首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolism of glutamine (Gln, 2 mM) and glucose (5 mM) was studied in vitro in isolated resident peritoneal macrophages from both normal (BBn) and spontaneously diabetic BB (BBd) rats. The major products from Gln were ammonia, glutamate, CO2 and to a lesser extent aspartate. Glucose decreased (P less than 0.01) the production of ammonia, CO2 and aspartate from Gln by 34-60%, but had no effect on the amount of glutamate accumulated. The major products from glucose were lactate and to a much lesser extent pyruvate and CO2. Gln decreased (P less than 0.01) 14CO2 production from [U-14C]glucose by 19-28%, increased (P less than 0.01) pyruvate production by 35-49%, but had no effect on lactate production. The fraction of glucose metabolized via the pentose phosphate pathway (PC) was less than 5%. There were no significant differences in Gln metabolism between BBn and BBd macrophages. The production of lactate and pyruvate and the flux from glucose into the PC were increased (P less than 0.01) by 2.4, 1.8 and 1.5-fold, respectively, in BBd cells. Increased macrophage glucose metabolism was also observed in diabetes-prone BB (BBdp) rats at 75-80 days but not at 50 days of age. In the presence of both Gln and glucose, potential ATP production from glucose was 2- and 4-times that from Gln, respectively, in BBn and BBd cells. Lactate production was the major pathway for glucose-derived ATP generation. These results demonstrate (a) glycolysis and flux from glucose through the pentose phosphate pathway are enhanced with no alteration in glutaminolysis in BBd macrophages; and (b) glucose may be a more important fuel than Gln for macrophages, particularly in BBd rats. The increased glucose metabolism may be associated with functional activation of the macrophages that have been proposed to be involved in beta-cell destruction and the development of diabetes.  相似文献   

2.
1. Glutamine and glucose metabolism was studied in bovine blood lymphocytes incubated at 37 degrees C in the presence of Krebs-Ringer bicarbonate buffer (pH 7.4) containing 1 mM [U-14C]glutamine and 5 mM [U-14C]glucose, respectively. 2. The major metabolic products from glutamine were ammonia, glutamate, and to a lesser extent, aspartate and CO2. Glucose was metabolized mainly to lactate and, to a lesser extent, pyruvate and CO2. These findings indicate incomplete oxidation of glutamine and glucose carbons in bovine blood lymphocytes. 3. Glucose provided three-fold greater amounts of energy to bovine blood lymphocytes than did glutamine on the basis of their measured end-products. Glycolysis accounted for 50% of glucose-derived ATP production. 4. Our findings suggest similar metabolic patterns of glutamine and glucose in lymphocytes between ruminants and non-ruminant species (e.g. rats). However, in contrast to rat peripheral lymphocytes, glucose, rather than glutamine, was a major energy substrate for bovine blood lymphocytes.  相似文献   

3.
Energy metabolism in proliferating cultured rat thymocytes was compared with that of freshly prepared non-proliferating resting cells. Cultured rat thymocytes enter a proliferative cycle after stimulation by concanavalin A and Lymphocult T (interleukin-2), with maximal rates of DNA synthesis at 60 h. Compared with incubated resting thymocytes, glucose metabolism by incubated proliferating thymocytes was 53-fold increased; 90% of the amount of glucose utilized was converted into lactate, whereas resting cells metabolized only 56% to lactate. However, the latter oxidized 27% of glucose to CO2, as opposed to 1.1% by the proliferating cells. Activities of hexokinase, 6-phosphofructokinase, pyruvate kinase and aldolase in proliferating thymocytes were increased 12-, 17-, 30- and 24-fold respectively, whereas the rate of pyruvate oxidation was enhanced only 3-fold. The relatively low capacity of pyruvate degradation in proliferating thymocytes might be the reason for almost complete conversion of glucose into lactate by these cells. Glutamine utilization by rat thymocytes was 8-fold increased during proliferation. The major end products of glutamine metabolism are glutamate, aspartate, CO2 and ammonia. A complete recovery of glutamine carbon and nitrogen in the products was obtained. The amount of glutamate formed by phosphate-dependent glutaminase which entered the citric acid cycle was enhanced 5-fold in the proliferating cells: 76% was converted into 2-oxoglutarate by aspartate aminotransferase, present in high activity, and the remaining 24% by glutamate dehydrogenase. With resting cells the same percentages were obtained (75 and 25). Maximal activities of glutaminase, glutamate dehydrogenase and aspartate aminotransferase were increased 3-, 12- and 6-fold respectively in proliferating cells; 32% of the glutamate metabolized in the citric acid cycle was recovered in CO2 and 61% in aspartate. In resting cells this proportion was 41% and 59% and in mitogen-stimulated cells 39% and 65% respectively. Addition of glucose (4 mM) or malate (2 mM) strongly decreased the rates of glutamine utilization and glutamate conversion into 2-oxoglutarate by proliferating thymocytes and also affected the pathways of further glutamate metabolism. Addition of 2 mM-pyruvate did not alter the rate of glutamine utilization by proliferating thymocytes, but decreased the rate of metabolism beyond the stage of glutamate significantly. Formation of acetyl-CoA in the presence of pyruvate might explain the relatively enhanced oxidation of glutamate to CO2 (56%) by proliferating thymocytes.  相似文献   

4.
Pathways of glutamine metabolism in resting and proliferating rat thymocytes were evaluated by in vitro incubations of freshly prepared or 60-h cultured cells for 1-2 h with [U14C]glutamine. Complete recovery of glutamine carbons utilized in products allowed quantification of the pathways of glutamine metabolism under the experimental conditions. Partial oxidation of glutamine via 2-oxoglutarate in a truncated citric acid cycle to CO2 and oxaloacetate, which then was converted to aspartate, accounted for 76 and 69%, respectively, of the glutamine metabolized beyond the stage of glutamate by resting and proliferating thymocytes. Complete oxidation to CO2 in the citric acid cycle via 2-oxoglutarate dehydrogenase and isocitrate dehydrogenase accounted for 25 and 7%, respectively. In proliferating cells a substantial amount of glutamine carbons was also recovered in pyruvate, alanine, and especially lactate. The main route of glutamine and glutamate entrance into the citric acid cycle via 2-oxoglutarate in both cells is transamination by aspartate aminotransferase rather than oxidative deamination by glutamate dehydrogenase. In the presence of glucose as second substrate, glutamine utilization and aspartate formation markedly decreased, but complete oxidation of glutamine carbons to CO2 increased to 37 and 23%, respectively, in resting and proliferating cells. The dipeptide, glycyl-L-glutamine, which is more stable than free glutamine, can substitute for glutamine in thymocyte cultures at higher concentrations.  相似文献   

5.
Glucose and glutamine metabolism in rat thymocytes.   总被引:4,自引:3,他引:1       下载免费PDF全文
The metabolism of glucose and glutamine in freshly prepared resting and concanavalin A-stimulated rat thymocytes was studied. Concanavalin A addition enhanced uptake of both glucose and glutamine and led to an increase in oxidative degradation of both substrates to CO2. With variously labelled [14C]glucose, it was shown that the pathways of glucose dissimilation were equally stimulated by the mitogen. A disproportionately large percentage of the extra glucose taken up was converted into lactate, but concanavalin A also caused an increase in the oxidation of pyruvate as judged by the enhanced release of 14CO2 from [2-14C]-, [3,4-14C]- and [6-14C]-glucose. Addition of glutamine did not affect glucose metabolism. The major end products of glutamine metabolism by resting and mitogen-stimulated rat thymocytes were glutamate, aspartate, CO2 and NH3. Virtually no lactate was formed from glutamine. Concanavalin A enhanced the formation of all end products except glutamate, indicating that more glutamine was metabolized beyond the stage of glutamate in the mitogen-activated cells. Addition of glucose caused a significant decrease in the rates of glutamine utilization and conversion into aspartate and CO2 in the absence and in the presence of concanavalin A. In the presence of glucose, almost all nitrogen of the metabolized glutamine was accounted for as NH3 released via the glutaminase and/or glutamate dehydrogenase reactions. In the absence of glucose, part (18%) of the glutamine nitrogen was metabolized by the resting and to a larger extent (38%) by the mitogen-stimulated thymocytes via a transaminase or amidotransferase reaction.  相似文献   

6.
Fuel utilization in colonocytes of the rat.   总被引:5,自引:2,他引:3       下载免费PDF全文
In incubated colonocytes isolated from rat colons, the rates of utilization O2, glucose or glutamine were linear with respect to time for over 30 min, and the concentrations of adenine nucleotides plus the ATP/ADP or ATP/AMP concentration ratios remained approximately constant for 30 min. Glutamine, n-butyrate or ketone bodies were the only substrates that caused increases in O2 consumption by isolated incubated colonocytes. The maximum activity of hexokinase in colonic mucosa is similar to that of 6-phosphofructokinase. Starvation of the donor animal decreased the activities of hexokinase and 6-phosphofructokinase, whereas it increased those of glucose-6-phosphatase and fructose-bisphosphatase. Isolated incubated colonocytes utilized glucose at about 6.8 mumol/min per g dry wt., with lactate accounting for 83% of glucose removed. These rates were not affected by the addition of glutamine, acetoacetate or n-butyrate, and starvation of the donor animal. Isolated incubated colonocytes utilized glutamine at about 5.5 mumol/min per g dry wt., which is about 21% of the maximum activity of glutaminase. The major end-products of glutamine metabolism were glutamate, aspartate, alanine and ammonia. Starvation of the donor animal decreased the rate of glutamine utilization by colonocytes, which is accompanied by a decrease in glutamate formation and in the maximum activity of glutaminase. Isolated incubated colonocytes utilized acetoacetate at about 3.5 mumol/min per g dry wt. This rate was not markedly affected by addition of glucose or by starvation of the donor animal. When colonocytes were incubated with n-butyrate, both acetoacetate and 3-hydroxybutyrate were formed, with the latter accounting for only about 19% of total ketones produced.  相似文献   

7.
Rees T  Larson TR  Heldens J  Huning F 《Plant physiology》1995,109(4):1405-1410
A malachite green colorimetric assay for glutamine synthetase is described. Glutamine synthetase activity was determined in situ in the marine diatom Phaeodactylum tricornutum Bohlin using cells permeabilized by freeze/thawing. Higher activities were obtained with cells permeabilized in N-2-hydroxyethylpiperazine-N[prime]-2-ethanesulfonic acid compared with N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid, tris(hydroxymethyl)aminomethane, or imidazole, and the optimum pH was 7.9. Activities were higher in cells permeabilized in the presence of reductant, particularly dithiothreitol. Glutamine synthetase activities were markedly decreased in the presence of methionine sulfoximine. In the presence of saturating concentrations of glutamate and ATP, the apparent Km for ammonia was 320 [mu]M, but this value decreased to 110 [mu]M with subsaturating concentrations of glutamate and ATP. The apparent Km values for glutamate and ATP, in the presence of saturating concentrations of ammonia, were 9.7 and 2.9 mM, respectively. Ammonia-grown cells had lower glutamine synthetase activities than did nitrate-grown cells. During nitrogen starvation of both ammonia- and nitrate-grown cells, glutamine synthetase activities increased rapidly during the first 8 h, reaching maximum values after 24 to 48 h. Moreover, the time course for the increases in glutamine synthetase activities and rate of methylamine uptake following the transfer of nitrate-grown cells to nitrogen-deficient medium were very similar. In nitrate-grown cells and cells deprived of combined nitrogen, glutamine synthetase activities and maximum rates of ammonia uptake gave comparable values when measured at the same temperature (20[deg]C).  相似文献   

8.
Both ammonia and beta-methylene-DL-aspartate (beta-MA), an irreversible inhibitor of aspartate aminotransferase activity and thus of the malate-aspartate shuttle, were found previously to decrease oxidative metabolism in cerebral cortex slices. In the present work, the possibility that ammonia and beta-MA affect energy metabolism by a common mechanism (i.e., via inhibition of the malate-aspartate shuttle) was investigated using primary cultures of neurons and astrocytes. Incubation of astrocytes for 30 min with 5 mM beta-MA resulted in a decreased production of 14CO2 from [U-14C]glucose, but did not affect 14CO2 production from [2-14C]pyruvate. Conversely, incubation of astrocytes with 3 mM ammonium chloride resulted in decreased 14CO2 production from [2-14C]pyruvate, but 14CO2 production from [U-14C]glucose was not significantly affected. Ammonium chloride had no significant effect on 14CO2 production from either [U-14C]glucose or [2-14]pyruvate by neurons. However, incubation of neurons with beta-MA or beta-MA plus ammonium chloride resulted in a approximately 45% decrease of 14CO2 production from both [U-14C]glucose and [2-14C]pyruvate. A 2-h incubation of astrocytes with beta-MA resulted in no change in ATP levels, but a 35% decrease in phosphocreatine. Similar treatment of neurons resulted in greater than 50% decrease in ATP, but had little effect on phosphocreatine. beta-MA also caused a decrease in glutamate and aspartate content of neurons, but not of astrocytes. The different metabolic responses of neurons and astrocytes towards beta-MA were probably not due to a differential inhibition of aspartate aminotransferase which was inhibited by approximately 45% in astrocytes and by approximately 55% in neurons.  相似文献   

9.
Glutamine metabolism in lymphocytes of the rat.   总被引:24,自引:7,他引:17       下载免费PDF全文
The metabolism of glutamine in resting and concanavalin-A-stimulated lymphocytes was investigated. In incubated lymphocytes isolated from rat mesenteric lymph nodes, the rates of oxygen and glutamine utilization and that of aspartate production were approximately linear with respect to time for 60 min, and the concentrations of adenine nucleotides plus the ATP/ADP or ATP/AMP concentration ratios remained approximately constant for 90 min. The major end products of glutamine metabolism were glutamate, aspartate and ammonia: the carbon from glutamine may contribute about 30% to respiration. When both glucose and glutamine were presented to the cells, the rates of utilization of both substances increased. Evidence was obtained that the stimulation of glycolysis by glutamine could be due, in part, to an activation of 6-phosphofructokinase. Starvation of the donor animal increased the rate of glutamine utilization. The phosphoenolpyruvate carboxykinase inhibitor mercaptopicolinate decreased the rate of glutamine utilization by 28%; the rates of accumulation of glutamate and ammonia were decreased, whereas those of lactate, aspartate and malate were increased. The mitogen concanavalin A increased the rate of glutamine utilization (by about 51%). The rate of [3H]thymidine incorporation into DNA caused by concanavalin A in cultured lymphocytes was very low in the absence of glutamine; it was increased about 4-fold at 1 microM-glutamine and was maximal at 0.3 mM-glutamine; neither other amino acids nor ammonia could replace glutamine.  相似文献   

10.
1. When isolated kidneys from fed rats were perfused with glutamine the rate of ammonia release at pH7.4 (110–360μmol/h per g dry wt.) was one to two times that of glutamine removal. Glucose formation from 5mm-glutamine was 16μmol/h per g. If kidneys were perfused with glutamine at pH7.1 (10–13mm-sodium bicarbonate) there was no increase in glutamine removal or in the formation of ammonia or glucose. 2. When isolated kidneys from fed rats were perfused with glutamate at pH7.4, glucose formation was 59μmol/h per g, glutamine formation was 182μmol/h per g and ammonia release was negligible. At pH7.1 glutamine synthesis was inhibited and formation of ammonia and glucose were increased. 3. In perfused kidneys from acidotic rats, which had received 1.5% (w/v) NH4Cl to drink for 7–10 days, gluconeogenesis from glutamine was enhanced (101μmol/h per g). Glutamine removal and ammonia formation were also increased, compared with the rates in perfused kidney from normal rats. The extra glutamine consumed was equivalent to the extra glucose formed. 4. When the kidney from the 7–10-day-acidotic rat was perfused with glutamate gluconeogenesis was increased (113μmol/h per g). Synthesis of glutamine was decreased, and ammonia release was approximately equal to the rate of glutamate removal. 5. The time-course of these metabolic alterations was investigated after the rapid induction of acidosis by infusion of 0.25m-HCl into the right side of the heart. The increase in gluconeogenesis from glutamine developed gradually over several hours. When kidneys from 6h-acidotic rats were perfused with glutamate, formation of glucose and glutamine were both rapid. 6. In acidotic rat kidneys perfused with glutamine, tissue concentrations of glutamate and glucose 6-phosphate were increased compared with those in control perfused kidneys from non-acidotic rats. 7. The results are discussed in terms of control of the renal metabolism of glutamine. In particular, it is suggested that in acidotic rats glucose formation is the major fate of the carbon of the extra glutamine utilized by the kidney, and that inhibition of glutamine synthetase could contribute to the increase in intracellular ammonia concentration in the kidney.  相似文献   

11.
The antibody-secreting murine hybridoma, CC9C10, was grown in batch culture in a medium containing 20 mM glucose and 2 mM glutamine. After 2 days of exponential growth, the glutamine content of the medium was completely depleted, whereas the glucose content was reduced to 60% of the original concentration. The glucose and glutamine metabolism was analyzed at midexponential phase by use of radioactively labelled substrates. Glycolysis accounted for the metabolism of most of the glucose utilized (> 96%) with flux through the pentose phosphate pathway (3.6%) and the TCA cycle (0.6%) accounting for the remainder. Glutamine was partially oxidised via glutaminolysis to alanine (55%), aspartate (3%), glutamate (4%), lactate (9%), and CO2 (22%). Calculation of the theoretical ATP production from these pathways indicated that glucose could provide 59% and glutamine 41% of the energy requirement of the cells. © 1994 Wiley-Liss, Inc.  相似文献   

12.
A peculiar phenomenon, differing from the response of mammalian cells, occurred when Chinook salmon embryo (CHSE) cells were passaged in the medium lacking of both glucose and glutamine. To elucidate metabolic mechanism of CHSE cells, the metabolism parameters, key metabolic enzymes, and ATP levels were measured at different glucose and glutamine concentrations. In the glutamine-free culture, hexokinase activity kept constant, and lactate dehydrogenase (LDH) activity decreased. This indicated that lack of glutamine did not expedite glucose consumption but made it shift to lower lactate production and more efficient energy metabolism. The results coincided with the experimental results of unaltered specific glucose consumption rate and decreased yield coefficients of lactate to glucose. In the glucose-free culture, simultaneous increase of glutaminase activity and of specific ammonia production rate suggested an increased flux into the glutaminolysis pathway, and increases of both glutamate dehydrogenase activity and yield coefficient of ammonia to glutamine showed an increased flux into deamination pathway. However, when glucose and glutamine were both lacking, the specific consumption rates of most of amino acids increased markedly, together with decrease of LDH activity, indicating that pyruvate derived from amino acids, away from lactate production, remedied energy deficiency. When both glucose and glutamine were absent, intracellular ATP contents and the energy charge remained virtually unaltered.Revisions requested 16 December 2004; Revisions received 24 January 2005  相似文献   

13.
AMINO ACID METABOLISM AND AMMONIA FORMATION IN BRAIN SLICES   总被引:2,自引:2,他引:0  
The formation of ammonia and changes in the contents of free amino acids have been investigated in slices of guinea pig cerebral cortex incubated under the following conditions: (1) aerobically in glucose-free saline; (2) aerobically in glucose-free saline containing 10 mM-bromofuroic acid, an inhibitor of glutamate dehydrogenase (EC 1.4.1.2); (3) aerobically in saline containing 11-1 mM-glucose and (4) anaerobically in glucose-free saline. Ammonia was formed at a steady rate aerobically in glucose-free medium. The formation of ammonia was largely suppressed in the absence of oxygen or in the presence of glucose whereas the inhibitor of glutamate dehydrogenase produced about 50 per cent inhibition. Other inhibitors of glutamate dehydrogenase exerted a similar effect. Ammonia formation was also inhibited by some inhibitors of aminotransferases but not by others. Inhibition was generally more pronounced during the second and third hour of incubation. With the exception of glutamine which decreased slightly, the contents of all amino acids increased markedly during the anaerobic incubation. During aerobic incubation in a glucose-free medium, there was an almost complete disappearance of glutamic acid and GABA. Glutamine also decreased, but to a relatively smaller extent. The content of all other amino acids increased during aerobic incubation in glucose-free medium, although to a lesser extent than under anaerobic conditions. The greater increase of amino acids appearing anaerobically in comparison to the increase or decrease occurring under aerobic conditions corresponded closely to the greater amount of ammonia formed aerobically over that formed anaerobically. This finding is interpreted as indicating a similar degree of proteolysis under anaerobic and aerobic conditions; aerobically, the amino acids are partly metabolized with the concomitant liberation of ammonia. In glucose-supplemented medium, the content of glutamine was markedly increased. The content of glutamate and aspartate remained unchanged, whereas that of some other amino acids increased but to a lesser extent than in the absence of glucose. Proteolysis in the presence of glucose was estimated at about 65 per cent of that in its absence. In the presence of bromofuroate the rate of disappearance of glutamate was unchanged, but there was a larger increase in the content of aspartate and a smaller decrease of GABA and glutamine. Other changes did not differ significantly from those observed in the absence of bromofuroate. We conclude that the metabolism of amino acids in general and of glutamic acid in particular differs according to whether they are already present within the brain slice or are added to the incubation medium. Only the endogenous amino acids appear to be able to serve as precursors of ammonia and as substrates for energy production.  相似文献   

14.
The pathway of glutamate metabolism in rat brain mitochondria   总被引:9,自引:2,他引:7       下载免费PDF全文
1. The pathway of glutamate metabolism in non-synaptic rat brain mitochondria was investigated by measuring glutamate, aspartate and ammonia concentrations and oxygen uptakes in mitochondria metabolizing glutamate or glutamine under various conditions. 2. Brain mitochondria metabolizing 10mm-glutamate in the absence of malate produce aspartate at 15nmol/min per mg of protein, but no detectable ammonia. If amino-oxyacetate is added, the aspartate production is decreased by 80% and ammonia production is now observed at a rate of 6.3nmol/min per mg of protein. 3. Brain mitochondria metabolizing glutamate at various concentrations (0-10mm) in the presence of 2.5mm-malate produce aspartate at rates that are almost stoicheiometric with glutamate disappearance, with no detectable ammonia production. In the presence of amino-oxyacetate, although the rate of aspartate production is decreased by 75%, ammonia production is only just detectable (0.3nmol/min per mg of protein). 4. Brain mitochondria metabolizing 10mm-glutamine and 2.5mm-malate in States 3 and 4 were studied by using glutamine as a source of intramitochondrial glutamate without the involvement of mitochondrial translocases. The ammonia production due to the oxidative deamination of glutamate produced from the glutamine was estimated as 1nmol/min per mg of protein in State 3 and 3nmol/min per mg of protein in State 4. 5. Brain mitochondria metabolizing 10mm-glutamine in the presence of 1mm-amino-oxyacetate under State-3 conditions in the presence or absence of 2.5mm-malate showed no detectable aspartate production. In both cases, however, over the first 5min, ammonia production from the oxidative deamination of glutamate was 21-27nmol/min per mg of protein, but then decreased to approx. 1-1.5nmol/min per mg. 6. It is concluded that the oxidative deamination of glutamate by glutamate dehydrogenase is not a major route of metabolism of glutamate from either exogenous or endogenous (glutamine) sources in rat brain mitochondria.  相似文献   

15.
The isolated perfused rat kidney was shown to synthesize serine from aspartate or glutamate, both of which are also precursors of glucose. The major products of aspartate metabolism were ammonia, serine, glutamate, glucose, glutamine and CO2. Perfusion of kidneys with aspartate in the presence of amino-oxyacetate resulted in a near-complete inhibition of aspartate metabolism, illustrating the essential role of aspartate aminotransferase in the metabolism of this substrate. Radioactivity from 14C-labelled aspartate and from 14C-labelled glycerol was incorporated into serine and glucose. Production of both glucose and serine from aspartate was suppressed in the presence of 3-mercaptopicolinic acid. These data provide evidence for the operation of the phosphorylated and/or non-phosphorylated pathway for serine production to the presence of 3-mercaptopicolinic acid. This is explained by simultaneous glycolysis. The rate of glucose production, but not that of serine, was greater in kidneys perfused with glutamate or with aspartate plus glycerol than the rates obtained by perfusion with aspartate alone. These data are taken to suggest that serine synthesis occurred at a near-maximal rate, and that the capacity of the kidney for serine synthesis from glucose precursors is lower than that for glucose synthesis.  相似文献   

16.
Glucose and Synaptosomal Glutamate Metabolism: Studies with [15N]Glutamate   总被引:1,自引:0,他引:1  
The metabolism of [15N]glutamate was studied with gas chromatography-mass spectrometry in rat brain synaptosomes incubated with and without glucose. [15N]Glutamate was taken up rapidly by the preparation, reaching a steady-state level in less than 5 min. 15N was incorporated predominantly into aspartate and, to a much lesser extent, into gamma-aminobutyrate. The amount of [15N]ammonia formed was very small, and the enrichment of 15N in alanine and glutamine was below the level of detection. Omission of glucose substantially increased the rate and amount of [15N]aspartate generated. It is proposed that in synaptosomes (a) the predominant route of glutamate nitrogen disposal is through the aspartate aminotransferase reaction; (b) the aspartate aminotransferase pathway generates 2-oxoglutarate, which then serves as the metabolic fuel needed to produce ATP; (c) utilization of glutamate via transamination to aspartate is greatly accelerated when flux through the tricarboxylic acid cycle is diminished by the omission of glucose; (d) the metabolism of glutamate via glutamate dehydrogenase in intact synaptosomes is slow, most likely reflecting restriction of enzyme activity by some unknown factor(s), which suggests that the glutamate dehydrogenase reaction may not be near equilibrium in neurons; and (e) the activities of alanine aminotransferase and glutamine synthetase in synaptosomes are very low.  相似文献   

17.
Streptococcus bovis JB1 cells energized with glucose transported glutamine at a rate of 7 nmol/mg of protein per min at a pH of 5.0 to 7.5; sodium had little effect on the transport rate. Because valinomycin-treated cells loaded with K and diluted into Na (pH 6.5) to create an artificial delta psi took up little glutamine, it appeared that transport was driven by phosphate-bond energy rather than proton motive force. The kinetics of glutamine transport by glucose-energized cells were biphasic, and it appeared that facilitated diffusion was also involved, particularly at high glutamine concentrations. Glucose-depleted cultures took up glutamine and produced ammonia, but the rate of transport per unit of glutamine (V/S) by nonenergized cells was at least 1,000-fold less than the V/S by glucose-energized cells. Glutamine was converted to pyroglutamate and ammonia by a pathway that did not involve a glutaminase reaction or glutamate production. No ammonia production from pyroglutamate was detected. S. bovis was unable to take up glutamate, but intracellular glutamate concentrations were as high as 7 mM. Glutamate was produced from ammonia via a glutamate dehydrogenase reaction. Cells contained high concentrations of 2-oxoglutarate and NADPH that inhibited glutamate deamination and favored glutamate formation. Since the carbon skeleton of glutamine was lost as pyroglutamate, glutamate formation occurred at the expense of glucose. Arginine deamination is often used as a taxonomic tool in classifying streptococci, and it had generally been assumed that other amino acids could not be fermented. To our knowledge, this is the first report of glutamine conversion to pyroglutamate and ammonia in streptococci.  相似文献   

18.
The neuronal effects of glucose deficiency on amino acid metabolism was studied on three-dimensional cultures of rat telencephalon neurones. Transient (6 h) exposure of differentiated cultures to low glucose (0.25 mm instead of 25 mm) caused irreversible damage, as judged by the marked decrease in the activities of two neurone-specific enzymes and lactate dehydrogenase, 1 week after the hypoglycemic insult. Quantification of amino acids and ammonia in the culture media supernatants indicated increased amino acid utilization and ammonia production during glucose-deficiency. Measurement of intracellular amino acids showed decreased levels of alanine, glutamine, glutamate and GABA, while aspartate was increased. Added lactate (11 mm) during glucose deficiency largely prevented the changes in amino acid metabolism and ammonia production, and attenuated irreversible damage. Higher media levels of glutamine (4 mm instead of 0.25 mm) during glucose deprivation prevented the decrease of intracellular glutamate and GABA, while it further increased intracellular aspartate, ammonia production and neuronal damage. Both lactate and glutamine were readily oxidized in these neuronal cultures. The present results suggest that in neurones, glucose deficiency enhances amino acid deamination at the expense of transamination reactions. This results in increased ammonia production and neuronal damage.  相似文献   

19.
Transport and pathways of leucine and glutamine degradation were evaluated in resting human peripheral lymphocytes and compared with the changes induced by concanavalin A (ConA). Cells were incubated with [1-14C]leucine (0.15 mM), [U-14C]leucine (0.15 mM), or [U-14C]glutamine (0.4 mM) after culture with or without 2, 5, 7, or 10 micrograms/ml ConA for 2, 18, or 24 hours, respectively. Initial rates of transport of leucine and glutamine were augmented 2.7-fold and threefold by the mitogen. Leucine transamination, irreversible oxidation, and catabolism beyond isovaleryl-CoA were increased by 90%, 20%, and 60%, respectively. Glutamine utilization increased threefold; accumulation of glutamate, aspartate, and ammonia increased by 700%, 50%, and 100%, respectively, and 14CO2 production by about 400% in response to ConA. The results indicate that ConA stimulates to about the same extent transport of leucine and glutamine into lymphocytes. Glutamine is mainly channeled into catabolic pathways, while leucine remains largely preserved. It is suggested that these metabolic changes provide more leucine for incorporation into protein and more N- and C-atoms required for the synthesis of macromolecules and energy from glutamine.  相似文献   

20.
Alanine and glutamine formation and release were studied using the intact epitrochlaris preparation of rat skeletal muscle. Alanine release from skeletal muscle was increased by fasting (65%), cortisone (145%), thyroxine (200%), and diabetes (185%). Glutamine release was decreased by cortisone (37%) and diabetes (23%) but not significantly affected by fasting or thyroxine. Tissue levels of alanine were unchanged but tissue glutamine levels were markedly reduced (30 to 60%) in all treatment groups. Insulin added in vitro did not affect amino acid release even with preparations obtained from diabetic animals. Inhibition of glycolysis with 0.2 mM iodoacetate had no effect on the rate of alanine and glutamine formation in any treatment group. Pyruvate generation was increased by all treatments even in the presence of the inhibitor. Total skeletal muscle alanine, aspartate, and branched chain aminotransferase, glutamate dehydrogenase, and malic enzyme activities were not significantly altered in any treatment groups. The addition of 10 mM aspartate, cysteine, branched chain amino acids, and serine significantly increased alanine formation, whereas the maximal rate of glutamine formation in the presence of stimulating amino acids was reduced in each treatment groups--the most marked effects were noted with cortisone and diabetic preparations. Although accelerated muscle proteolysis is an important factor regulating alanine formation in skeletal muscle, the redirection of carbon flow from glutamine toward alanine formation observed in fasting, cortisone, thyroxine-treated, and diabetic rats, indicates that factors other than proteolysis also participate in the control of amino acid release from muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号