首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
The autumn migration of Mythimna separata (Walker) (Lepidoptera: Noctuidae) across the Bohai Sea was observed with a scanning entomological radar and a searchlight trap at Beihuang, an island located in the center of the Bohai Gulf of northern China, in 2003-2006. During the autumn migration, M. separata flew at the altitudes of 50-500 m, with a displacement speed of 4-12 m/s, toward the southwest. Variations of area density of the radar targets and of catches in the searchlight trap through the night indicated that the flight duration of M. separata was approximately 10 h. Based on these observations, M. separata that originated in northeastern China (i.e., Liaoning, Jilin, and Heilongjiang provinces and part of the Inner Mongolia autonomous region) could immigrate into eastcentral China and subsequently to southern China (i.e., Fujian, Guangdong, and Guangxi provinces) within a week for overwintering.  相似文献   

2.
Assessing the impacts of avian collisions with wind turbines requires reliable estimates of avian flight intensities and altitudes, to enable accurate estimation of collision rates, avoidance rates and related effects on populations. At sea, obtaining such estimates visually is limited not only by weather conditions but, more importantly, because a high proportion of birds fly at night and at heights above the range of visual observation. We used vertical radar with automated bird‐tracking software to overcome these limitations and obtain data on the magnitude, timing and altitude of local bird movements and seasonal migration measured continuously at a Dutch offshore wind farm. An estimated 1.6 million radar echoes representing individual birds or flocks were recorded crossing the wind farm annually at altitudes between 25 and 115 m (the rotor‐swept zone). The majority of these fluxes consisted of gull species during the day and migrating passerines at night. We demonstrate daily, monthly and seasonal patterns in fluxes at rotor heights and the influence of wind direction on flight intensity. These data are among the first to show the magnitude and variation of low‐altitude flight activity across the North Sea, and are valuable for assessing the consequences of developments such as offshore wind farms for birds.  相似文献   

3.
Abstract 1. The high-altitude wind-borne migration of the diamondback moth Plutella xylostella in the U.K. in 2000 was investigated (a) by direct monitoring of insect flight by vertical-looking radar and by aerial netting, and (b) through evidence of temporal variation in P. xylostella abundance deduced from a network of light traps.
2. Migrating P. xylostella were identified by a unique combination of size and shape data derived from the continuously operating vertical-looking radar.
3. Radar-detected migratory overflights correlated significantly with associated peaks in abundance of P. xylostella estimated by catches in a U.K.-wide light trap network; however the correlation was stronger when light trap catches were lagged by 1 day.
4. The first notable catches of P. xylostella in the U.K. occurred in early May, and were accompanied by migrations over the radar from the east.
5. Radar data and back-tracking indicated that a major wind-borne migration of P. xylostella from The Netherlands to southern England took place in early May, and that this was responsible for the establishment of the U.K. population.
6. The origin of early-season P. xylostella occurring in Britain is discussed.  相似文献   

4.
The autumn migration of Helicoverpa armigera (Hübner) was observed with radar and two types of light-trap at Langfang, Hebei province, China in 2001 and 2002. The sudden increase in the proportion of H. armigera moths in the searchlight trap indicated migration into the area and catches increased 10-fold during the second half of the night due to the landing of migrants before dawn. The moths' migratory flights took place at up to 2000 m above the ground, and moths flew differentially at times, and heights, when favourable (i.e. northerly) winds occurred. This facilitated the maximum displacement of moths towards the south during these 'return' migrations. The moths flew over the radar site at consistently high densities through the night, and the resulting flight durations of c. 10 h, at displacement speeds of 30-33 km h-1, would allow moths emerging in the far northeast of China (i.e. Liaoning and Jilin provinces and the Inner Mongolia autonomous region) to migrate into northern China (Hebei, Shandong and Henan provinces). The association of the seasonal migratory movements of H. armigera with crops in northern China is briefly discussed.  相似文献   

5.
1 A network of light‐traps, an aerial net carried by kytoon (balloon) and two entomological radars were used to investigate whether ground beetles migrate nocturnally through China. The network‐wide, simultaneous sudden increase in light trap catches, and after subsequent decrease, indicated a seasonal long‐distance night migration of ground beetles, with Pseudoophonus griseus (Panzer) predominant, in August. 2 Aerial net trapping indicated that carabids were able to ascend to altitudes of at least 200 m and become windborne. Radar observations indicated that the migratory beetles formed high‐density layer concentrations at approximately 200–300 m. 3 These concentrations were coincident with the top of the temperature inversion and a wind speed maximum, which suggested that the carabids tended to select warm, fast moving air for their long‐distance migration. 4 The ground beetles orientated and displaced towards the downwind direction in southerly winds. Their air speed decreased as the tailwind increased and, thus, migrating beetles appeared to be conserving energy. 5 The mean ± SD displacement speed (ground speed) and air speed were 6.85 ± 1.73 m/s (n= 172) and 4.45 ± 1.54 m/s (n= 172), respectively. The duration of flight, estimated from the variation in area density derived from radar data, was approximately 9–10 h, indicating that the beetles might migrate hundreds of kilometres in a single flight.  相似文献   

6.
ABSTRACT. 1. Daily trap catches of the rice planthoppers, N.lugens Stal and S.furcifera Horvath, and associated synoptic weather patterns were analysed in Kyushu, south-west Japan, in the autumns of 1980–85.
2. Certain weather patterns which seemed to favour overseas immigration, were reflected in trap catches: of eighteen occasions in which back-tracks on 850 mbar wind fields reached central China, marked mass catches in a light trap occurred on six occasions, and peaks in catch curves were found on another seven occasions.
3. These results strongly imply overseas immigration of the planthoppers from China to Kyushu in autumn, identical to invasions by the same species in early summer. However, such autumn migration is apparently non-adaptive because migrants or their progeny are soon killed by cold weather.  相似文献   

7.
Radar observations of moths migrating in a nocturnal low-level jet   总被引:3,自引:0,他引:3  
Abstract. 1. Radar observations of insects migrating at night over central-western New South Wales have detected an instance of migration in a low-level wind jet.
2. From the characteristics of the radar echoes, and from the catches obtained in traps at ground level and at the altitude of migration, the migrants can be identified as noctuid and pyralid moths of a number of different species.
3. The migration, which was in a downwind direction, started at dusk and ended at about dawn. During the period immediately before first light, a large proportion of the migrants were concentrated into a 100m deep layer at an altitude of about 250m; this layer had not been present during the first half of the night.
4. The boundary layer wind profile at dawn exhibited a clear low-level jet structure, with a wind maximum between 100 and 300m, and strong shear in the wind direction below 300m. A strong surface temperature inversion, but not a wind-speed maximum, had been present the previous evening.
5. The formation of the layer concentration in the upper part of the jet may be accounted for in terms of previously described responses of nocturnally migrating insects to a surface temperature inversion. It is not therefore necessary to assume that the migrants were responding specifically to the presence of a wind-speed maximum.  相似文献   

8.
SUMMARY. 1. Adult Trichoptera were caught for 1 year (February 1989-March 1990) on the banks of the Danube at Bad Deutsch Altenburg, Lower Austria, using a Jermy-type light trap. The blacklight tube of the trap was in operation all night, and the samples were taken at daily intervals. From a total of 33,465 specimens caught, the most abundant species were Psychomyia pusilla Fabr. (Psychomyidae), the three hydropsychids Hydropsyche pellucidula Curtis. Hydropsyche bulgaromanorum Mal. and Hydropsyche contubernalis McL., and the leptocerid Ceraclea dissimilis Steph.
2. The total catch included fifty-three of the 284 Austrian species from thirteen families. One female of the parthenogenetic Apatania muliebris McL. was the second specimen ever collected in Austria.
3. The phenology of seventeen species was studied in detail, all of them summer species. Two types of flying seasons were observed: short flight periods of 3 months or less (seven species) and prolonged periods lasting 4–7 months (ten species).
4. In nine species the sex ratio was significantly different from 1:1.
5. The influence of precipitation, wind speed and night air temperature (maximum, mean and minimum) on catching success was tested. Only the effect of air temperature was significant with maximum night air temperature having a highly significant (P<0,001) correlation with flight activity. No specimens were caught at maximum temperatures below 6.8°C, and catching success was highest on warmest nights.  相似文献   

9.
A limitation of standardized mist netting for monitoring migration is caused by the lack of knowledge about the relationship between trapped birds and birds flying aloft. Earlier studies related nocturnal radar counts with trapping data of the following day. In this study, we compared for the first time data gathered simultaneously by radar and mist netting, separately for diurnal and nocturnal migration. Trapping numbers were strongly correlated with migratory intensities measured by radar (r>0.6). A multiple regression analysis, including wind speed and wind direction explained 61% of variation in the number of captures. During the night, and particularly with favourable winds, birds flew at higher altitudes and hence escaped the nets to a higher proportion. The number of nocturnal migrants trapped during daytime was well correlated with migratory intensities observed by radar in the preceding night. The diurnal time patterns, however, revealed fundamental differences between trapping counts and radar observations. This was mainly due to increasing and decreasing flight altitudes in the course of the night, and by the limitations of the radar technique that underestimates migratory intensities during the day when birds aggregate in flocks. In relation to the migratory intensity recorded by radar, diurnal migrants are trapped in a much higher proportion than nocturnal migrants. Finally, our results confirm that trapping data from a site hardly used for stopover are well suited to represent the ongoing migration during the day and night.  相似文献   

10.
Swifts, Apus apus, spend the night aloft and this offers an opportunity to test the degree of adaptability of bird orientation and flight to different ecological situations. We predicted the swifts' behaviour by assuming that they are adapted to minimize energy expenditure during the nocturnal flight and during a compensatory homing flight if they become displaced by wind. We tested the predictions by recording the swifts' altitudes, speeds and directions under different wind conditions with tracking radar; we found an agreement between predictions and observations for orientation behaviour, but not for altitude and speed regulation. The swifts orientated consistently into the head wind, with angular concentration increasing with increasing wind speed. However, contrary to our predictions, they did not select altitudes with slow or moderate winds, nor did they increase their airspeed distinctly when flying into strong head winds. A possible explanation is that their head-wind orientation is sufficient to keep nocturnal displacement from their home area within tolerable limits, leaving flight altitude to be determined by other factors (correlated with temperature), and airspeed to show only a marginal increase in strong winds. The swifts were often moving "backwards", heading straight into the wind but being overpowered by wind speeds exceeding their airspeed. The regular occurrence of such flights is probably uniquely associated with the swifts' remarkable habit of roosting on the wing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号