首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluated the motor responses in recto-anal preparations obtained from rats, in terms of the excitation displayed by modules of nerve networks and descending distally directed pathways, when subjected to the mechanographic on-line technique, a partitioned organ bath, electrical stimulation (EFS, 0.8 ms, 5 Hz) and distension. EFS elicited modular contractions, which increased in amplitude distally, in circular muscle rings isolated from the proximal, middle or distal rectum. The modular responses of the internal anal sphincter or anal canal were relaxation or contraction, respectively. The application of EFS to the distal rectum induced a descending contractile response in the anal canal (5.24±0.34 mN), while distension by balloon evoked a descending response consisting of contraction (1.72±0.20 mN) followed by relaxation (3.42±0.24 mN). The responses were sensitive to tetrodotoxin. Atropine considerably depressed the contractions in all preparations. Whether or not atropine was present, L-NNA increased the excitatory responses, while L-arginine decreased the contractions and extended the relaxation of internal anal sphincter and anal canal. The results suggest that excitatory neurotransmission(s) expressed in the distal rectum dominate modular nerve networks. Functionally-different descending pathways are involved in the motor activity of the anal canal. Stimulatory cholinergic pathways are dependent on the electrically-induced excitation, and inhibitory nitrergic pathways are sensitive to distension of rectal wall.  相似文献   

2.
Spontaneous and electrically-elicited motor activity was recorded by triple organ bath in rat segment-model preparation as display of excitation of local nerve networks and ascending or descending reflex pathways underlying contractile potency and functional coordination of colonic longitudinal and circular muscles. Spontaneous high-amplitude contractions, but not relaxations, appeared synchronously in both muscles. Electrical field stimulation applied to proximal or distal part of segments elicited both tetrodotoxin (0.1 microM)-sensitive local motor responses of the stimulated part and ascending or descending motor responses of the contralateral, nonstimulated part of the preparations. Contractions characterized the local response of longitudinal muscle. The circular muscle responded with relaxation followed by contraction. Synchronous ascending contractions and descending contraction of the longitudinal muscle and relaxation followed by contraction of the circular muscle were observed when the middle part of segments was stimulated, thus indicating that locally-induced nerve excitation propagated via intrinsic ascending or descending nerve pathways that could be synchronously coactivated by one and the same stimulus. The ascending motor responses were more pronounced and the motor responses of longitudinal muscle were expressed more than those of circular muscle suggesting an essential role of ascending reflex pathways and longitudinal muscle in the coordinated motor activity of colon.  相似文献   

3.
The role of pelvic floor muscle contraction in the genesis of anal canal pressure is not clear. Recent studies have suggested that vaginal distension increases pelvic floor muscle contraction. We studied the effects of vaginal distension on anal canal pressure in 15 nullipara asymptomatic women. Anal pressure, rest, and squeeze were measured using station pull-through manometry techniques with no vaginal probe, a 10-mm vaginal probe, and a 25-mm vaginal probe in place. Rest and squeeze vaginal pressures were significantly higher when measured with the 25-mm probe compared with the 10-mm probe, suggesting that vaginal distension enhances pelvic floor contraction. In the presence of the 25-mm vaginal probe, rest and squeeze anal pressures in the proximal part of the anal canal were significantly higher compared with no vaginal probe or the 10-mm vaginal probe. On the other hand, distal anal pressures were not affected by any of the vaginal probes. Ultrasound imaging of the pelvic floor revealed that vaginal distension increased the anterior-posterior length of the puborectalis muscle. Atropine at 15 micro g/kg had no influence on the rest and squeeze anal pressures with or without vaginal distension. Our data suggest that pelvic floor contractions increase pressures in the proximal part of the anal canal, which is anatomically surrounded by the puborectalis muscle. We propose that pelvic floor contraction plays an important role in the fecal continence mechanism by increasing anal canal pressure.  相似文献   

4.
Acetylcholine (ACh) (1.5 X 10(-5) M) elicited three different types of tonic and phasic contraction of muscularis muscle from different parts (cardiac, middle and pyloric) of the stomach of Bufo marinus. Prostaglandin E2 (PGE2) (10(-9)-10(-6) M) induced a concentration-dependent relaxation of tonic contractions elicited by ACh (1.5 x 10(-5) M) of strips from the cardiac part while potentiating the phasic contractions from the middle part of the stomach. PGE2 (10(-7) M) relaxed tonic contraction and potentiated phasic contraction concomitantly in preparations in which tonic and phasic contractions were elicited by ACh (1.5 x 10(-5) M). The effects of PGE2 on the preparation are related to the part of the stomach from where the strips are prepared and the muscle tone of the preparation.  相似文献   

5.
The aim of the present study was to analyze the neuromodulation of rectoanal reflex activity by lumbar sympathetic nerves in guinea pigs. The mechanical activities of the rectum were recorded with a balloon connected to a pressure transducer, and those of the internal anal sphincter (IAS) were recorded with a custom-made strain gauge force transducer. Gradual and sustained rectal distension evoked the rectoanal reflex, causing cholinergic contractions of the rectum and synchronous nitrergic relaxations of the IAS. Section of the lumbar colonic nerves enhanced both rectal contractions and IAS relaxations. Section of the 13th thoracic cord abolished both rectal contractions and IAS relaxations, but section of the lumbar colonic nerves restored them. Lumbar sympathectomy and pithing sacral cords greatly diminished these rectal contractions and IAS relaxations, but the intrinsic reflex component remained. NG-nitro-L-arginine methyl ester enhanced the intrinsic reflex-mediated contraction of the rectum and abolished reflex-mediated relaxation of the IAS and converted into cholinergic contractions. The present results indicate that the extrinsic lumbar inhibitory outflow causes marked inhibition of the rectoanal reflex via the lumbar colonic nerves.  相似文献   

6.
Segmentation in the guinea pig small intestine consists of a number of discrete motor patterns including rhythmic stationary contractions that occur episodically at specific locations along the intestine. The enteric nervous system regulates segmentation, but the exact circuit is unknown. Using simple computer models, we investigated possible circuits. Our computational model simulated the mean neuron firing rate in the feedforward ascending and descending reflex pathways. A stimulus-evoked pacemaker was located in the afferent pathway or in a feedforward pathway. Output of the feedforward pathways was fed into a simple model to determine the response of the muscle. Predictions were verified in vitro by using guinea pig jejunum, in which segmentation was induced with luminal fatty acid. In the computational model, local stimuli produced an oral contraction and anal dilation, similar to in vitro responses to local distension, but did not produce segmentation. When the stimulus was distributed, representing a nutrient load, the result was either a tonic response or globally synchronized oscillations. However, when we introduced local variations in synaptic coupling, stationary contractions occurred around these locations. This predicts that severing the ascending and descending pathways will induce stationary contractions. An acute lesion in our in vitro model significantly increased the number of stationary contractions immediately oral and anal to the lesion. Our results suggest that spatially localized rhythmic contractions arise from a local imbalance between ascending excitatory and descending inhibitory muscle inputs and require a distributed stimulus and a rhythm generator in the afferent pathway.  相似文献   

7.
In isolated rat iris sphincter muscle, there has been no attempt to measure mechanical tension changes, because of the small size of the preparation. In this study, responses of the isolated rat iris sphincter to some agents and electrical stimulation were examined. Acetylcholine and electrical stimulation produced powerful contractions of the iris sphincter. These contractile responses were suppressed by atropine and enhanced by physostigmine. 10 μM norepinephrine induced a weak contraction of the sphincter muscle and 1 mM isoproterenol induced a very weak relaxation. These responses were antagonized by phentolamine and propranolol, respectively. In the presence of 0.1 μM atropine, electrical stimulation produced a weak alpha-adrenergic contraction and a very weak beta-adrenergic relaxation. Electrically induced responses were abolished by tetrodotoxin. In conclusion, in the rat iris sphincter, powerful contraction is due to the activation of muscarinic receptors, and that there are weak alpha-adrenergic contraction and weak beta-adrenergic relaxation. Thus in rats, muscarinic contraction of the sphincter muscle plays major role in the regulation of pupil diameter.  相似文献   

8.
The neuropeptide galanin has species-dependent effects on intestinal motility. It has a contractile effect on rat jejunal muscle while it relaxes guinea-pig ileum by inhibiting cholinergic transmission. Its effect on human gut motility has been unknown. Extensive work led to the discovery of selective galanin analogues such as M15 [galanin(1-12)-Pro-substance-P(5-11)], M35 [galanin(1-12)-Pro-bradykinin(2-9)-amide] that competitively inhibit various actions of galanin in the central nervous system. The present study was designed to examine the effect of galanin, M15 and M35 on longitudinal jejunal smooth muscle strips isolated from humans and rats, and to localize galanin-immunoreactivity in human jejunum. Galanin and ACh were equally effective in stimulating contractions of the isolated jejunal muscle: sigmoid curve fitting showed that maximal contractile response to galanin and ACh were 25.7+/-11.1 mN and 23.7+/-9.7 in humans, while 8.0+/-0.6 and 8.1+/-0.3 mN in rats, respectively. These effects of galanin were not inhibited by either atropine (5 x 10(-6) M) or tetrodotoxin (3 x 10(-6) M). The potency of galanin inducing the contractile actions were similar in humans and rats. Interestingly, neither M15 nor M35 (up to 10(-7) M) were able to inhibit the responses of the smooth muscle to galanin. However, both putative galanin receptor antagonists showed agonist effects in our experimental models. In accordance with the functional studies, both the longitudinal and the circular muscle layers were abundant in nerve fibers and varicosities showing galanin immunoreactivity. Our data suggest that galanin is a potent physiological regulator of jejunal contractions in humans. Its action on the jejunum, however, is mediated by galanin receptors that are different from those located in the central nervous system.  相似文献   

9.
Esophageal distension causes simultaneous relaxation of the lower esophageal sphincter (LES) and crural diaphragm. The mechanism of crural diaphragm relaxation during esophageal distension is not well understood. We studied the motion of crural and costal diaphragm along with the motion of the distal esophagus during esophageal distension-induced relaxation of the LES and crural diaphragm. Wire electrodes were surgically implanted into the crural and costal diaphragm in five cats. In two additional cats, radiopaque markers were also sutured into the outer wall of the distal esophagus to monitor esophageal shortening. Under light anesthesia, animals were placed on an X-ray fluoroscope to monitor the motion of the diaphragm and the distal esophagus by tracking the radiopaque markers. Crural and costal diaphragm electromyograms (EMGs) were recorded along with the esophageal, LES, and gastric pressures. A 2-cm balloon placed 5 cm above the LES was used for esophageal distension. Effects of baclofen, a GABA(B) agonist, were also studied. Esophageal distension induced LES relaxation and selective inhibition of the crural diaphragm EMG. The crural diaphragm moved in a craniocaudal direction with expiration and inspiration, respectively. Esophageal distension-induced inhibition of the crural EMG was associated with sustained cranial motion of the crural diaphragm and esophagus. Baclofen blocked distension-induced LES relaxation and crural diaphragm EMG inhibition along with the cranial motion of the crural diaphragm and the distal esophagus. There is a close temporal correlation between esophageal distension-mediated LES relaxation and crural diaphragm inhibition with the sustained cranial motion of the crural diaphragm. Stretch caused by the longitudinal muscle contraction of the esophagus during distension of the esophagus may be important in causing LES relaxation and crural diaphragm inhibition.  相似文献   

10.
The pharmacological actions of three leukotriene D4 (LTD4) receptor antagonists, FPL-55712, L-648,051, and L-649,923, and a novel inhibitor of leukotriene biosynthesis, L-651,896, have been investigated on isolated human tracheal smooth muscle. In the order of potency L-648,051 greater than FPL-55712 greater than L-649,923, these agents antagonized contractions to LTD4 and produced parallel rightward shifts in the dose-response curves. Mean -log KB values against LTD4 were 6.9 +/- 0.1, 6.5 +/- 0.3, and 6.0 +/- 0.1 for L-648,051, FPL-55712, and L-649,923, respectively. FPL-55712 also antagonized contractions to LTC4 (-log KB value, 6.4 +/- 0.3) and this activity was not decreased by the gamma-glutamyl transpeptidase inhibitor, L-serine borate. In the presence of 1 x 10(-7) M atropine, 7 x 10(-6) M mepyramine, and 1.4 x 10(-6) M indomethacin, L-648,051 at 2 x 10(-5) and 2 x 10(-6) M produced complete and partial blockade, respectively, of the contraction to goat anti-IgE. L-649,923 and FPL-55712 produced partial but significant inhibition at 2 x 10(-5) M, whereas the 5-lipoxygenase inhibitor, L-651,896, produced almost complete inhibition at 3.5 and 35 x 10(-6) M. L-Serine borate (15 mM) did not alter the the activity of FPL-55712 versus anti-IgE. These findings indicate that LTD4 receptors mediate contraction of human trachea to exogenously applied and endogenously (anti-IgE) released leukotrienes. LTD4 antagonists, such as L-648,051, may be useful in assessing the role of leukotrienes in respiratory disease.  相似文献   

11.
The aim of the present study was to investigate the effect of omeprazole, an H+-K+-ATPase inhibitor, in myometrial smooth muscle strips from women undergoing elective caesarean section at term. Isolated myometrial strips taken with informed consent were obtained from eight pregnant women undergoing elective caesarean section at term (not in labour) and mounted in organ baths for recording of isometric tension. We recorded the effect of increasing concentrations of omeprazole on spontaneous and Ca2+-induced contractions of myometrial smooth muscle and on contractions of myometrial smooth muscle pretreated with indomethacin (3 x 10(-6) M) and L-NAME (3 x 10(-5) M). Omeprazole (10(-4)-10(-3) M) decreased the amplitude and frequency of spontaneous contractions in a time- and concentration-dependent manner in all myometrial smooth muscle isolated from pregnant women. The decrease in amplitude of contractions in myometrial smooth muscle reached statistical significance beginning from the concentration of 3 x 10(-4) M. Addition of indomethacin (3 x 10(-6) M) and L-NAME (3 x 10(-5) M) in to the organ baths 30 min before did not change relaxation responses to omeprazole. When 8 mM Ca2+-precontracted in Ca2+-free medium myometrial smooth muscle were exposed to increasing concentrations of omeprazole (10(-5)-10(-3) M), omeprazole produced relaxation responses in a time- and concentration-dependent manner, reaching statistical significance at 10(-4) M. These results show: (1) omeprazole time- and concentration-dependently decreased spontaneous contractile activity in myometrial smooth muscle isolated from pregnant women, (2) omeprazole-induced relaxations was not influenced by indomethacin and N(G)-nitro-L-arginine methyl ester (L-NAME), suggesting that it is not mediated by cyclooxygenase products and nitric oxide, and (3) omeprazole brought about time- and concentration-dependently relaxation of myometrial smooth muscle precontracted by 8 mM Ca2+ in Ca2+-free medium. This effect of omeprazole may be due to blockade of the calcium channels.  相似文献   

12.
Functional innervation of cat airways smooth muscle was examined in isolated segments of trachea and bronchi using electrical field stimulation (EFS) techniques. Field stimulation caused contraction in tissues at resting tone and biphasic responses (contraction followed by relaxation) in tissues precontracted with 5-hydroxytryptamine (5-HT). Contractions were abolished by 10(-6) M atropine. Inhibitory responses were dependent on impulse voltage, duration, and frequency. At low voltages (less than or equal to 10 V) and pulse durations (less than or equal to 0.3 ms), EFS induced relaxations were abolished by 3 X 10(-6) M tetrodotoxin (TTX). Greater stimulus parameters elicited TTX-resistant relaxations. Pretreatment of the tissues with 10(-6) M propranolol and 10(-5) M guanethidine caused rightward shifts in relaxation frequency-response curves. These findings indicate that cat airways are innervated by excitatory cholinergic, inhibitory adrenergic, and inhibitory nonadrenergic noncholinergic (NANC) nerves. Pretreatment of the tissues with hexamethonium, cimetidine, indomethacin, or nordihydroguaiaretic acid did not affect NANC relaxation responses. It is concluded that NANC inhibitory responses in cat airway smooth muscle are mediated through intrinsic postganglionic nerve fibers and occur independently of histamine H2-receptor activation and without involvement of cyclooxygenase or lipoxygenase products of arachidonic acid metabolism.  相似文献   

13.
The biogenic amine octopamine and the pentapeptide proctolin are two important neuroactive chemicals that control contraction of the oviducts of the African locust Locusta migratoria. The physiological responses and signal transduction pathways used by octopamine and proctolin have been well characterized in the locust oviducts and this therefore provides the opportunity to examine the interaction between these two pathways. Octopamine, via the intracellular messenger adenosine 3',5'-cyclic monophosphate (cyclic AMP), inhibits contraction of the oviducts, while proctolin, via the phosphoinositol pathway, stimulates contraction. We have examined the physiological response of the oviducts to combinations of octopamine and proctolin and also looked at how combinations of these affect one of the main intracellular mediators of the octopamine response, namely cyclic AMP. It was found that application of octopamine to the oviducts led to a dose-dependent reduction in tonus of the muscle and also a decrease in the amplitude and frequency of spontaneous phasic contractions. Octopamine-induced relaxation was enhanced in the presence of the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX). Octopamine was also able to inhibit proctolin-induced contractions of the oviducts in a dose-dependent manner. A 10(-9) M proctolin-induced contraction was inhibited by 83% in the presence of 10(-5) M octopamine, and was completely inhibited in the presence of 10(-5) M octopamine plus 5x10(-4) M IBMX. Octopamine led to a dose-dependent increase in cyclic AMP content as measured by radioimmunoassay. In the presence of 10(-9) M proctolin, this octopamine-induced increase in cyclic AMP was reduced by as much as 60%. Proctolin also caused a dose-dependent decrease in the cyclic AMP elevation produced by 5x10(-6) M octopamine. These results indicate that octopamine and proctolin can antagonize each other's physiological response when added in combination, and that proctolin is able to modulate the response of the oviducts to octopamine by influencing cyclic AMP levels.  相似文献   

14.
Cantleyine, a monoterpene alkaloid isolated from the root bark of Strychnos trinervis, was submitted to a broad spectrum pharmacological screening, in which the principal effect observed was a nonspecific relaxation of isolated smooth muscles. Cantleyine relaxed (IC50 2.1 x 10(-4) M) the guinea-pig trachea, pre-contracted by carbachol and antagonized in a nonspecific manner; carbachol (IC50 2.1 x 10(-4) M) and histamine (IC50 1.4 x 10(-4) M) induced contractions in the guinea-pig ileum; and phenylephrine (IC50 3.8 x 10(-4) M) responses in the rat aorta. Cantleyine antagonized (pD'2, 3.82) cumulative concentration response curves to histamine in the ileum in a noncompetitive, reversible (slope, 4.84) and concentration dependent manner. The tonic contractions induced by histamine and KCl were also inhibited in a concentration-dependent and reversible manner (IC50 7.2 x 10(-5) and 1.8 x 10(-4) M, respectively), suggesting that cantleyine should be acting on voltage-dependent Ca2+ channels. This hypothesis was confirmed by the observation that cantleyine inhibited (pD'2, 3.35), in a concentration dependent manner, the CaCl2 induced contraction in depolarizing medium. These results suggest that cantleyine produces nonspecific spasmolytic effects in smooth muscle and that in guinea-pig ileum this effect is, in part, due to the inhibition of Ca+2 influx through voltage-dependent Ca2+ channels.  相似文献   

15.
The effects of mefloquine on the mechanical activity of the mouse isolated rectal smooth muscle was studied. Mefloquine (4.1x10-5 - 5.2x10-3M) when applied alone and separately exerted variable effects on the rectum. In some preparations, it caused slight phasic contractions while in others no response was elicited. When the external Ca(2+) was increased from 1.8mM to 300mM mefloquine produced phasic contractile activity which was abolished on return to normal 1.8mM suggesting that the contractile activity was due to extracellular Ca(2+) influx. Meflaquine [4.1x10-6M - 4.1x10-4M] caused contraction - dependent inhibition of KCL, Carbachol and CaCl2 [in depolarizing Tyrode Solution]. Mefloquine [2.1x10-4M] blocked KCL, but not carbachol contractions which were largely reversed by increasing [Ca2+]. The results show that mefloquine possesses anticholinergic and appreciable calcium channel blocking activity.  相似文献   

16.
The contractile activity of smooth muscle of tracheobronchial lymph nodes' capsules was recorded in vitro. The field electric stimulation (0.5 ms pulses, 55 V nominal, 4 min trains at frequencies 0.5, 1, 2, 4, 8, 16 and 32 Hz) of strips from lymph node produced a frequency-dependent increase in baseline tension and frequency of phase contractions. Evoked contractions were significantly (about 80%) reduced by tetrodotoxin (1 x 10(-6) M). The blockage of M-cholinoreceptors with atropine (1 x 10(-6) M) did not affect the field-evoked responses. Contractile field-evoked effects were significantly reduced by the phentolamine (1 x 10(-7)-1 x 10(-6) M) but not completely. Field-evoked contractions were slightly affected by the propranolol (1 x 10(-7)-1 x 10(-6) M). We conclude that the contractile activity of bovine tracheobronchial lymph node capsular smooth muscle is modulated by excitatory adrenergic nerves.  相似文献   

17.
It has long been known that the esophageal distension produced by swallowing elicits a powerful proximal gastric relaxation. Gastroinhibitory control by the esophagus involves neural pathways from esophageal distension-sensitive neurons in the nucleus tractus solitarius centralis (cNTS) with connections to virtually all levels of the dorsal motor nucleus of the vagus (DMV). We have shown recently that cNTS responses are excitatory and primarily involve tyrosine hydroxylase-immunoreactive cells, whereas the DMV response involves both an alpha1 excitatory and an alpha2 inhibitory response. In the present study, using an esophageal balloon distension to evoke gastric relaxation (esophageal-gastric reflex, EGR), we investigated the peripheral pharmacological basis responsible for this reflex. Systemic administration of atropine methyl nitrate reduced the amplitude of the gastric relaxation to 52.0+/-4.4% of the original EGR, whereas NG-nitro-L-arginine methyl ester (L-NAME) reduced it to 26.3+/-7.2% of the original EGR. Concomitant administration of atropine methyl nitrate and L-NAME reduced the amplitude of the gastric relaxation to 4.0+/-2.5% of control. This reduction in the amplitude of induced EGR is quite comparable (4.3+/-2.6%) to that seen when the animal was pretreated with the nicotinic ganglionic blocker hexamethonium. In the presence of bethanechol, the amplitude of the esophageal distension-induced gastric relaxation was increased to 177.0+/-10.0% of control; administration of L-NAME reduced this amplitude to 19.9+/-9.5%. Our data provide a clear demonstration that the gastroinhibitory control by the esophagus is mediated via a dual vagal innervation consisting of inhibitory nitrergic and excitatory cholinergic transmission.  相似文献   

18.
Effects of veratrine and paeoniflorin on isolated mouse vas deferens   总被引:2,自引:0,他引:2  
Y.F. Chen  Y.T. Lin  T.W. Tan  H.Y. Tsai   《Phytomedicine》2002,9(4):296-301
In this study, we attempted to identify the interactions and mechanisms between veratrine and paeoniflorin on isolated mouse vas deferens. Paeoniflorin had no effect on isolated mouse vas deferens. Veratrine (1 x 10(-5) approximately 1 x 10(-3) g/ml) could directly induce contraction of isolated rat and mouse vas deferens. The concentration induced by veratrine (1 x 10(-5) g/ml) was completely inhibited by Ca2+-free solution and verapamil (1 x 10(-5) M), in both the epididymal and the prostatic portions of isolated mouse vas deferens. Naloxone (1 x 10(-5) M) did not alter the contraction induced by veratrine (1 x 10(-5) g/ml) in either the epididymal or the prostatic portions of isolated mouse vas deferens. Paeoniflorin (4.8 x 10(-5) g/ml) inhibited the contraction induced by veratrine (1 x 10(-5) g/ml) in both the epididymal and the prostatic portions of isolated mouse vas deferens. Paeoniflorin (4.8 x 10(-5) g/ml) potentiated norepinephrine (1 x 10(-5) M)-induced phasic contraction in the epididymal portion, but decreased contractions in the prostatic portion. Paeoniflorin (4.8 x 10(-5) g/ml) increased KCI (56 mM)-induced phasic contraction in the epididymal portion, but decreased the tonic contraction in either the epididymal or the prostatic portion. Veratrine (1 x 10(-5) g/ml)-induced contractions could be decreased by pretreatment with ryanodine (1 x 10(-5) M) in both the epididymal and the prostatic portions. Pretreatment with the combination of paeoniflorin (4.8 x 10(-5) g/ml) and ryanodine (1 x 10(-5) M) did not potentiate the inhibition of paeoniflorin in the veratrine-induced contraction in both the epididymal and the prostatic portions of isolated mouse vas deferens.  相似文献   

19.
Colonic motility is modulated by the 5-hydroxytryptamine (5-HT)(3)-dependent gastrocolonic response and 5-HT(3)-independent peristaltic reflex. We compared descending colon tone responses to antral distension, duodenal lipid perfusion, and colonic distension after double-blind placebo or granisetron in 13 healthy volunteers and nine slow-transit constipated patients. Antral distension (100-300 ml) and duodenal lipids (3 kcal/min) evoked increases in colon tone in volunteers, which were blunted in constipated patients (P < 0.05). Granisetron (10 microg/kg) reduced responses to antral distension and lipids in volunteers and to lipids in constipated patients (P < 0.05). The ascending contraction of the peristaltic reflex was blunted in constipated patients (P < 0.05), whereas descending responses were similar. Granisetron did not modify the peristaltic reflex. Colonic responses to bethanechol were similar in patients and volunteers. In conclusion, antral distension- and duodenal lipid-activated gastrocolonic responses and ascending contractions of the peristaltic reflex are impaired with slow-transit constipation with loss of both 5-HT(3)-dependent and -independent function. Thus abnormalities of neural reflex modulation of colonic motor function may play pathophysiological roles in slow-transit constipation.  相似文献   

20.
The present study was designed to determine the effects of melatonin on coronary vasomotor tone. Porcine coronary arteries were suspended in organ chambers for isometric tension recording. Melatonin (10(-10)-10(-5) M) itself caused neither contraction nor relaxation of the tissues. Serotonin (10(-9)-10(-5) M) caused concentration-dependent contractions of coronary arteries, and in the presence of melatonin (10(-7) M) the maximal response to serotonin was increased in rings with but not without endothelium. In contrast, melatonin had no effect on contractions produced by the thromboxane A(2) analog U-46619 (10(-10)-10(-7) M). The melatonin-receptor antagonist S-20928 (10(-6) M) abolished the potentiating effect of melatonin on serotonin-induced contractions in endothelium-intact coronary arteries, as did treatment with 1H-[1, 2,4]oxadiazolo[4,3-a]quinoxalin-1-one (10(-5) M), methylene blue (10(-5) M), or N(G)-nitro-L-arginine (3 x 10(-5) M). In tissues contracted with U-46619, serotonin caused endothelium-dependent relaxations that were inhibited by melatonin (10(-7) M). Melatonin also inhibited coronary artery relaxation induced by sodium nitroprusside (10(-9)-10(-5) M) but not by isoproterenol (10(-9)-10(-5) M). These results support the hypothesis that melatonin, by inhibiting the action of nitric oxide on coronary vascular smooth muscle, selectively potentiates the vasoconstrictor response to serotonin in coronary arteries with endothelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号