首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Glucosinolates are sulphur‐containing secondary metabolites characteristic of Brassicaceous plants. Glucosinolate breakdown products, which include isothiocyanates, are released following tissue damage when hydrolytic enzymes act on them. The isothiocyanates have toxic effects on generalist herbivores when they attempt to feed on oilseed rape, Brassica napus, and also function as repellents. However, specialist herbivores such as Brevicoryne brassicae aphids, flea beetles, Psylliodes chrysocephala and the Lepidopteran pest, Pieris rapae, are adapted to the presence of glucosinolates and thrive on plants containing them. They may do this by avoiding tissue damage to prevent the formation of isothiocyanates or by metabolising or tolerating glucosinolates. For many specialist herbivores, the isothiocyanates function as attractants and glucosinolates can even be sequestered for defence against predatory insects. Thus, these herbivores have evolved resistance to host‐plant secondary metabolites and this type of evolutionary history may have given some insects an enhanced ability to adapt to xenobiotics. In an agricultural context, this may make pests better able to evolve resistance to artificially applied pesticides. The effect of increased glucosinolate content in making oilseed rape cultivars more susceptible to specialist pests was highlighted in a seminal article in the Annals of Applied Biology in 1995. This review of the literature considers developments in this area since then.  相似文献   

2.
Seedlings of nine commercial cultivars of oilseed rape were exposed to the field slug Deroceras reticulatum immediately after sowing in compost in trays. There was a small reduction in seedling numbers in the presence of slugs which was not related to glucosinolate concentration in seeds or seedlings. However, the number and leaf-area of seedlings with damage symptoms were strongly and inversely related to the total concentration of glucosinolates in seeds and one wk-old seedlings. The presence of barley seedlings as alternative food did not significantly affect this relationship. The glucosinolate concentration of seeds was closely correlated with that of wk-old seedlings. Analysis of individual glucosinolates in four cultivars spanning the range of concentrations found, showed that the concentration of most components declined as total glucosinolate concentration decreased. However, 2-phenyl ethyl-glucosinolate (gluconasturtiin) concentration tended to increase in seeds and 3-indolyl methyl-glucosinolate (glucobrassicin) increased in seedlings as total glucosinolate concentration decreased. Damage by slugs was inversely related to the concentration of those glucosinolates which decreased and was positively correlated with the two compounds which increased as total glucosinolate concentration decreased. The results support the hypothesis that glucosinolates in brassicas protect them from polyphagous herbivores, and, in particular, that an important function of glucosinolates in rape seeds is to protect seedlings from slugs. As glucosinolate concentrations of oilseed rape cultivars continue to decline, so the risk of slug damage to seedlings may well increase.  相似文献   

3.
The glucosinolate content of leaves, stems and roots of a range of Chinese oilseed rape (Brassica napus L.) breeding lines was analysed. Total content and spectrum of individual glucosinolates varied widely, and there was no correlation between seed and vegetative tissue glucosinolate content. Lines with low seed glucosinolates (00) did not necessarily have low glucosinolate content in vegetative tissues; nor did high seed glucosinolate lines always have high vegetative tissue content. There was no correlation between the glucosinolate content of leaf, stem, and root in any given line. It appears that glucosinolate synthesis and accumulation is under tissue-specific control, and the mutation which blocks accumulation of glucosinolates in seeds does not influence other tissues. The responses of these lines to elicitors was also examined. Methyl jasmonate and salicylic acid treatments produced increases in leaf indolyl and aromatic glucosinolates respectively. However, the extent of such increases differed widely between the lines, and there were other, less consistent, effects on other classes of glucosinolate. There seems to be greater variation in glucosinolate accumulation in rape than has previously been reported, and the lines described here have considerable potential for evaluating the effects of manipulating glucosinolate profiles on pest and disease interactions.  相似文献   

4.
Winter turnip rape Brassica rapa ssp. oleifera was shown to have reduced palatability to woodpigeons, enhanced susceptibility to adult flea beetle feeding and reduced susceptibility to larval flea-beetle infection when compared with winter oilseed rape (B. napus) cultivars in field trials. Levels of leaf waxes were negatively correlated with feeding preferences of adult flea beetles. Analysis of volatiles from damaged leaves showed that while all cultivars produce a similar range of nitriles, cyanoepithioalkanes and isothiocyanates, derived from 3-butenyl, 4-pentenyl and phenylethyl glucosinolates, B. rapa leaves produced relatively high levels of 1-methylpropyl isothiocyanate, although there was significant plant-to-plant variation. The possible involvement of this mustard oil glycoside and variation in epicuticular waxes in plant-herbivore interactions are discussed.  相似文献   

5.
6.
Agar was used as an artificial substrate to investigate the feeding behaviour of the cabbage stem flea beetle,Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae), an important pest of winter oilseed rape (Brassica napus) in Europe. Both glucosinolates and sugars stimulated feeding when added to agar. The amount of feeding that occurred was affected by the type and concentration of glucosinolate and surgar and also by combinations of components. Although glucosinolates were potent feeding stimulants forP. chrysocephala, they were not a prerequisite for feeding, nor does it seem likely that glucosinolate profiles are used by this species to discriminate amongst cruciferous plants at the gustatory level.  相似文献   

7.
Glucosinolates are plant secondary compounds involved in direct chemical defence by cruciferous plants against herbivores. The glucosinolate profile can be affected by abiotic and biotic environmental stimuli. We studied changes in glucosinolate patterns in leaves of non-transgenic oilseed rape (Brassica napus ssp. oleifera) under elevated atmospheric CO2 or ozone (O3) concentrations and compared them with those from transgenic for herbivore-resistance (Bacillus thuringiensis Cry1Ac endotoxin), to assess herbivory dynamics. Both elevated CO2 and O3 levels decreased indolic glucosinolate concentrations in transgenic and non-transgenic lines, whereas O3 specifically increased the concentration of an aromatic glucosinolate, 2-phenylethylglucosinolate. The herbivore-inducible indolic glucosinolate response was reduced in elevated O3 whereas elevated CO2 altered the induction dynamics of indolic and aliphatic glucosinolates. Herbivore-resistant Bt plants experienced minimal leaf damage after target herbivore Plutella xylostella feeding, but exhibited comparatively similar increase in glucosinolate concentrations after herbivory as non-transgenic plants, indicating that the endogenous glucosinolate defence was not severely compromised by transgenic modifications. The observed differences in constitutive and inducible glucosinolate concentrations of oilseed rape under elevated atmospheric CO2 and O3 might have implications for plant–herbivore interactions in Brassica crop-ecosystems in future climate scenarios.  相似文献   

8.
Plant secondary metabolites are known to facilitate interactions with a variety of beneficial and detrimental organisms, yet the contribution of specific metabolites to interactions with fungal pathogens is poorly understood. Here we show that, with respect to aliphatic glucosinolate‐derived isothiocyanates, toxicity against the pathogenic ascomycete Sclerotinia sclerotiorum depends on side chain structure. Genes associated with the formation of the secondary metabolites camalexin and glucosinolate were induced in Arabidopsis thaliana leaves challenged with the necrotrophic pathogen S. sclerotiorum. Unlike S. sclerotiorum, the closely related ascomycete Botrytis cinerea was not identified to induce genes associated with aliphatic glucosinolate biosynthesis in pathogen‐challenged leaves. Mutant plant lines deficient in camalexin, indole, or aliphatic glucosinolate biosynthesis were hypersusceptible to S. sclerotiorum, among them the myb28 mutant, which has a regulatory defect resulting in decreased production of long‐chained aliphatic glucosinolates. The antimicrobial activity of aliphatic glucosinolate‐derived isothiocyanates was dependent on side chain elongation and modification, with 8‐methylsulfinyloctyl isothiocyanate being most toxic to S. sclerotiorum. This information is important for microbial associations with cruciferous host plants and for metabolic engineering of pathogen defenses in cruciferous plants that produce short‐chained aliphatic glucosinolates.  相似文献   

9.
Breeding of oilseed rape (Brassica napus ssp. napus) has evoked a strong bottleneck selection towards double-low (00) seed quality with zero erucic acid and low seed glucosinolate content. The resulting reduction of genetic variability in elite 00-quality oilseed rape is particularly relevant with regard to the development of genetically diverse heterotic pools for hybrid breeding. In contrast, B. napus genotypes containing high levels of erucic acid and seed glucosinolates (++ quality) represent a comparatively genetically divergent source of germplasm. Seed glucosinolate content is a complex quantitative trait, however, meaning that the introgression of novel germplasm from this gene pool requires recurrent backcrossing to avoid linkage drag for high glucosinolate content. Molecular markers for key low-glucosinolate alleles could potentially improve the selection process. The aim of this study was to identify potentially gene-linked markers for important seed glucosinolate loci via structure-based allele-trait association studies in genetically diverse B. napus genotypes. The analyses included a set of new simple-sequence repeat (SSR) markers whose orthologs in Arabidopsis thaliana are physically closely linked to promising candidate genes for glucosinolate biosynthesis. We found evidence that four genes involved in the biosynthesis of indole, aliphatic and aromatic glucosinolates might be associated with known quantitative trait loci for total seed glucosinolate content in B. napus. Markers linked to homoeologous loci of these genes in the paleopolyploid B. napus genome were found to be associated with a significant effect on the seed glucosinolate content. This example shows the potential of Arabidopsis-Brassica comparative genome analysis for synteny-based identification of gene-linked SSR markers that can potentially be used in marker-assisted selection for an important trait in oilseed rape. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Concerns about the negative effects of chemical control of oilseed rape (Brassica napus L.) pests on non-target species, human safety, and development of insecticide resistance, require alternative control strategies such as the use of trap crops and biocontrol to be developed. Psylliodes chrysocephala(L.) (Coleoptera: Chrysomelidae) (cabbage stem flea beetle) and Ceutorhynchus pallidactylus (Marsh.) (Coleoptera: Curculionidae) (cabbage stem weevil) are two major stem-mining pests of oilseed rape. This study investigated the phenology of these pests and their main parasitoids in the UK, the potential use of turnip rape (Brassica rapa L.) as a trap crop to reduce oilseed rape infestation, and the effects of insecticide treatment on pest incidence and larval parasitism. Water trap samples, plant dissections and pest larval dissections were done to determine: the incidence of adult pests and their parasitoids, the level of plant infestation by the pests and percentage larval parasitism, respectively. The turnip rape trap crop borders reduced P. chrysocephalabut not C. pallidactylus infestation of oilseed rape plots. Treatment of the trap crop with insecticide had little effect on either pest or parasitoid incidence in the oilseed rape. TersilochusmicrogasterSzép. andT. obscurator Aub. (Hymenoptera: Ichneumonidae) were the main larval parasitoids of P. chrysocephalaand C. pallidactylus, respectively. Tersilochus microgasteris reported for the first time in the UK. The implications for integrated pest management are discussed.  相似文献   

11.
The cabbage stem flea beetle (CSFB), Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae), is one of the most important pests in European winter oilseed rape production. Adult beetles feed on young leaves whereas larvae mine within the petioles and stems. Larval infestation can cause significant crop damage. In this study, the host quality for CSFB of four oilseed rape (Brassica napus L.) cultivars and seven other brassicaceous species with different glucosinolate (GSL) profiles was assessed under controlled conditions. Larval instar weights and mortality were measured after 14 and 21 days of feeding in the petioles of test plants. To study the impact of GSL on the performance of larvae, the GSL contents in petioles from non-infested and infested plants were analysed before, and 21 days after, the start of larval infestation. Larval performance was not significantly different between the four cultivars of oilseed rape, but differed considerably among the other brassicaceous species tested. In comparison to the weight of larvae in the standard B. napus cv. Robust, the larval weight was higher in turnip rape (Brassica rapa L. var. silvestris) and significantly reduced in white mustard (Sinapis alba L.), oil radish (Raphanus sativa L. var. oleiformis), and cabbage (Brassica oleracea L. convar. capitata var. alba). The duration of larval development increased in white mustard and oilseed radish. The GSL profiles of the petioles showed little difference between non-infested and infested plants of oilseed rape whereas the content of aliphatic GSL increased in the infested turnip rape plants. In contrast, the aliphatic and benzenic GSL decreased in infested Indian rape (B. rapa subsp. dichotoma Roxb.). Larval weight was not correlated with the total GSL content of plants, neither before infestation nor 21 days after. Larval weight was positively correlated with progoitrin and 4-hydroxyglucobrassicin. White mustard, which provides inferior host quality for larval development, has the potential to introduce insect resistance into high-yielding oilseed rape cultivars in breeding programmes.  相似文献   

12.
Although slugs and snails play important roles in terrestrial ecosystems and cause considerable damage on a variety of crop plants, knowledge about the mechanisms of plant immunity to molluscs is limited. We found slugs to be natural herbivores of Arabidopsis thaliana and therefore investigated possible resistance mechanisms of this species against several molluscan herbivores. Treating wounded leaves with the mucus residue (‘slime trail’) of the Spanish slug Arion lusitanicus increased wound‐induced jasmonate levels, suggesting the presence of defence elicitors in the mucus. Plants deficient in jasmonate biosynthesis and signalling suffered more damage by molluscan herbivores in the laboratory and in the field, demonstrating that JA‐mediated defences protect A. thaliana against slugs and snails. Furthermore, experiments using A. thaliana mutants with altered levels of specific glucosinolate classes revealed the importance of aliphatic glucosinolates in defending leaves and reproductive structures against molluscs. The presence in mollusc faeces of known and novel metabolites arising from glutathione conjugation with glucosinolate hydrolysis products suggests that molluscan herbivores actively detoxify glucosinolates. Higher levels of aliphatic glucosinolates were found in plants during the night compared to the day, which correlated well with the nocturnal activity rhythms of slugs and snails. Our data highlight the function of well‐known antiherbivore defence pathways in resistance against slugs and snails and suggest an important role for the diurnal regulation of defence metabolites against nocturnal molluscan herbivores.  相似文献   

13.
The feeding acceptability of 40 different plants to Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae) was determined using leaf disc consumption tests for the adult, and stem or petiole penetration tests for the larvae. Only plants that contained glucosinolates were accepted as food, but addition of the glucosinolate sinigrin to rejected food plants did not make them acceptable to adults. Of the 34 plants that contained glucosinolates, nine were either totally or mostly rejected. Solvent extracts of the rejected plants applied to oilseed rape inhibited feeding by adults. The feeding of P. chrysocephala within the group of plants tested is influenced by the presence or absence of glucosinolates, which may act as feeding stimulants, and other, unidentified chemicals which act as feeding inhibitors.  相似文献   

14.
New control strategies for insect pests of arable agriculture are needed to reduce current dependence on synthetic insecticides, the use of which is unsustainable. We investigated the potential of a simple control strategy to protect spring‐sown oilseed rape, Brassica napus L. (Brassicaceae), from two major inflorescence pests: the pollen beetle, Meligethes aeneus (Fabricius) (Coleoptera: Nitidulidae), and the seed weevil, Ceutorhynchus assimilis (Paykull) (Coleoptera: Curculionidae), through exploitation of their host plant preferences. The strategy comprised, for the main crop, Starlight [an oilseed rape cultivar with relatively low proportions of alkenyl glucosinolates in the leaves (thereby releasing lower levels of attractive isothiocyanates than conventional cultivars)] and turnip rape, Brassica rapa (L.) (Brassicaceae), as a trap crop. We tested the system in laboratory, polytunnel semifield arena, and field experiments. The odours of Starlight were less attractive in olfactometer tests to both pests than those from a conventional cultivar, Canyon, and the plants were less heavily colonized in both polytunnel and field experiments. Turnip rape showed good potential as a trap crop for oilseed rape pests, particularly the pollen beetle as its odour was more attractive to both pests than that of oilseed rape. Polytunnel and field experiments showed the importance of relative growth stage in the system. As turnip rape flowers earlier than oilseed rape, beetles would be maintained on turnip rape past the damage‐susceptible growth stage of oilseed rape. The development of a pest control regime based on this strategy is discussed.  相似文献   

15.
The first steps in the biosynthesis of glucosinolates and indole-3-acetic acid (IAA) in oilseed rape (Brassica napus L.) and Chinese cabbage (Brassica campestris ssp. pekinensis) involve the formation of aldoximes. In rape the formation of aldoximes from chain-extended amino acids, for aromatic and aliphatic glucosinolate biosynthesis, is catalysed by microsomal flavin-containing monooxygenases. The formation of indole-3-aldoxime from l-tryptophan, the potential precursor of both indole-3-acetic acid and indolyl-glucosinolates, is catalysed by several microsomal peroxidases. The biosynthesis of glucosinolates and indole-3-acetic acid was shown to be under developmental control in oilseed rape and Chinese cabbage. No monooxygenase activities were detected in cotyledons or old leaves of either species. The highest monooxygenase activities were found in young expanding leaves; as the leaves reached full expansion and matured the activities decreased rapidly. The indole-aldoxime-forming activity was found in all of the tissues analysed, but there was also a clear decrease in foliar activity with maturity in leaves of rape and Chinese cabbage. Partial characterisation of the Chinese cabbage monooxygenases showed that they have essentially identical properties to the previously characterised rape enzymes; they are not cytochrome P450-type enzymes, but resemble flavin-containing monooxygenases. No monooxygenase inhibitors were detected in microsomes prepared from either cotyledons or old leaves.Abbreviations DHMet dihomomethionine - FMO flavin-containing monooxygenase - HPhe homophenylalanine - IAA indole-3-acetic acid - l-Phe l-phenylalanine - l-Trp l-tryptophan - MO monooxygenase - IAALD indole-3-acetaldehyde - IAOX indole-3-aldoxime - THMet trihomomethionine  相似文献   

16.
Mechanical wounding of the petioles of six laboratory-grown rapeseed ( Brassica napus ) cultivars induced physiological changes in the plant, markedly affecting the levels of individual glucosinolates. Greatest increases were observed for the indole glucosinolates, glucobrassicin and neoglucobrassicin. Such changes were usually associated with large decreases in the levels of aliphatic glucosinolates. The total glucosinolate content of the wounded plant was thus a reflection of these two opposing trends and wounding produced a greater relative indole glucosinolate content in this total figure. Thus increasing wounding was associated with an increase in indole glucosinolates and a decrease in aliphatic compounds.
Infestation of field- and laboratory-grown rapeseed with cabbage stem flea beetle ( Psylliodes chrysocephala ) produced similar effects, which were observed in various parts of the plant. Differences in response between field- and laboratory-grown infested plants are attributed to the different physiological ages of the harvested material.
Laboratory-grown kale and mustards also showed wound-induced glucosinolate changes. The kale, cv. Fribor, produced elevated levels of both indoles and aliphatics after wounding. Total glucosinolate content in the mustards, which, unlike rape and kale, normally contain only traces of indole glucosinolates in the unstressed state, was increased following wounding. This was, however, not associated with elevated levels of indole glucosinolates, but with accumulation of aliphatic ( Brassica nigra, B. juncea ) and aromatic ( Sinapis alba ) glucosinolates. The significance of these findings is discussed.  相似文献   

17.
18.
35SO2–4 and glucosinolate precursors were administeredto investigate the capacity of oilseed rape intact whole pods,isolated pod walls and seeds to carry out reactions of the glucosinolatebiosynthetic pathway. Pod walls incorporated 35S-label from35SO2–4 into both the thio-glucose and sulphonate-sulphurof glucosinolates. Pulse-labelling experiments showed that podwalls were the predominant source of the glucosinolates accumulatedby the seeds. Isolated immatureseeds were capable of reductiveassimilation of 35SO2–4 and incorporated 35S into sulphur-containingamino acids and the sulphonate moiety of glucosinolates, butwere not able to incorporate 35S into the thio-glucose of glucosinolates. Key words: Biosynthesis, glucosinolates, oilseed rape, pod walls, seeds  相似文献   

19.
20.
Damage to the oilseed rape plant (Brassica napus L.) by the cabbage stem flea beetle, Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae) induces systemic changes to the glucosinolate profile, most noticeably an increase in the concentration of indole glucosinolates. When jasmonic acid was applied to the cotyledons of the plant, a similar effect was observed. Feeding tests with artificial substrates compared a glucosinolate fraction from jasmonic acid-treated plants with a similar fraction from untreated plants. In these tests, alterations to the glucosinolate profile increased the feeding of a crucifer-specialist feeder (P. chrysocephala). However, in whole plant tests, P. chrysocephala did not feed more on the jasmonic acid treated plants than on the controls. This implies that other aspects of the damage response are being induced by the jasmonic acid treatment and having a negative effect on subsequent herbivory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号