We also report that PLD2 is under the control of Janus kinase 3 (JAK3), with the kinase phosphorylating PLD2 at the Y415 residue, thus enabling its activation. Y415 is located downstream of a PH domain and upstream of the catalytic HKD-1 domain of PLD2. JAK3 knockdown abrogated lipase activity and epidermal-growth-factor-stimulated cell invasion directly. For the purposes of activating PLD2 for cell invasion, JAK3 operates via an alternative pathway that is independent of STAT, at least in MTLn3 cells. We also consistently found that JAK3 and PLD2 pathways are utilized at the maximum efficiency (phosphorylation and activity) in highly invasive MTLn3 cells versus a relatively low utilization in the less invasive MCF-7 cell line. In summary, a high level of cell invasiveness of cancer cells can be explained for the first time by combined high JAK3/PLD2 phosphorylation and activity involving PLD2's Y415 residue, which might constitute a novel target to inhibit cancer cell invasion.  相似文献   

14.
Abstract: Phosphatidylinositol 4,5-bisphosphate (PIP2) is absolutely required for the ADP-ribosylation factor-stimulated phospholipase D (PLD) activity. In the present study, partially purified rat brain PLD was found to be activated by another PLD activator, RhoA, when PIP2, but not other acidic phospholipids, was included in vesicles comprising phosphatidylethanolamine (PE) and the PLD substrate phosphatidylcholine (PC) (PE/PC vesicles), demonstrating the absolute requirement of PIP2 for the RhoA-stimulated PLD activation, too. It is interesting that the RhoA-dependent PLD activity in the partially purified preparation was drastically decreased after the preparation was incubated with and separated from PE/PC vesicles containing PIP2. The PLD activity was extracted by higher concentrations of NaCl from the vesicles containing PIP2 that were incubated with and then separated from the partially purified PLD preparation. These results demonstrate that RhoA-dependent PLD binds to PE/PC vesicles with PIP2. The degree of binding of the RhoA-dependent PLD activity to the vesicles was totally dependent on the amount of PIP2 in the vesicles and correlated well with the extent of the enzyme activation. Furthermore, it was found that a recombinant peptide of the pleckstrin homology domain of β-adrenergic receptor kinase fused to glutathione S-transferase, which specifically binds to PIP2, inhibited the PIP2-stimulated, RhoA-dependent PLD activity in a concentration-dependent manner. From these results, it is concluded that in vitro rat brain PLD translocates to the vesicles containing PIP2, owing to its specific interaction with PIP2, to access its substrate PC, thereby catalyzing the hydrolysis of PC. PLD appears to localize exclusively on plasma membranes of cells and tissues. An aminoglycoside, neomycin, that has high affinity for PIP2 effectively extracted the RhoA-dependent PLD activity from rat brain membranes. This indicates that PIP2 serves as an anchor to localize PLD on plasma membranes in vivo.  相似文献   

15.
Phospholipase D (PLD) is an enzyme which participates in the signalling mechanism cleaving phosphatidylcholine (PC) to choline and phosphatidic acid (PA). In Tetrahymena pyriformis GL this enzyme activity is enhanced by different kinds of agonists (sodium orthovanadate, sodium fluoride and phorbol 12-myristate 13-acetate), and its activity can be inhibited by inhibitors such as pertussis toxin, calphostin C, genistein, trifluoperazine. These results suggest that the PLD signalling pathway is connected with the tyrosine kinase, phospholipase C, phosphatidylinositol and G-protein coupled signalling pathways. By demonstrating the PLD activity in Tetrahymena our knowledge on the signalling mechanisms at a unicellular level has been extended. The results support our view that most transducing mechanisms that are characteristic of mammalian cells are also in the protozoan Tetrahymena. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
In a wide variety of cells, phosphatidylcholine hydrolysis in response to diverse agents is catalyzed by phospholipase D (PLD) activities that are believed to be membrane-bound. Indeed, PLD has been detected in membrane fractions of several tissues and cells. We now demonstrate in various bovine tissue including lung, brain, spleen, heart, kidney, thymus, and liver as well as rat lung that a great majority of the detectable PLD activity is cytosolic. This cytosolic PLD activity differs from a less abundant membrane-bound isozyme by chromatographic mobilities on anion exchange and gel filtration columns, by substrate specificity, by substrate concentration dependence, and by divalent cation and detergent effects. Fractionation of the cytosol by anion exchange chromatography enhances PLD activity up to 20-fold, suggesting the presence in the cytosol of PLD inhibitory factor(s). We conclude that mammalian PLD exists in multiple forms and that appropriate selection of assay conditions is critical for observing PLD activity in the cytosol.  相似文献   

17.
To investigate the contribution of amino acid residues to the thermostability of phospholipase D (PLD), a chimeric form of two Streptomyces PLDs (thermolabile K1PLD and thermostable TH-2PLD) was constructed. K/T/KPLD, in which residues 329–441 of K1PLD were recombined with the homologous region of TH-2PLD, showed a thermostability midway between those of K1PLD and TH-2PLD. By comparing the primary structures of Streptomyces PLDs, the seven candidates of thermostability-related amino acid residues of K1PLD were identified. The K1E346DPLD mutant, in which Glu346 of K1PLD was substituted with Asp by site-directed mutagenesis, exhibited enhanced thermostability, which was almost the same as that of TH-2PLD.  相似文献   

18.
Phospholipase D (PLD, EC 3.1.4.4.) has been implicated in a variety of plant processes, including signalling. In Arabidopsis thaliana a PLD gene family has been described and individual members classified into alpha-, beta- and gamma-classes. Here we describe a second PLD gene family in tomato (Lycopersicon esculentum) that includes three alpha- and two beta-classes. Different expression patterns in plant organs were observed for each PLD. In testing a variety of stress treatments on tomato cell suspensions, PLDbeta1 mRNA was found to rapidly and specifically accumulate in response to the fungal elicitor xylanase. The greatest increase was found 2 h after treatment with 100 microg m1(-1) xylanase (ninefold). In vivo PLD activity increased nearly threefold over a 1.5 h period of treatment. When the elicitor was injected into tomato leaves, PLDbeta1 mRNA accumulation peaked at 2 h (threefold increase), before decreasing to background levels within 72 h. Mutant, non-active xylanase was as effective as the active enzyme in eliciting a response, suggesting that xylanase itself, and not the products resulting from its activity, functioned as an elicitor. When chitotetraose was used as elicitor, no PLDbeta1 mRNA accumulation was observed, thus it is not a general response to elicitation. Together these data show that PLD genes are differentially regulated, reflecting potential differences in cellular function. The possibility that PLDbeta1 is a signalling enzyme is discussed.  相似文献   

19.
Phospholipase D (PLD) catalyses the hydrolysis of phosphatidylcholine to generate phosphatidic acid and choline. Historically, much PLD work has been conducted in mammalian settings although genes encoding enzymes of this family have been identified in all eukaryotic organisms. Recently, important insights on PLD function are emerging from work in yeast, but much less is known about PLD in other organisms. In this review we will summarize what is known about phospholipase D in several model organisms, including C. elegans, D. discoideum, D. rerio and D. melanogaster. In the cases where knockouts are available (C. elegans, Dictyostelium and Drosophila) the PLD gene(s) appear not to be essential for viability, but several studies are beginning to identify pathways where this activity has a role. Given that the proteins in model organisms are very similar to their mammalian counterparts, we expect that future studies in model organisms will complement and extend ongoing work in mammalian settings. At the end of this review we will also provide a short update on phosphatidic acid targets, a topic last reviewed in 2006.  相似文献   

20.
Phospholipase D (PLD) is capable of hydrolyzing membrane phospholipids, producing phosphatidic acid. To alter phospholipid profiles in soybean seed, we attenuated PLD enzyme activity by an RNA interference construct using the partial sequence from a soybean PLDα gene. Two transgenic soybean lines were established by particle inflow gun (PIG) bombardment by co‐bombarding with pSPLDi and pHG1 vectors. The lines were evaluated for the presence and expression of transgenes thoroughly through the T4 generation. PLD‐suppressed soybean lines were characterized by decreased PLDα enzyme activity and decreased PLDα protein both during seed development and in mature seeds. There was no change in total phospholipid amount; however, the PLD‐attenuated transgenic soybean seed had higher levels of di18 : 2 (dilinoleoyl)‐phosphatidylcholine (PC) and ‐phosphatidylethanolamine (PE) in seeds than the non‐transgenic lines. The increased polyunsaturation was at the expense of PC and PE species containing monounsaturated or saturated fatty acids. In addition to increased unsaturation in the phospholipids, there was a decrease in unsaturation of the triacylglycerol (TAG) fraction of the soybean seeds. Considering recent evidence for the notion that desaturation of fatty acids occurs in the PC fraction and that the PC → DAG (diacylglycerol) → TAG pathway is the major route of TAG biosynthesis in developing soybean seed, the current data suggest that PLDα suppression slows the conversion of PC to TAG. This would be consistent with PLD playing a positive role in that conversion. The data indicate that soybean PLD attenuation is a potentially useful approach to altering properties of edible and industrial soybean lecithin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号