首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleospora salmonis is an intranuclear microsporidian associated with a proliferative disorder of the lymphoid cells of captive salmonid fish in the northwestern and northeastern regions of North America, in France, and in Chile. Newer diagnostic approaches have used the polymerase chain reaction (PCR) to detect the parasite in fish tissues. The target sequences for these assays lie in the small subunit ribosomal RNA (ssu rRNA) gene or internal transcribed spacer (ITS) as determined from N. salmonis from chinook salmon (Oncorhynchus tshawytscha) from the Pacific Northwest of North America. The lack of sequence data on parasites from diverse geographic origins and hosts led us to compare several isolates of N. salmonis. There was a high degree of similarity in the ssu rDNA sequences (> 98%) among all the isolates of N. salmonis examined, regardless of host or geographic origin. The greatest sequence differences were found between isolates from the Pacific regions of America. Isolates from Chile shared sequences with one or both geographic groups from North America. A similar distribution of sequence types was observed when ITS-1 sequences of selected isolates were analyzed. Sequence data from two N. salmonis-like isolates from marine non-salmonid fish showed one closely related and the second less closely related to N. salmonis isolates from salmonid fish. These results provide evidence for a homogeneous group of aquatic members of the genus Nucleospora found among salmonid fish (N. salmonis) that can be detected using diagnostic PCR assays with ssu rDNA target sequences. The presence of parasites related to N. salmonis among marine fish suggests a potentially broad host and geographic distribution of members of the family Enterocytozoonidae.  相似文献   

2.
Only 1 genus (Nucleospora) within 1 family (Enterocytozoonidae) of the Microsporidia contains species that are parasitic within the nuclei of their host cells; to date, all described intranuclear Nucleospora spp. parasitise fish. This study describes the first intranuclear microsporidian parasite of an invertebrate, the European edible crab Cancer pagurus L. (Decapoda: Cancridae). Infected crabs displayed no obvious external signs, and maximum apparent prevalence of infection within a monthly sample was 3.45%. Infected hepatopancreatic tubules were characterised by varying numbers of hypertrophic and eosinophilic nuclei within epithelial cells. Parasite stages appeared as eosinophilic granular accumulations causing margination of host chromatin. In advanced cases, the tubule epithelia degenerated, with parasites and sloughed epithelial cells appearing in tubule lumens. All life stages of the parasite were observed within host nuclei. Uninucleate meronts were not detected, although binucleate stages were observed. Multinucleate plasmodia (sporogonal plasmodia) contained up to 22 nuclei in section, and late-stage plasmodia contained multiple copies of apparatus resembling the polar filament and anchoring disk, apparently associated with individual plasmodial nuclei. As such, aggregation and early assembly of sporoblast components took place within the intact sporogonial plasmodium, a feature unique to the Enterocytozoonidae. Liberation of sporoblasts from plasmodia or the presence of liberated sporoblasts was not observed in this study. However, large numbers of maturing and mature spores (measuring 1.3 +/- 0.02 x 0.7 +/- 0.01 microm) were frequently observed in direct contact with the host nucleoplasm. Considering the shared features of this parasite with microsporidians of the family Enterocytozoonidae, and the unique presence of this parasite within the nucleoplasm of decapod crustacean hepatopancreatocytes, this parasite (Enterospora canceri) is proposed as the type species of a new genus (Enterospora) of microsporidian. Molecular taxonomic work is now required, comparing Enterospora to Enterocytozoon and Nucleospora, the 2 other genera within the Enterocytozoonidae.  相似文献   

3.
Flatfish tissue samples exhibiting X-cell pseudotumors were tested with a number of ribosomal DNA (rDNA) general primers in polymerase chain reactions (PCRs). Microsporidian primers resulted in the amplification of an rDNA fragment and molecular phylogenetic analysis indicated that although the organism did not relate closely with any current microsporidian genera, it was most similar to Nucleospora salmonis and branched within the Enterocytozoonidae. Re-examination of the original tissues used for DNA extractions revealed the presence of putative microsporidian spores in PCR-positive samples. These observations reiterate the highly sensitive diagnostic feature of PCR, allowing detection of organisms overlooked by conventional methods and demonstrate the occurrence of rare, coinfecting organisms.  相似文献   

4.
Fish microsporidia: fine structural diversity and phylogeny   总被引:1,自引:0,他引:1  
Structural diversity of fish microsporidian life cycle stages and of the host-parasite interface is reviewed. In the infected cell of the fish host, microsporidia may either cause serious degradation of the cytoplasm and demise of the cell, or they may elicit host cell hypertrophy, producing a parasite-hypertrophic host cell complex, the xenoma. The structure of the xenoma and of its cell wall may differ according to the genus of the parasite, and seems to express properties of the parasite rather than those of the host. In merogony, the parasite cell surface interacts with the host cell in diverse ways, the most conspicuous being the production of thick envelopes of different types. Sporogony stages reveal different types of walls or membranes encasing the sporoblasts and later the spores and these envelopes may be of host or parasite origin. Nucleospora differs from all other fish microsporidia by its unique process of sporogony. Except for the formation of conspicuous xenomas, there are no essentially different structures in fish-infecting microsporidia compared with microsporidia from other hosts. Although the structures associated with the development of fish microsporidia cannot be attributed importance in tracing the phylogeny, they are relevant for practical determination and assessing the relation to the host. The possibility of the existence of an intermediate host is discussed. Higher-level classification of Microsporidia is briefly discussed and structure and evolutionary rates in microsporidian rDNA are reviewed. Discussion of rDNA molecular phylogeny of fish-infecting microsporidia is followed by classification of these parasites. Most form a rather cohesive clade. Outside this clade is the genus Nucleospora, separated at least at the level of Order. Within the main clade, however, there are six species infecting hosts other than fish. Based on data available for analysis, a tentative classification of fish-infecting microsporidia into five groups is proposed. Morphologically defined groups represent families, others are referred to as clades. Group 1, represented by family Pleistophoridae, includes Pleistophora, Ovipleistophora and Heterosporis; Vavraia and Trachipleistophora infect non-fish hosts. Group 2, represented by family Glugeidae, is restricted to genus Glugea and Tuzetia weidneri from crustaceans. Group 3 comprises three clades: Loma and a hyperparasitic microsporidian from a myxosporean; Ichthyosporidium and Pseudoloma clade and the Loma acerinae clade. For the latter species a new genus has to be established. Group 4 contains two families, Spragueidae with the genus Spraguea and Tetramicridae with genera Microgemma and Tetramicra, and the Kabatana and Microsporidium seriolae clade. Group 5 is represented by the family Enterocytozoonidae with the genus Nucleospora and mammal-infecting genus Enterocytozoon.  相似文献   

5.
ABSTRACT. An intranuclear microsporidian was observed in lymphoblasts from the kidney of farmed Atlantic halibut larvae ( Hippoglossus hippoglossus ). In addition to spores, intranuclear pre-spore stages were observed. Uninucleated stages with a slight thickening of the cell membrane were the most simple developmental stages observed. Multinucleated developmental stages contain electron-lucent vesicles and electron-dense discs. The spores are ovoid and measure 2.9 × 1.2 μm (mean). Sporophorous vesicles, diplokarya and mitochondria were not observed in any of the developmental stages. The developmental stages observed are similar to those of the family Enterocytozoonidae, genus Enterocytozoon. However, there are several differences between the present species and E. bieneusi from enterocytes in man. The relationship to the other species in the genus, E. salmonis can only be determined when all the developmental stages of the species from Atlantic halibut are identified.  相似文献   

6.
A new microsporidian species, Enterocytozoon hepatopenaei sp. nov., is described from the hepatopancreas of the black tiger shrimp Penaeus monodon (Crustacea: Decapoda). Different stages of the parasite are described, from early sporogonal plasmodia to mature spores in the cytoplasm of host-cells. The multinucleate sporogonal plasmodia existed in direct contact with the host-cell cytoplasm and contained numerous small blebs at the surface. Binary fission of the plasmodial nuclei occurred during early plasmodial development and numerous pre-sporoblasts were formed within the plasmodium. Electron-dense disks and precursors of the polar tubule developed in the cytoplasm of the plasmodium prior to budding of early sporoblasts from the plasmodial surface. Mature spores were oval, measuring 0.7 × 1.1 μm and contained a single nucleus, 5-6 coils of the polar filament, a posterior vacuole, an anchoring disk attached to the polar filament, and a thick electron-dense wall. The wall was composed of a plasmalemma, an electron-lucent endospore (10 nm) and an electron-dense exospore (2 nm). DNA primers designed from microsporidian SSU rRNA were used to amplify an 848 bp product from the parasite genome (GenBank FJ496356). The sequenced product had 84% identity to the matching region of SSU rRNA from Enterocytozoon bieneusi. Based upon ultrastructural features unique to the family Enterocytozoonidae, cytoplasmic location of the plasmodia and SSU rRNA sequence identity 16% different from E. bieneusi, the parasite was considered to be a new species, E. hepatopenaei, within the genus Enterocytozoon.  相似文献   

7.
We describe a microsporidian parasite infecting non-native Chinese mitten crabs (Eriochier sinensis) from Europe. Electron microscopy revealed merogonic and sporogonic life stages bound within a plasmalemma. The crab parasite develops polar tube precursors at the sporont stage but does not complete formation of the intact spore extrusion apparatus at the stage of the sporogonial plasmodium like Enterocytozoon bienuesi and other representatives of the Enterocytozoonidae. Its presence within an aquatic crustacean host, and a distinct molecular phylogeny based on partial small subunit ribosomal RNA (SSU rRNA) gene sequences also place it relatively close, though distinct to, existing genera within the Enterocytozoonidae. Consideration of morphological and phylogenetic characteristics of other hepatopancreas-infecting microsporidia from crustaceans suggests that certain ones (e.g. Enterospora canceri) are retained within the clade corresponding to the existing family Enterocytozoonidae, while others, including the parasite described here, may eventually be grouped in a sister taxon potentially of family rank. Based upon morphological and host similarity, it is likely that the parasite described here is the same as Endoreticulatus eriocheir (Wang and Chen, 2007), previously described from Chinese mitten crabs in Asia. However, using a combined taxonomic approach based upon morphological and phylogenetic data, we propose the formation of a new genus (Hepatospora) to replace the previous generic classification of the Asian parasite as Endoreticulatus. The microsporidian from the hepatopancreas of E. sinensis is named Hepatospora eriocheir (Wang and Chen, 2007) gen. et comb. nov. It is assumed that the parasite was introduced during initial invasions of this crab to Europe during the early 20th Century.  相似文献   

8.
9.
No effective recombinant vaccines are currently available for any rickettsial diseases. In this regard the first non-ribosomal DNA sequences from the obligate intracellular pathogen Piscirickettsia salmonis are presented. Genomic DNA isolated from Percoll density gradient purified P. salmonis, was used to construct an expression library in lambda ZAP II. In the absence of preexisting DNA sequence, rabbit polyclonal antiserum raised against P. salmonis, with a bias toward P. salmonis surface antigens, was used to identify immunoreactive clones. Catabolite repression of the lac promoter was required to obtain a stable clone of a 4,983 bp insert in Escherichia coli due to insert toxicity exerted by the accompanying radA open reading frame (ORF). DNA sequence analysis of the insert revealed 1 partial and 4 intact predicted ORF's. A 486 bp ORF, ospA, encoded a 17 kDa antigenic outer surface protein (OspA) with 62% amino acid sequence homology to the genus common 17 kDa outer membrane lipoprotein of Rickettsia prowazekii, previously thought confined to members of the genus Rickettsia. Palmitate incorporation demonstrated that OspA is posttranslationally lipidated in E. coli, albeit poorly expressed as a lipoprotein even after replacement of the signal sequence with the signal sequence from lpp (Braun lipoprotein) or the rickettsial 17 kDa homologue. To enhance expression, ospA was optimized for codon usage in E. coli by PCR synthesis. Expression of ospA was ultimately improved (approximately 13% of total protein) with a truncated variant lacking a signal sequence. High level expression (approximately 42% tot. prot.) was attained as an N-terminal fusion protein with the fusion product recovered as inclusion bodies in E. coli BL21. Expression of OspA in P. salmonis was confirmed by immunoblot analysis using polyclonal antibodies generated against a synthetic peptide of OspA (110-129) and a strong antibody response against OspA was detected in convalescent sera from coho salmon (Oncorhynchus kisutch).  相似文献   

10.
11.
Enterocytozoon was 1st described in 1985, in an AIDS patient with intestinal malabsorption and diarrhea. Since then, additional cases of infection with this organism have been observed, but only in individuals with AIDS and malabsorption. Intestinal tissue biopsies were obtained from a 45-year-old man prior to AIDS diagnosis, again nine months later and then at autopsy two months later. When the biopsies were examined electron microscopically, both sets contained the microsporidian parasite. However, the 2nd intestinal biopsy, when wasting was much more severe, contained infection in almost every small intestinal enterocyte examined. The parasite was actively developing, allowing us to detail its life cycle. The parasite is apansporoblastic, polysporous and has characteristics not previously reported in the Microsporida: (1) an electron lucent inclusion not usually seen in Microsporida is prominent and always present; (2) extremely elongated sausage-shaped nuclei occur in the proliferative phase of parasite development; (3) the polar tube development uniquely involves the production of electron dense discs, yet results in the formation of a typical spore; and (4) polar tube development occurs prior to the final division of the multi-nucleate sporont. On the basis of these characteristics, we are placing this genus in a new family, Enterocytozoonidae, n. fam.  相似文献   

12.
R R Wang  K B Jensen 《Génome》1994,37(2):231-235
To test the presence of a J genome in the type species of Leymus, L. arenarius, its total genomic DNA and that of tetraploids L. mollis, L. salinus ssp. salmonis, L. ambiguus, L. chinensis, L. secalinus, L. alaicus ssp. karataviensis, and L. innovatus were probed with the 277-bp insert of pLeUCD2, which can hybridize with the J, S, and P but not with the N, R, V, Q, I, T, and ABD genomes. The DNA probe hybridized with PalI- or TaqI-digested total DNAs from Thinopyrum elongatum (JeJe diploid) and T. elongatum x Psathyrostachys juncea (JeN hybrid), but not with those from L. arenarius (NNNNXXXX octoploid) and all tetraploid Leymus species (NNXX). Attempts to cross diploid Thinopyrum and tetraploid Leymus species yielded only one triploid hybrid, T. elongatum x L. salinus ssp. salmonis. Meiotic chromosome associations at metaphase I of pollen mother cells in the triploid hybrid averaged 19.69 univalents, 0.64 bivalents, and 0.01 trivalents per cell. Chromosome pairings in the tetraploid hybrids of L. mollis x L. salinus ssp. salmonis, and the reciprocal cross, indicate that L. mollis and L. salinus ssp. salmonis shae the same genomic constitution. Both the DNA probe and genome analysis results confirm the absence of the J genome in the seven additional Leymus species tested. Meiotic data indicated that tetraploid Leymus species could not have the genome formula N1N1N2N2; thus their genome formulas should remain as NNXX until the source of X is identified.  相似文献   

13.
Piscirickettsia salmonis is a novel, aggressive, facultative Gram-negative bacterium that drastically affects salmon production at different latitudes, with particular impact in southern Chile. Initially, P. salmonis was described as a Rickettsia-like, obligate, intracellular Alphaproteobacteria, but it was reclassified recently as a facultative intracellular Gammaproteobacteria. This designation has prompted the independent growth of the bacterium to a pure state for detailed study of its biology, genetics and epidemiology, properties that are still relatively poorly characterized. The preliminary sequence analysis of a 992-bp fragment of pure P. salmonis DNA allowed us to characterize a novel and complete 863-bp insertion sequence in the bacterial genome (named ISPsa2), which has a novel 16/16bp perfectly inverted terminal repeat flanking a 726-bp ORF that encodes a putative transposase (Tnp-Psa). The coding sequence of the enzyme shares similarities to that described in some Bacillus species and particularly to those of the IS6 family. ISPsa2 carries its own promoter with standard -10 and -35 sequences, suggesting an interesting potential for plasticity in this pathogenic bacterium. Additionally, the presence of ISPsa2 was confirmed from three isolates of P. salmonis collected from different epizootics in Chile in 2010.  相似文献   

14.
ABSTRACT. Enterocytozoon salmonis , an intranuclear microsporidian of salmonid fish, was propagated in vitro using chinook salmon mononuclear leukocytes. Characteristic morphology and infectivity of the cultured parasites were evaluated to determine the effect of in vitro maintenance and passage on the parasites. Cultured parasites developed through several stages from meronts to infectious spores. Parasites obtained from in vitro passages tested up to the 17th subculture, retained their morphological characteristics and pathogenicity for chinook salmon ( Oncorhynchus tshawytscha) . The disease induced by experimental infections with parasites from in vitro cultures was ideniical to that observed in naturally infected chinook salmon. An examination of supernatants obtained from the infected cultures revealed evidence of soluble factor(s) produced by E. salmonis -infected cells that stimulated uninfected target cells in vitro. This observation may explain in part the proliferative disease of hematopoietic tissues which characterizes the disease in infected chinook salmon.  相似文献   

15.
A phylogenetic analysis of the genus Gonioctena (Coleoptera, Chrysomelidae) based on allozyme data (17 loci) and mitochondrial DNA sequence data (three gene fragments, 1,391 sites) was performed to study the evolutionary history of host-plant shifts among these leaf beetles. This chrysomelid genus is characteristically associated with a high number of different plant families. The diverse molecular data gathered in this study are to a large extent congruent, and the analyses provide a well-supported phylogenetic hypothesis to address questions about the evolution of host-plant shifts in the genus Gonioctena. The most-parsimonious reconstruction of the ancestral host-plant associations, based on the estimated phylogeny, suggests that the Fabaceae was the ancestral host-plant family of the genus. Although most of the host-plant shifts (between different host species) in Gonioctena have occurred within the same plant family or within the same plant genus, at least eight shifts have occurred between hosts belonging to distantly related and chemically dissimilar plant families. In these cases, host shifts may have been simply directed toward plant species available in the environment. Yet, given that two Gonioctena lineages have independently colonized the same three new plant families (Salicaceae, Betulaceae, Rosaceae), including four of the same new genera (Salix, Alnus, Prunus, Sorbus), some constraints are likely to have limited the different possibilities of interfamilial host-plant shifts.  相似文献   

16.
17.
The use of molecular diagnostic tools in epidemiological investigations of Cryptosporidium, Giardia, and Enterocytozoon has provided new insights into their diversity and transmission pathways. In this study, 157 stool specimens from 2-month to 70-year-old patients were collected, a polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) analysis of the small subunit (SSU) rRNA gene was used to detect and differentiate Cryptosporidium species, and DNA sequence analysis of the 60 kDa glycoprotein (gp60) gene was used to subtype Cryptosporidium hominis and Cryptosporidium parvum. Giardia duodenalis, and Enterocytozoon bieneusi in the specimens were detected using PCR and sequence analysis of the triosephosphate isomerase (tpi) gene and internal transcribed spacer (ITS), respectively. C. hominis and C. parvum were found in two (1.3%) and one (0.6%) specimen respectively, comprising of Ia and IIe (with 8 nucleotide substitutions) subtype families. The G. duodenalis A2 subtype was detected in five (3.2%) specimens, while four genotypes of E. bieneusi, namely A, type IV, D and WL7 were found in 10 (6.4%) specimens. Children aged two years or younger had the highest occurrence of Cryptosporidium (4.4%) and Enterocytozoon (13.0%) while children of 6 to 17 years had the highest Giardia infection rate (40.0%). No Cryptosporidium, Giardia, and Enterocytozoon were detected in patients older than 60 years. Enterocytozoon had high infection rates in both HIV-positive (3.3%) and HIV-negative (8.3%) patients. Results of the study suggest that anthroponotic transmission may be important in the transmission of Cryptosporidium spp. and G. duodenalis while zoonotic transmissions may also play a role in the transmission of E. bieneusi in humans in Kaduna State, Nigeria.  相似文献   

18.
ABSTRACT. The microsporidian species Enterocytozoon bieneusi, Septata intestinalis and Ameson michaelis were compared by using sequence data of their rRNA gene segments, which were amplified by polymerized chain reaction and directly sequenced. The forward primer 530f (5'-GTGCCATCCAGCCGCGG-3') was in the small subunit rRNA (SSU-rRNA) and the reverse primer 580r (5'-GGTCCGTGTTTCAAGACGG-3') was in the large subunit rRNA (LSU-rRNA). We have utilized these sequence data, the published data on Encephalitozoon cuniculi and Encephalitozoon hellem and our cloned SSU-rRNA genes from E. bieneusi and S. intestinalis to develop a phylogenetic tree for the microsporidia involved in human infection. The higher sequence similarities demonstrated between S. intestinalis and E. cuniculi support the placement of S. intestinalis in the family Encephalitozoonidae. This method of polymerized chain reaction rRNA phylogeny allows the establishment of phylogenetic relationships on limiting material where culture and electron microscopy are difficult or impossible and can be applied to archival material to expand the molecular phylogenetic analysis of the phylum Microspora. In addition, the highly variable region (E. coli numbering 590–650) and intergenic spacer regions in the microsporidia were noted to have structural correspondence, suggesting the possibility that they are coevolving.  相似文献   

19.
Molecular data have proved useful in the study of microsporidia phylogeny. Previous studies have shown that there are several important differences between phylogenies based on rRNA and morphological data. In the present study, small subunit (SSU) rDNA sequences were obtained from 7 different fish-infecting microsporidia from 4 different genera (Glugea Thélohan, 1891, Loma Morrison and Sprague, 1981, Pleistophora Gurley, 1893, and Spraguea Weissenberg, 1976). The lengths of the SSU rDNA genes in these species were between 1,332 and 1,343 base pairs. Phylogenetic analysis was performed using parsimony, maximum likelihood, and Kimura 2-parameter with neighbor joining. The analyses revealed that the microsporidia could be divided into 3 major groups. With the exception of Nucleospora salmonis Hedrick, Groff, and Baxa, 1991, all the microsporidia infecting fishes occurred in the same group. The analysis showed that Pleistophora mirandellae Vaney and Conte, 1901 and Pleistophora aguillarum Hoshina, 1951 are not species of Pleistophora. Furthermore, the analysis showed that Loma is not a member of Glugeidae Thélohan, 1892.  相似文献   

20.
The developmental stages of a recently described microsporidian from the nucleus of hematopoietic cells of salmonid fish were found to be unique among the Microsporida. All observed stages, including meronts, sporonts, and spores were in direct contact with the host cell nucleus (principally hematopoietic cells) of chinook salmon (Oncorhynchus tshawytscha). There is no parasitophorous vacuole and sporogony does not involve formation of a pansporoblastic membrane as with other members of the suborder Apansporoblastina. The extrusion apparatus differentiates prior to division of sporogonial plasmodia. The spores are ovoid (1 x 2 microns) and uninucleate, and possess a coiled polar tube with 8-12 turns. Developmental stages of the salmonid microsporidian are similar to those described for Enterocytozoon bieneusi as found in the intestinal mucosa of human AIDS patients. However, the intranuclear development, different cell types, and host infected clearly separate the salmonid and human parasites. Accordingly, the intranuclear parasite of salmonids is given the name Enterocytozoon salmonis n. sp. within the suborder Apansporoblastina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号