首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 213 毫秒
1.
The new antigen receptor (IgNAR) from sharks is a disulphide bonded dimer of two protein chains, each containing one variable and five constant domains, and functions as an antibody. In order to assess the antigen-binding capabilities of isolated IgNAR variable domains (VNAR), we have constructed an in vitro library incorporating synthetic CDR3 regions of 15-18 residues in length. Screening of this library against the 60 kDa cytosolic domain of the 70 kDa outer membrane translocase receptor from human mitochondria (Tom70) resulted in one dominant antigen-specific clone (VNAR 12F-11) after four rounds of in vitro selection. VNAR 12F-11 was expressed into the Escherichia coli periplasm and purified by anti-FLAG affinity chromatography at yields of 3 mg x L(-1). Purified protein eluted from gel filtration columns as a single monomeric protein and CD spectrum analysis indicated correct folding into the expected beta-sheet conformation. Specific binding to Tom70 was demonstrated by ELISA and BIAcore (Kd = 2.2 +/- 0.31 x 10(-9) m-1) indicating that these VNAR domains can be efficiently displayed as bacteriophage libraries, and selected against target antigens with an affinity and stability equivalent to that obtained for other single domain antibodies. As an initial step in producing 'intrabody' variants of 12F-11, the impact of modifying or removing the conserved immunoglobulin intradomain disulphide bond was assessed. High affinity binding was only retained in the wild-type protein, which combined with our inability to affinity mature 12F-11, suggests that this particular VNAR is critically dependent upon precise CDR loop conformations for its binding affinity.  相似文献   

2.
The new antigen receptor (IgNAR) family has been detected in all elasmobranch species so far studied and has several intriguing structural and functional features. IgNAR protein, found in both transmembrane and secretory forms, is a dimer of heavy chains with no associated light chains, with each chain of the dimer having a single free and flexible V region. Four rearrangement events (among 1V, 3D, and 1J germline genes) generate an expressed NAR V gene, resulting in long and diverse CDR3 regions that contain cysteine residues. IgNAR mutation frequency is very high and "selected" mutations are found only in genes encoding the secreted form, suggesting that the primary repertoire is entirely CDR3-based. Here we further analyzed the two IgNAR types, "type 1" having one cysteine in CDR3 and "type 2" with an even number (two or four) of CDR3 cysteines, and discovered that placement of the disulfide bridges in the IgNAR V domain differentially influences the selection of mutations in CDR1 and CDR2. Ontogenetic analyses showed that IgNAR sequences from young animals were infrequently mutated, consistent with the paradigm that the shark immune system must become mature before high levels of mutation accompanied with selection can occur. Nevertheless, also in agreement with the idea that the IgNAR repertoire is entirely CDR3-based, but unlike studies in most other vertebrates, N-region diversity is present in expressed IgNAR clones at birth. During the investigation of this early IgNAR repertoire we serendipitously detected a third type of IgNAR gene that is expressed in all neonatal tissues; later in life its expression is perpetuated only in the epigonal organ, a tissue recently shown to be a (the?) primary lymphoid tissue in elasmobranchs. This "type 3" IgNAR gene still undergoes three rearrangement events (two D regions are "germline-joined"), yet CDR3 sequences were exactly of the same length and very similar sequence, suggesting that "type 3" CDR3s are selected early in ontogeny, perhaps by a self-ligand.  相似文献   

3.
Mimotopes mimic the three-dimensional topology of an antigen epitope, and are frequently recognized by antibodies with affinities comparable to those obtained for the original antibody-antigen interaction. Peptides and anti-idiotypic antibodies are two classes of protein mimotopes that mimic the topology (but not necessarily the sequence) of the parental antigen. In this study, we combine these two classes by selecting mimotopes based on single domain IgNAR antibodies, which display exceptionally long CDR3 loop regions (analogous to a constrained peptide library) presented in the context of an immunoglobulin framework with adjacent and supporting CDR1 loops. By screening an in vitro phage-display library of IgNAR variable domains (V(NAR)s) against the target antigen monoclonal antibody MAb5G8, we obtained four potential mimotopes. MAb5G8 targets a linear tripeptide epitope (AYP) in the flexible signal sequence of the Plasmodium falciparum Apical Membrane Antigen-1 (AMA1), and this or similar motifs were detected in the CDR loops of all four V(NAR)s. The V(NAR)s, 1-A-2, -7, -11, and -14, were demonstrated to bind specifically to this paratope by competition studies with an artificial peptide and all showed enhanced affinities (3-46 nM) compared to the parental antigen (175 nM). Crystallographic studies of recombinant proteins 1-A-7 and 1-A-11 showed that the SYP motifs on these V(NAR)s presented at the tip of the exposed CDR3 loops, ideally positioned within bulge-like structures to make contact with the MAb5G8 antibody. These loops, in particular in 1-A-11, were further stabilized by inter- and intra- loop disulphide bridges, hydrogen bonds, electrostatic interactions, and aromatic residue packing. We rationalize the higher affinity of the V(NAR)s compared to the parental antigen by suggesting that adjacent CDR1 and framework residues contribute to binding affinity, through interactions with other CDR regions on the antibody, though of course definitive support of this hypothesis will rely on co-crystallographic studies. Alternatively, the selection of mimotopes from a large (<4 x 10(8)) constrained library may have allowed selection of variants with even more favorable epitope topologies than present in the original antigenic structure, illustrating the power of in vivo selection of mimotopes from phage-displayed molecular libraries.  相似文献   

4.
Sharks express an unusual heavy-chain isotype called IgNAR, whose variable regions bind antigen as independent soluble domains. To further probe affinity maturation of the IgNAR response, we structurally characterized the germline and somatically matured versions of a type II variable (V) region, both in the presence and absence of its antigen, hen egg-white lysozyme. Despite a disulfide bond linking complementarity determining regions (CDRs) 1 and 3, both germline and somatically matured V regions displayed significant structural changes in these CDRs upon complex formation with antigen. Somatic mutations in the IgNAR V region serve to increase the number of contacts with antigen, as reflected by a tenfold increase in affinity, and one of these mutations appears to stabilize the CDR3 region. In addition, a residue in the HV4 loop plays an important role in antibody-antigen interaction, consistent with the high rate of somatic mutations in this non-CDR loop.  相似文献   

5.
The new antigen receptor (IgNAR) is an antibody unique to sharks and consists of a disulphide-bonded dimer of two protein chains, each containing a single variable and five constant domains. The individual variable (V(NAR)) domains bind antigen independently, and are candidates for the smallest antibody-based immune recognition units. We have previously produced a library of V(NAR) domains with extensive variability in the CDR1 and CDR3 loops displayed on the surface of bacteriophage. Now, to test the efficacy of this library, and further explore the dynamics of V(NAR) antigen binding we have performed selection experiments against an infectious disease target, the malarial Apical Membrane Antigen-1 (AMA1) from Plasmodium falciparum. Two related V(NAR) clones were selected, characterized by long (16- and 18-residue) CDR3 loops. These recombinant V(NAR)s could be harvested at yields approaching 5mg/L of monomeric protein from the E. coli periplasm, and bound AMA1 with nanomolar affinities (K(D)= approximately 2 x 10(-7) M). One clone, designated 12Y-2, was affinity-matured by error prone PCR, resulting in several variants with mutations mapping to the CDR1 and CDR3 loops. The best of these variants showed approximately 10-fold enhanced affinity over 12Y-2 and was Plasmodium falciparum strain-specific. Importantly, we demonstrated that this monovalent V(NAR) co-localized with rabbit anti-AMA1 antisera on the surface of malarial parasites and thus may have utility in diagnostic applications.  相似文献   

6.
The polymeric immunoglobulin receptor (pIgR) is a type I transmembrane protein that delivers dimeric IgA (dIgA) and pentameric IgM to mucosal secretions. Here, we report the 1.9 A resolution X-ray crystal structure of the N-terminal domain of human pIgR, which binds dIgA in the absence of other pIgR domains with an equilibrium dissociation constant of 300 nM. The structure of pIgR domain 1 reveals a folding topology similar to immunoglobulin variable domains, but with differences in the counterparts of the complementarity determining regions (CDRs), including a helical turn in CDR1 and a CDR3 loop that points away from the other CDRs. The unusual CDR3 loop position prevents dimerization analogous to the pairing of antibody variable heavy and variable light domains. The pIgR domain 1 structure allows interpretation of previous mutagenesis results and structure-based comparisons between pIgR and other IgA receptors.  相似文献   

7.
BACKGROUND: Camelid serum contains a large fraction of functional heavy-chain antibodies - homodimers of heavy chains without light chains. The variable domains of these heavy-chain antibodies (VHH) have a long complementarity determining region 3 (CDR3) loop that compensates for the absence of the antigen-binding loops of the variable light chains (VL). In the case of the VHH fragment cAb-Lys3, part of the 24 amino acid long CDR3 loop protrudes from the antigen-binding surface and inserts into the active-site cleft of its antigen, rendering cAb-Lys3 a competitive enzyme inhibitor. RESULTS: A dromedary VHH with specificity for bovine RNase A, cAb-RN05, has a short CDR3 loop of 12 amino acids and is not a competitive enzyme inhibitor. The structure of the cAb-RN05-RNase A complex has been solved at 2.8 A. The VHH scaffold architecture is close to that of a human VH (variable heavy chain). The structure of the antigen-binding hypervariable 1 loop (H1) of both cAb-RN05 and cAb-Lys3 differ from the known canonical structures; in addition these H1 loops resemble each other. The CDR3 provides an antigen-binding surface and shields the face of the domain that interacts with VL in conventional antibodies. CONCLUSIONS: VHHs adopt the common immunoglobulin fold of variable domains, but the antigen-binding loops deviate from the predicted canonical structure. We define a new canonical structure for the H1 loop of immunoglobulins, with cAb-RN05 and cAb-Lys3 as reference structures. This new loop structure might also occur in human or mouse VH domains. Surprisingly, only two loops are involved in antigen recognition; the CDR2 does not participate. Nevertheless, the antigen binding occurs with nanomolar affinities because of a preferential usage of mainchain atoms for antigen interaction.  相似文献   

8.
To develop a multi-antigen-specific immunoglobulin new antigen receptor (IgNAR) variable (V) region phage display library, CDR3 in the V region of IgNAR from banded houndshark (Triakis scyllium) was artificially randomized, and clones specific for hen egg white lysozyme (HEL) were obtained by the biopanning method. The nucleotide sequence of CDR3 in the V region was randomly rearranged by PCR. Randomized CDR3-containing segments of the V region were ligated into T7 phage vector to construct a phage display library and resulted in a phage titer of 3.7?×?107 PFU/ml. Forty clones that contained randomized CDR3 inserts were sequenced and shown to have different nucleotide sequences. The HEL-specific clones were screened by biopanning using HEL-coated ELISA plates. After six rounds of screening, nine clones were identified as HEL-specific, eight of which showed a strong affinity to HEL in ELISA compared to a negative control (i.e., empty phage clone). The deduced amino acid sequences of CDR3 from the HEL-specific phage clones fell into four types (I?IV): type I contains a single cysteine residue and type II?IV contain two cysteine residues. These results indicated that the artificially randomized IgNAR library is useful for the rapid isolation of antigen-specific IgNAR V region without immunization of target antigen and showed that it is possible to isolate an antigen-specific IgNAR V region from this library.  相似文献   

9.
In recent years, engineering of pH-sensitivity into antibodies as well as antibody-derived fragments has become more and more attractive for biomedical and biotechnological applications. Herein, we report the isolation of the first pH-sensitive IgNAR variable domain (vNAR), which was isolated from a yeast-displayed, semi-synthetic master library. This strategy enables the direct identification of pH-dependent binders from a histidine-enriched CDR3 library. Displayed vNAR variants contained two histidine substitutions on average at random positions in their 12-residue CDR3 loop. Upon screening of seven rounds against the proof-of-concept target EpCAM (selection for binding at pH 7.4 and decreased binding at pH 6.0), a single clone was obtained that showed specific and pH-dependent binding as characterized by yeast surface display and biolayer interferometry. Potential applications for such pH-dependent vNAR domains include their employment in tailored affinity chromatography, enabling mild elution protocols. Moreover, utilizing a master library for the isolation of pH-sensitive vNAR variants may be a generic strategy to obtain binding entities with prescribed characteristics for applications in biotechnology, diagnostics, and therapy.  相似文献   

10.
The crystal structure of a mouse T-cell antigen receptor (TCR) Fv fragment complexed to the Fab fragment of a specific anti-clonotypic antibody has been determined to 2.6 A resolution. The polypeptide backbone of the TCR V alpha domain is very similar to those of other crystallographically determined V alphas, whereas the V beta structure is so far unique among TCR V beta domains in that it displays a switch of the c" strand from the inner to the outer beta-sheet. The beta chain variable region of this TCR antigen-binding site is characterized by a rather elongated third complementarity-determining region (CDR3beta) that packs tightly against the CDR3 loop of the alpha chain, without leaving any intervening hydrophobic pocket. Thus, the conformation of the CDR loops with the highest potential diversity distinguishes the structure of this TCR antigen-binding site from those for which crystallographic data are available. On the basis of all these results, we infer that a significant conformational change of the CDR3beta loop found in our TCR is required for binding to its cognate peptide-MHC ligand.  相似文献   

11.
Conventional anti-hapten antibodies typically bind low-molecular weight compounds (haptens) in the crevice between the variable heavy and light chains. Conversely, heavy chain-only camelid antibodies, which lack a light chain, must rely entirely on a single variable domain to recognize haptens. While several anti-hapten VHHs have been generated, little is known regarding the underlying structural and thermodynamic basis for hapten recognition. Here, an anti-methotrexate VHH (anti-MTX VHH) was generated using grafting methods whereby the three complementarity determining regions (CDRs) were inserted onto an existing VHH framework. Thermodynamic analysis of the anti-MTX VHH CDR1-3 Graft revealed a micromolar binding affinity, while the crystal structure of the complex revealed a somewhat surprising noncanonical binding site which involved MTX tunneling under the CDR1 loop. Due to the close proximity of MTX to CDR4, a nonhypervariable loop, the CDR4 loop sequence was subsequently introduced into the CDR1-3 graft, which resulted in a dramatic 1000-fold increase in the binding affinity. Crystal structure analysis of both the free and complex anti-MTX CDR1-4 graft revealed CDR4 plays a significant role in both intermolecular contacts and binding site conformation that appear to contribute toward high affinity binding. Additionally, the anti-MTX VHH possessed relatively high specificity for MTX over closely related compounds aminopterin and folate, demonstrating that VHH domains are capable of binding low-molecular weight ligands with high affinity and specificity, despite their reduced interface.  相似文献   

12.
Superantigens (SAgs) are microbial toxins defined by their ability to activate T lymphocytes in a T cell receptor (TCR) β-chain variable domain (Vβ)-specific manner. Although existing structural information indicates that diverse bacterial SAgs all uniformly engage the Vβ second complementarity determining region (CDR2β) loop, the molecular rules that dictate SAg-mediated T cell activation and Vβ specificity are not fully understood. Herein we report the crystal structure of human Vβ2.1 (hVβ2.1) in complex with the toxic shock syndrome toxin-1 (TSST-1) SAg, and mutagenesis of hVβ2.1 indicates that the non-canonical length of CDR2β is a critical determinant for recognition by TSST-1 as well as the distantly related SAg streptococcal pyrogenic exotoxin C. Frame work (FR) region 3 is uniquely critical for TSST-1 function explaining the fine Vβ-specificity exhibited by this SAg. Furthermore, domain swapping experiments with SAgs, which use distinct domains to engage both CDR2β and FR3/4β revealed that the CDR2β contacts dictate T lymphocyte Vβ-specificity. These findings demonstrate that the TCR CDR2β loop is the critical determinant for functional recognition and Vβ-specificity by diverse bacterial SAgs.  相似文献   

13.
Ligands specific for B7.1 (CD80) and B7.2 (CD86) have applications in disease indications that require inhibition of T-cell activity. As we observed significant sequence and structural similarity between the B7-binding ligand, cytotoxic T-lymphocyte associated protein-4 (CTLA-4), and antibody variable light chain domains (VLs), we have explored the possibilities of making novel B7 binding molecules based on single VL domains.We first describe the "rational" design and construction of a VL/CTLA-4 hybrid molecule in which we have grafted both the CDR1 and CDR3-like loops of CTLA-4 onto a single VL light chain, at sites determined by sequence and structure-based alignment. This molecule was secreted as a soluble product from Escherichia coli, but did not show any binding to B7.1 and B7.2. In a second approach we constructed a VL library in which human VL genes derived from B-cells were spiked with the CDR3-like loop of CTLA-4 and further diversified by DNA shuffling. This library was displayed on phage, and after selection gave B7.1 binding ligands which competed with CTLA-4. In order to evaluate the possible general utility of VL domains as binding ligands, we have constructed a non-biased VL library. From this DNA-shuffled human VL library we have selected single VL domains specific for B7.1, B7.2 or human IgG. Two B7.1-specific VL ligands and one B7.2-specific VL ligand showed competition with CTLA-4. One candidate VL domain-specific for B7.1 was affinity matured by simultaneous randomisation of all CDR loops using DNA shuffling with degenerate CDR-spiking oligonucleotides. From this library, a single VL domain with affinity of 191 nM for B7.1 was obtained, which also showed binding to B7.1 in situ. This VL had mutations in CDR1 and CDR3, indicating that antigen recognition for this single VL is most likely mediated by the same regions as in the VL domain of whole antibodies.The B7.1 and B7.2-specific VL domains described in this study may form the basis of a new family of immunomodulatory recombinant molecules. Furthermore, our studies suggest that it is feasible to create specific single VL domains to diverse targets as is the case for single VH domains.  相似文献   

14.
15.

Background

A large fraction of camelid (camels and llamas) antibodies is composed of heavy chain-only homodimers, able to recognise antigens with their variable domain. Events in somatic assembly and maturation of antibodies such as hypermutations and rearrangement of variable loops (CDRs — complementary determining regions) and selection among a wide range of framework variants are generally considered to be random processes.

Methods

An original algorithmic approach (Global Sequence Signature—GSS) was developed, able to take into account multiple functional and/or local sequence properties to detect scattered evolutionary constraints into sequences.

Results

Using the GSS approach, we show that the length of the main hypervariable loop (CDR3) is linked to the nature of 19 surrounding residues on the scaffold. Surprisingly, the relation between CDR3 size and scaffold residues strongly depends on the considered species, illustrating either significant differences in selection mechanisms or functional constraints during antibody maturation.

Conclusions

Combined with the statistical coupling analysis (SCA) approach at the level of scaffold residues, this study has unravelled a robust interaction network on antibody structure surrounding the CDR3 loop.

General significance

In addition to the general applicability of the GSS algorithm, which can bring together functional and sequence data to locate hot spots of constrained evolution, the relationship between CDR3 and scaffold discussed here should be taken into account in protein engineering when designing antibody libraries.  相似文献   

16.
As cartilaginous fish are the vertebrates most distal from man to produce antibodies, fundamental information regarding conservation and variation of the antigen binding site should be gained by comparing the properties of antibodies directed against the same antigen from the two species. Since monoclonal cell lines cannot be generated using shark B cells, we isolated antigen binding recombinant single chain Fv antibodies (scFv) comprising of the complete variable regions from shark light and heavy chains. Thyroglobulin was used as the selecting antigen as both sharks and humans express natural antibodies to mammalian thyroglobulin in the absence of purposeful immunization. We report that recombinant sandbar shark (Carcharhinus plumbeus) scFvs that bind bovine thyroglobulin consist of heavy chain variable regions (VH) homologous to those of the human VHIII subset and light chain variable regions (VL) homologous to those of the human Vlambda6 subgroup. The homology within the frameworks is sufficient to enable the building of three-dimensional models of the shark VH/VL structure using established human structures as templates. In natural antibodies of both species, the major variability lies in the third complementarity determining region (CDR3) of both VH and VL.  相似文献   

17.
We describe here the structure of a murine T cell receptor (TCR) Valpha2.6Jalpha38 (TCRAV2S6J38) domain, derived from a T cell hybridoma with specificity for the H-2Ddmajor histocompatibility complex class I molecule bound to a decamer peptide, P18-I10, from the HIV envelope glycoprotein gp120, determined by X-ray crystallography at 2.5 A resolution. Unlike other TCR Valpha domains that have been studied in isolation, this one does not dimerize in solution at concentrations below 1 mM, and the crystal fails to show dimer contacts that are likely to be physiological. In comparison to other Valpha domains, this Valpha2.6 shows great similarity in the packing of its core residues, and exhibits the same immunoglobulin-like fold characteristic of other TCR Valpha domains. There is good electron density in all three complementarity-determining regions (CDRs), where the differences between this Valpha domain and others are most pronounced, in particular in CDR3. Examination of crystal contacts reveals an association of Valpha domains distinct from those previously seen. Comparison with other Valpha domain structures reveals variability in all loop regions, as well as in the first beta strand where placement and configuration of a proline residue at position 6, 7, 8, or 9 affects the backbone structure. The great variation in CDR3 conformations among TCR structures is consistent with an evolving view that CDR3 of TCR plays a plastic role in the interaction of the TCR with the MHC/peptide complex as well as with CDR3 of the paired TCR chain.  相似文献   

18.
Camelids produce functional antibodies devoid of light chains. Autonomous heavy chain variable (V(H)H) domains in these molecules have adapted to the absence of the light chain in the following ways: bulky hydrophobic residues replace small aliphatic residues in the former light chain interface, and residues from the third complementarity-determining region (CDR3) pack against the framework and stabilize the global V(H)H domain fold. To determine the specific roles of CDR3 residues in framework stabilization, we used nai;ve phage-displayed libraries, combinatorial alanine-scanning mutagenesis and biophysical characterization of purified proteins. Our results indicate that in the most stable scaffolds, the structural residues in CDR3 reside near the boundaries of the loop and pack against the framework to form a small hydrophobic core. These results allow us to differentiate between structural CDR3 residues that should remain fixed, and CDR3 residues that are tolerant to substitution and can therefore be varied to generate functional diversity within phage-displayed libraries. These methods and insights can be applied to the rapid design of heavy chain scaffolds for the identification of novel ligands using synthetic, antibody-phage libraries. In addition, they shed light on the relationships between CDR3 sequence diversity and the structural stability of the V(H)H domain fold.  相似文献   

19.
In this work, to study the emergence of the H chain V region repertoire during mammalian evolution, we present an analysis of 25 independent H chain V regions from a monotreme, the Australian duck-billed platypus, Ornithorhynchus anatinus. All the sequences analyzed were found to form a single branch within the clan III of mammalian V region sequences in a distance tree. However, compared with a classical V gene family this branch was more diversified in sequence. Sequence analysis indicates that the apparent lack of diversity in germline V segments is well compensated for by relatively long and highly diversified D and N nucleotides. In addition, extensive sequence variation was observed in the framework region 3. Furthermore, at least five and possibly seven different J segments seem to be actively used in recombination. Interestingly, internal cysteine bridges in the complementarity-determining region (CDR)3 loop, or between the CDR2 and CDR3 loops, are found in approximately 36% of the platypus V(H) sequences. Such cysteine bridges have also been observed in cow, camel, and shark. Internal cysteine bridges may play a role in stabilizing long and diversified CDR3 and thereby have a role in increasing the affinity of the Ab-Ag interaction.  相似文献   

20.
We describe the X-ray crystallographic structure of a murine T cell receptor (TCR) Valpha domain ("Valpha85.33"; AV11S5-AJ17) to 1.85 A resolution. The Valpha85.33 domain is derived from a TCR that recognizes a type II collagen peptide associated with the murine major histocompatibility complex (MHC) class II molecule, I-A(q). Valpha85.33 packs as a Valpha-Valpha homodimer with a highly symmetric monomer-monomer interface. The first and second complementarity determining regions (CDR1 and CDR2) of this Valpha are shorter than the CDRs corresponding to the majority of other Valpha gene families, and three-dimensional structures of CDRs of these lengths have not been described previously. The CDR1 and CDR2 therefore represent new canonical forms that could serve as templates for AV11 family members. CDR3 of the Valpha85.33 domain is highly flexible and this is consistent with plasticity of this region of the TCR. The fourth hypervariable loop (HV4alpha) of AV11 and AV10 family members is one residue longer than that of other HV4alpha regions and shows a high degree of flexibility. The increase in length results in a distinct disposition of the conserved residue Lys68, which has been shown in other studies to play a role in antigen recognition. The X-ray structure of Valpha85.33 extends the database of canonical forms for CDR1 and CDR2, and has implications for antigen recognition by TCRs that contain related Valpha domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号