首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the enzymatic hydrolysis of solutions and emulsions of vinyl propionate, vinyl butyrate and tripropionin by lipases of various origin and specificity. Kinetic studies of the hydrolysis of short-chain substrates by microbial triacylglycerol lipases from Rhizopus oryzae, Mucor miehei, Candida rugosa, Candida antarctica A and by (phospho)lipase from guinea-pig pancreas show that these lipolytic enzymes follow the Michaelis-Menten model. Surprisingly, the activity against solutions of tripropionin and vinyl esters ranges from 70% to 90% of that determined against emulsions. In contrast, a non-hyperbolic (sigmoidal) dependence of enzyme activity on ester concentration is found with human pancreatic lipase, triacylglycerol lipase from Humicola lanuginosa (Thermomyces lanuginosa) and partial acylglycerol lipase from Penicillium camembertii and the same substrates. In all cases, no abrupt jump in activity (interfacial activation) is observed at substrate concentration corresponding to the solubility limit of the esters. Maximal lipolytic activity is always obtained in the presence of emulsified ester. Despite progress in the understanding of structure-function of lipases, interpretation of the mode of action of lipases active against solutions of short-chain substrates remains difficult. Actually, it is not known whether these enzymes, which possess a lid structure, are in open or/and closed conformation in the bulk phase and whether the opening of the lid that gives access to the catalytic triad is triggered by interaction of the enzyme molecule with monomeric substrates or/and multimolecular aggregates (micelles) both present in the bulk phase. From the comparison of the behaviour of lipases used in this study which, in some cases, follow the Michaelis-Menten model and, in others, deviate from classical kinetics, it appears that the activity of classical lipases against soluble short-chain vinyl esters and tripropionin depends not only on specific interaction with single substrate molecules at the catalytic site of the enzyme but also on physico-chemical parameters related to the state of association of the substrate dispersed in the aqueous phase. It is assumed that the interaction of lipase with soluble multimolecular aggregates of tripropionin or short-chain vinyl esters or the formation of enzyme-substrate mixed micelles with ester bound to lipase, might represent a crucial step that triggers the structural transition to the open enzyme conformation by displacement of the lid.  相似文献   

2.
The homologous lipases fromRhizomucor miehei andHumicola lanuginosa showed approximately the same enantioselectivity when 2-methyldecanoic acid esters were used as substrates. Both lipases preferentially hydrolyzed theS-enantiomer of 1-heptyl 2-methyldecanoate (R. miehei:E S =8.5;H. lanuginosa:E S =10.5), but theR-enantiomer of phenyl 2-methyldecanoate (E R =2.9). Chemical arginine specific modification of theR. miehei lipase with 1,2-cyclohexanedione resulted in a decreased enantioselectivity (E R =2.0), only when the phenyl ester was used as a substrate. In contrast, treatment with phenylglyoxal showed a decreased enantioselectivity (E S =2.5) only when the heptyl ester was used as a substrate. The presence of guanidine, an arginine side chain analog, decreased the enantioselectivity with the heptyl ester (E S =1.9) and increased the enantioselectivity with the aromatic ester (E R =4.4) as substrates. The mutation, Glu 87 Ala, in the lid of theH. lanuginosa lipase, which might decrease the electrostatic stabilization of the open-lid conformation of the lipase, resulted in 47% activity compared to the native lipase, in a tributyrin assay. The Glu 87 Ala mutant showed an increased enantioselectivity with the heptyl ester (E S =17.4) and a decreased enantioselectivity with the phenyl ester (E R =2.5) as substrates, compared to native lipase. The enantioselectivities of both lipases in the esterification of 2-methyldecanoic acid with 1-heptanol were unaffected by the lid modifications.  相似文献   

3.
To reveal the functional role of Glu87 and Trp89 in the lid ofHumicola lanuginosa lipase, site-directed mutagenesis at Glu87 and Trp89 was carried out. The catalytic performance of wild-type and mutated lipases was studied in transesterification reactions in cyclohexane at a controlled water activity. Two different acyl donors were used in the investigation: tributyrin, a natural substrate for a lipase, and vinyl butyrate, an activated ester suitable for fast and efficient lipase-catalyzed transformations in preparative organic synthesis. As acyl acceptor 1-heptanol was used. The Glu87Ala mutation decreased theV max,app value with tributyrin and vinyl butyrate by a factor of 1.5 and 2, respectively. TheK m,app for tributyrin was not affected by the Glu87Ala mutation, but theK m,app for vinyl butyrate increased twofold compared to the wild-type lipase. Changing Trp89 into a Phe residue afforded an enzyme with a 2.7- and 2-fold decreasedV max,app with the substrates tributyrin and vinyl butyrate, respectively, compared to the wild-type lipase. No significant effects on theK m,app values for tributyrin or vinyl butyrate were seen as a result of the Trp89Phe mutation. However, the introduction of a Glu residue at position 89 in the lid increased theK m,app for tributyrin and vinyl butyrate by a factor of >5 and 2, respectively. The Trp89Glu mutated lipase could not be saturated with tributyrin within the experimental conditions (0–680 mM) studied here. With vinyl butyrate as a substrate theV max,app was only 6% of that obtained with wild-type enzyme.  相似文献   

4.
Hormone-sensitive lipase (HSL) is thought to contribute importantly to the mobilization of fatty acids from the triacylglycerols (TAGs) stored in adipocytes, providing the main source of energy in mammals. To investigate the HSL substrate specificity more closely, we systematically assessed the lipolytic activity of recombinant human HSL on solutions and emulsions of various vinyl esters and TAG substrates, using the pH-stat assay technique. Recombinant human HSL activity on solutions of partly soluble vinyl esters or TAG was found to range from 35 to 90% of the maximum activity measured with the same substrates in the emulsified state. The possible existence of a lipid-water interface due to the formation of small aggregates of vinyl esters or TAG in solution may account for the HSL activity observed below the solubility limit of the substrate. Recombinant human HSL also hydrolyzes insoluble medium- and long-chain acylglycerols such as trioctanoylglycerol, dioleoylglycerol, and olive oil, and can therefore be classified as a true lipase. Preincubation of the recombinant HSL with a serine esterase inhibitor such as diethyl p-nitrophenyl phosphate in 1:100 molar excess leads to complete HSL inhibition within 15 min. This result indicates that the catalytic serine of HSL is highly reactive and that it is readily accessible. Similar behavior was also observed with lipases with no lid domain covering their active site, or with a deletion in the lid domain. The 3-D structure of HSL, which still remains to be determined, may therefore lack the lid domain known to exist in various other lipases.  相似文献   

5.
The homologous lipases fromRhizomucor miehei andHumicola lanuginosa showed approximately the same enantioselectivity when 2-methyldecanoic acid esters were used as substrates. Both lipases preferentially hydrolyzed theS-enantiomer of 1-heptyl 2-methyldecanoate (R. miehei:E S =8.5;H. lanuginosa:E S =10.5), but theR-enantiomer of phenyl 2-methyldecanoate (E R =2.9). Chemical arginine specific modification of theR. miehei lipase with 1,2-cyclohexanedione resulted in a decreased enantioselectivity (E R =2.0), only when the phenyl ester was used as a substrate. In contrast, treatment with phenylglyoxal showed a decreased enantioselectivity (E S =2.5) only when the heptyl ester was used as a substrate. The presence of guanidine, an arginine side chain analog, decreased the enantioselectivity with the heptyl ester (E S =1.9) and increased the enantioselectivity with the aromatic ester (E R =4.4) as substrates. The mutation, Glu 87 Ala, in the lid of theH. lanuginosa lipase, which might decrease the electrostatic stabilization of the open-lid conformation of the lipase, resulted in 47% activity compared to the native lipase, in a tributyrin assay. The Glu 87 Ala mutant showed an increased enantioselectivity with the heptyl ester (E S =17.4) and a decreased enantioselectivity with the phenyl ester (E R =2.5) as substrates, compared to native lipase. The enantioselectivities of both lipases in the esterification of 2-methyldecanoic acid with 1-heptanol were unaffected by the lid modifications.  相似文献   

6.
To reveal the functional role of Glu87 and Trp89 in the lid ofHumicola lanuginosa lipase, site-directed mutagenesis at Glu87 and Trp89 was carried out. The catalytic performance of wild-type and mutated lipases was studied in transesterification reactions in cyclohexane at a controlled water activity. Two different acyl donors were used in the investigation: tributyrin, a natural substrate for a lipase, and vinyl butyrate, an activated ester suitable for fast and efficient lipase-catalyzed transformations in preparative organic synthesis. As acyl acceptor 1-heptanol was used. The Glu87Ala mutation decreased theV max,app value with tributyrin and vinyl butyrate by a factor of 1.5 and 2, respectively. TheK m,app for tributyrin was not affected by the Glu87Ala mutation, but theK m,app for vinyl butyrate increased twofold compared to the wild-type lipase. Changing Trp89 into a Phe residue afforded an enzyme with a 2.7- and 2-fold decreasedV max,app with the substrates tributyrin and vinyl butyrate, respectively, compared to the wild-type lipase. No significant effects on theK m,app values for tributyrin or vinyl butyrate were seen as a result of the Trp89Phe mutation. However, the introduction of a Glu residue at position 89 in the lid increased theK m,app for tributyrin and vinyl butyrate by a factor of >5 and 2, respectively. The Trp89Glu mutated lipase could not be saturated with tributyrin within the experimental conditions (0–680 mM) studied here. With vinyl butyrate as a substrate theV max,app was only 6% of that obtained with wild-type enzyme.  相似文献   

7.
To differentiate esterases from lipases at the structure–function level, we have compared the kinetic properties and structural features of sequence-related esterase 1 from rabbit liver (rLE) and bile-salt-activated lipase from bovine pancreas (bBAL). In contrast to rLE, bBAL hydrolyses water-insoluble medium and long chain esters as vinyl laurate, trioctanoin and olive oil. Conversely, rLE and bBAL are both active on water-soluble short chain esters as vinyl acetate, vinyl propionate, vinyl butyrate, tripropionin, tributyrin and p-nitrophenyl butyrate. However, the enzymes show distinctive kinetic behaviours. rLE displays maximal activity at low substrate concentration, below the critical micelle concentration, whereas bBAL acts preferencially on emulsified esters, at concentration exceeding the solubility limit. Comparison of the 3D structures of rLE and bBAL shows, in particular, that the peptide loop at positions 116–123 in bBAL is deleted in rLE. This peptide segment interacts with a bile salt molecule thus inducing a conformational transition which gives access to the active site. Inhibition studies and manual docking of a bulky ester molecule as vinyl laurate in the catalytic pocket of rLE and bBAL show that the inability of the esterase to hydrolyse large water-insoluble esters is not due to steric hindrance. It is hypothesized that esterases lack specific hydrophobic structures involved both in the stabilization of the lipase–lipid adsorption complex at interfaces and in the spontaneous transfer of a single substrate molecule from interface to the catalytic site.  相似文献   

8.
We report the 1.7 Å resolution crystal structure of the Lip2 lipase from Yarrowia lipolytica in its closed conformation. The Lip2 structure is highly homologous to known structures of the fungal lipase family (Thermomyces lanuginosa, Rhizopus niveus, and Rhizomucor miehei lipases). However, it also presents some unique features that are described and discussed here in detail. Structural differences, in particular in the conformation adopted by the so-called lid subdomain, suggest that the opening mechanism of Lip2 may differ from that of other fungal lipases. Because the catalytic activity of lipases is strongly dependent on structural rearrangement of this mobile subdomain, we focused on elucidating the molecular mechanism of lid motion. Using the x-ray structure of Lip2, we carried out extensive molecular-dynamics simulations in explicit solvent environments (water and water/octane interface) to characterize the major structural rearrangements that the lid undergoes under the influence of solvent or upon substrate binding. Overall, our results suggest a two-step opening mechanism that gives rise first to a semi-open conformation upon adsorption of the protein at the water/organic solvent interface, followed by a further opening of the lid upon substrate binding.  相似文献   

9.
Biochemical and molecular characterization of Staphylococcus xylosus lipase   总被引:1,自引:0,他引:1  
The Staphylococcus xylosus strain secretes a non-induced lipase in culture medium: S. xylosus lipase (SXL). Pure SXL is a monomeric protein (43 kDa). The 23 N-terminal amino acid residues were sequenced. This sequence is identical to that of Staphylococcus simulans lipase (SSL); in addition, it exhibits a high degree of homology with Staphylococcus aureus lipase (SAL NCTC 8530) sequences. The cloning and sequencing of gene part encoding the mature lipase shows one nucleotide difference with SSL, which corresponds to the change of one residue at a position 311. The lipase activity is maximal at pH 8.2 and 45 degrees C. SXL is able to hydrolyse triacylglycerols without chain length specificity. The specific activity of about 1900 U/mg was measured using tributyrin or triolein as substrate at pH 8.2 and at 45 degrees C in the presence of 2 mM CaCl2. In contrast to some previously characterized staphylococcal lipases, Ca2+ is not required to trigger the activity of SXL. SXL was found to be stable between pH 5 and pH 8.5. The enzyme maintains 50% of its activity after a 15-min incubation at 60 degrees C. Using tripropionin or vinyl esters as substrates, SXL does not present the interfacial activation phenomenon. Unlike many lipases, SXL is able to hydrolyse its substrate in the presence of bile salts or amphiphilic proteins. SXL is a serine enzyme, which is inhibited by THL.  相似文献   

10.
In most lipases, a mobile lid covers the substrate binding site. In this closed structure, the lipase is assumed to be inactive. Upon activation of the lipase by contact with a hydrophobic solvent or at a hydrophobic interface, the lid opens. In its open structure, the substrate binding site is accessible and the lipase is active. The molecular mechanism of this interfacial activation was studied for three lipases (from Candida rugosa, Rhizomucor miehei, and Thermomyces lanuginosa) by multiple molecular dynamics simulations for 25 ns without applying restraints or external forces. As initial structures of the simulations, the closed and open structures of the lipases were used. Both the closed and the open structure were simulated in water and in an organic solvent, toluene. In simulations of the closed lipases in water, no conformational transition was observed. However, in three independent simulations of the closed lipases in toluene the lid gradually opened. Thus, pathways of the conformational transitions were investigated and possible kinetic bottlenecks were suggested. The open structures in toluene were stable, but in water the lid of all three lipases moved towards the closed structure and partially unfolded. Thus, in all three lipases opening and closing was driven by the solvent and independent of a bound substrate molecule.  相似文献   

11.
The cold-adapted Pseudomonas fragi lipase (PFL) displays highest activity on short-chain triglyceride substrates and is rapidly inactivated at moderate temperature. Sequence and structure comparison with homologous lipases endowed with different substrate specificity and stability, pointed to three polar residues in the lid region, that were replaced with the amino acids conserved at equivalent positions in the reference lipases. Substitutions at residues T137 and T138 modified the lipase chain-length preference profile, increasing the relative activity towards C8 substrates. Moreover, mutations conferred to PFL higher temperature stability. On the other hand, replacement of the serine at position 141 by glycine destabilized the protein.  相似文献   

12.
Lipases (EC 3.1.1.3) are ubiquitous hydrolases for the carboxyl ester bond of water-insoluble substrates, such as triacylglycerols, phospholipids, and other insoluble substrates, acting in aqueous as well as in low-water media, thus being of considerable physiological significance with high interest also for their industrial applications. The hydrolysis reaction follows a two-step mechanism, or “interfacial activation,” with adsorption of the enzyme to a heterogeneous interface and subsequent enhancement of the lipolytic activity. Among lipases, Candida antarctica lipase B (CALB) has never shown any significant interfacial activation, and a closed conformation of CALB has never been reported, leading to the conclusion that its behavior was due to the absence of a lid regulating the access to the active site. The lid open and closed conformations and their protonation states are observed in the crystal structure of CALB at 0.91 Å resolution. Having the open and closed states at atomic resolution allows relating protonation to the conformation, indicating the role of Asp145 and Lys290 in the conformation alteration. The findings explain the lack of interfacial activation of CALB and offer new elements to elucidate this mechanism, with the consequent implications for the catalytic properties and classification of lipases.  相似文献   

13.
Labrasol is a lipid-based self-emulsifying excipient used in the preparation of lipophilic drugs intended for oral delivery. It is mainly composed of PEG esters and glycerides with medium acyl chains, which are potential substrates for digestive lipases. The hydrolysis of Labrasol by porcine pancreatic extracts, human pancreatic juice and several purified digestive lipases was investigated in the present study. Classical human pancreatic lipase (HPL) and porcine pancreatic lipase, which are the main lipases involved in the digestion of dietary triglycerides, showed very low levels of activity on the entire Labrasol excipient as well as on separated fractions of glycerides and PEG esters. On the other hand, gastric lipase, pancreatic lipase-related protein 2 (PLRP2) and carboxyl ester hydrolase (CEH) showed high specific activities on Labrasol. These lipases were found to hydrolyze the main components of Labrasol (PEG esters and monoglycerides) used as individual substrates, whereas these esters were found to be poor substrates for HPL. The lipolytic activity of pancreatic extracts and human pancreatic juice on Labrasol(R) is therefore mainly due to the combined action of CEH and PLRP2. These two pancreatic enzymes, together with gastric lipase, are probably the main enzymes involved in the in vivo lipolysis of Labrasol taken orally.  相似文献   

14.
In an effort to explore the feasibility of converting a lipase into an esterase by modifying the lid region, we designed and characterized two novel Rhizopus chinensis lipase variants by lid swapping. The substrate specificity of an R. chinensis lipase was successfully modified toward water-soluble substrates, that is, turned into an esterase, by replacing the hydrophobic lid with a hydrophilic lid from ferulic acid esterase from Aspergillus niger. Meanwhile, as a comparison, the lid of R. chinensis lipase was replaced by a hydrophobic lid from Rhizomucor miehei lipase, which did not alter its substrate specificity but led to a 5.4-fold higher catalytic efficiency (k*cat/K*m) toward p-nitrophenyl laurate. Based on the analysis of structure-function relationships, it suggests that the amphipathic nature of the lid is very important for the substrate specificity. This study provides new insight into the structural basis of lipase specificities and a way to tune the substrate preference of lipases.  相似文献   

15.
Glycerol Ester Hydrolase Activity of Microbacterium thermosphactum   总被引:3,自引:1,他引:2       下载免费PDF全文
Microbacterium thermosphactum possesses a significant glycerol ester hydrolase (lipase, EC 3.1.1.3) activity and a weak but definite carboxylic ester hydrolase (esterase, EC 3.1.1.1) activity. Harvested whole cell preparations contained 53 units of lipase activity with tripropionin as the substrate. This activity decreased with an increasing chain length of fatty acid in the triglyceride to 13 units with trilaurin as the substrate and no activity with tripalmitin. Maximum lipase activity was found at a temperature of 35 to 37 C and at a pH of 7.1 to 7.3. Lipase activity was associated with three different protein peaks when the protein of cell-free extract was fractionated by polyacrylamide gel electrophoresis.  相似文献   

16.
We investigated lipase-catalyzed hydrolysis in water and dioxane—water with a simple colorimetric method. We screened 24 lipases for the ability to hydrolyze p-nitrophenyl esters as chromogenic substrates. Their hydrolytic activities were varied by adding dioxane. Most of the lipases showed high activity in hydrolysis in water, but some showed activity in 50% dioxane—water several tens times higher than those in water. Moreover, several lipases with hydrolytic abilities in 50% dioxane—water also catalyzed the transesterification of p-nitrophenol using fatty acid vinyl esters. We found it possible that a useful lipase for transesterification can be selected by measuring the hydrolysis activity of p-nitrophenyl ester in 50% dioxane—water.  相似文献   

17.
Cutinases belong to the α/β-hydrolase fold family of enzymes and degrade cutin and various esters, including triglycerides, phospholipids and galactolipids. Cutinases are able to degrade aggregated and soluble substrates because, in contrast with true lipases, they do not have a lid covering their catalytic machinery. We report here the structure of a cutinase from the fungus Trichoderma reesei (Tr) in native and inhibitor-bound conformations, along with its enzymatic characterization. A rare characteristic of Tr cutinase is its optimal activity at acidic pH. Furthermore, Tr cutinase, in contrast with classical cutinases, possesses a lid covering its active site and requires the presence of detergents for activity. In addition to the presence of the lid, the core of the Tr enzyme is very similar to other cutinase cores, with a central five-stranded β-sheet covered by helices on either side. The catalytic residues form a catalytic triad involving Ser164, His229 and Asp216 that is covered by the two N-terminal helices, which form the lid. This lid opens in the presence of surfactants, such as β-octylglucoside, and uncovers the catalytic crevice, allowing a C11Y4 phosphonate inhibitor to bind to the catalytic serine. Taken together, these results reveal Tr cutinase to be a member of a new group of lipolytic enzymes resembling cutinases but with kinetic and structural features of true lipases and a heightened specificity for long-chain triglycerides.  相似文献   

18.
Growth of Pseudomonas sp. 42A2 on oleic acid releases polymerized hydroxy-fatty acids as a result of several enzymatic conversions that could involve one or more lipases. To test this hypothesis, the lipolytic system of strain Pseudomonas sp. 42A2 was analyzed, revealing the presence of at least an intracellular carboxylesterase and a secreted lipase. Consensus primers derived from a conserved region of bacterial lipase subfamilies I.1 and I.2 allowed isolation of two secreted lipase genes, lipA and lipC, highly homologous to those of Pseudomonas aeruginosa PAO1. Homologous cloning of the isolated lipA and lipC genes was performed in Pseudomonas sp. 42A2 for LipA and LipC over-expression. The overproduced lipases were further purified and characterized, both showing preference for medium fatty acid chain-length substrates. However, significant differences could be detected between LipA and LipC in terms of enzyme kinetics and behaviour pattern. Accordingly, LipA showed maximum activity at moderate temperatures, and displayed a typical Michaelis–Menten kinetics. On the contrary, LipC was more active at low temperatures and displayed partial interfacial activation, showing a shift in substrate specificity when assayed at different temperatures, and displaying increased activity in the presence of certain heavy metal ions. The versatile properties shown by LipC suggest that this lipase could be expressed in response to variable environmental conditions.  相似文献   

19.
We have studied the kinetics of hydrolysis of triacylglycerols, vinyl esters and p-nitrophenyl butyrate by four carboxylesterases of the HSL family, namely recombinant human hormone-sensitive lipase (HSL), EST2 from Alicyclobacillus acidocaldarius, AFEST from Archeoglobus fulgidus, and protein RV1399C from Mycobacterium tuberculosis. The kinetic properties of enzymes of the HSL family have been compared to those of a series of lipolytic and non-lipolytic carboxylesterases including human pancreatic lipase, guinea pig pancreatic lipase related protein 2, lipases from Mucor miehei and Thermomyces lanuginosus, cutinase from Fusarium solani, LipA from Bacillus subtilis, porcine liver esterase and Esterase A from Aspergilus niger. Results indicate that human HSL, together with other lipolytic carboxylesterases, are active on short chain esters and hydrolyze water insoluble trioctanoin, vinyl laurate and olive oil, whereas the action of EST2, AFEST, protein RV1399C and non-lipolytic carboxylesterases is restricted to solutions of short chain substrates. Lipolytic and non-lipolytic carboxylesterases can be differentiated by their respective value of K(0.5) (apparent K(m)) for the hydrolysis of short chain esters. Among lipolytic enzymes, those possessing a lid domain display higher activity on tributyrin, trioctanoin and olive oil suggesting, then, that the lid structure contributes to enzyme binding to triacylglycerols. Progress reaction curves of the hydrolysis of p-nitrophenyl butyrate by lipolytic carboxylesterases with lid domain show a latency phase which is not observed with human HSL, non-lipolytic carboxylesterases, and lipolytic enzymes devoid of a lid structure as cutinase.  相似文献   

20.
The key to enzyme function is the maintenance of an appropriate balance between molecular stability and structural flexibility. The lid domain which is very important for “interfacial activation” is the most flexible part in the lipase structure. In this work, rational design was applied to explore the relationship between lid rigidity and lipase activity by introducing a disulfide bond in the hinge region of the lid, in the hope of improving the thermostability of R. chinensis lipase through stabilization of the lid domain without interfering with its catalytic performance. A disulfide bridge between F95C and F214C was introduced into the lipase from R. chinensis in the hinge region of the lid according to the prediction of the “Disulfide by Design” algorithm. The disulfide variant showed substantially improved thermostability with an eleven-fold increase in the t 1/2 value at 60°C and a 7°C increase of T m compared with the parent enzyme, probably contributed by the stabilization of the geometric structure of the lid region. The additional disulfide bond did not interfere with the catalytic rate (k cat) and the catalytic efficiency towards the short-chain fatty acid substrate, however, the catalytic efficiency of the disulfide variant towards pNPP decreased by 1.5-fold probably due to the block of the hydrophobic substrate channel by the disulfide bond. Furthermore, in the synthesis of fatty acid methyl esters, the maximum conversion rate by RCLCYS reached 95% which was 9% higher than that by RCL. This is the first report on improving the thermostability of the lipase from R. chinensis by introduction of a disulfide bond in the lid hinge region without compromising the catalytic rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号